1
|
Seefeld ML, Templeton EL, Lehtinen JM, Sinclair N, Yadav D, Hartwell BL. Harnessing the potential of the NALT and BALT as targets for immunomodulation using engineering strategies to enhance mucosal uptake. Front Immunol 2024; 15:1419527. [PMID: 39286244 PMCID: PMC11403286 DOI: 10.3389/fimmu.2024.1419527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.
Collapse
Affiliation(s)
- Madison L Seefeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Erin L Templeton
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Justin M Lehtinen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Noah Sinclair
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Daman Yadav
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Brittany L Hartwell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Vazquez T, Torrieri-Damard L, Pitoiset F, Levacher B, Vigneron J, Mayr L, Brimaud F, Bonnet B, Moog C, Klatzmann D, Bellier B. Particulate antigens administrated by intranasal and intravaginal routes in a prime-boost strategy improve HIV-specific T FH generation, high-quality antibodies and long-lasting mucosal immunity. Eur J Pharm Biopharm 2023; 191:124-138. [PMID: 37634825 DOI: 10.1016/j.ejpb.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Mucosal surfaces serve as the primary entry points for pathogens such as SARS- CoV-2 coronavirus or HIV in the human body. Mucosal vaccination plays a crucial role to successfully induce long-lasting systemic and local immune responses to confer sterilizing immunity. However, antigen formulations and delivery methods must be properly selected since they are decisive for the quality and the magnitude of the elicited immune responses in mucosa. We investigated the significance of using particulate antigen forms for mucosal vaccination by comparing VLP- or protein- based vaccines in a mouse model. Based on a mucosal prime-boost immunization protocol combining (i) HIV- pseudotyped recombinant VLPs (HIV-VLPs) and (ii) plasmid DNA encoding HIV- VLPs (pVLPs), we demonstrated that combination of intranasal primes and intravaginal boosts is optimal to elicit both humoral and cellular memory responses in mucosa. Interestingly, our results show that in contrast to proteins, particulate antigens induce high-quality humoral responses characterized by a high breadth, long-term neutralizing activity and cross-clade reactivity, accompanying with high T follicular helper cell (TFH) response. These results underscore the potential of a VLP-based vaccine in effectively instigating long-lasting, HIV-specific immunity and point out the specific role of particulate antigen form in driving high-quality mucosal immune responses.
Collapse
Affiliation(s)
- Thomas Vazquez
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Léa Torrieri-Damard
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Fabien Pitoiset
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Béatrice Levacher
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - James Vigneron
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Luzia Mayr
- Université de Strasbourg, Fédération de médecine Translationnelle de Strasbourg, INSERM U1109, F-67000, France
| | - Faustine Brimaud
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Benjamin Bonnet
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Christiane Moog
- Université de Strasbourg, Fédération de médecine Translationnelle de Strasbourg, INSERM U1109, F-67000, France
| | - David Klatzmann
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Bertrand Bellier
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France.
| |
Collapse
|
3
|
Prior JT, Limbert VM, Horowitz RM, D'Souza SJ, Bachnak L, Godwin MS, Bauer DL, Harrell JE, Morici LA, Taylor JJ, McLachlan JB. Establishment of isotype-switched, antigen-specific B cells in multiple mucosal tissues using non-mucosal immunization. NPJ Vaccines 2023; 8:80. [PMID: 37258506 PMCID: PMC10231862 DOI: 10.1038/s41541-023-00677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Although most pathogens infect the human body via mucosal surfaces, very few injectable vaccines can specifically target immune cells to these tissues where their effector functions would be most desirable. We have previously shown that certain adjuvants can program vaccine-specific helper T cells to migrate to the gut, even when the vaccine is delivered non-mucosally. It is not known whether this is true for antigen-specific B cell responses. Here we show that a single intradermal vaccination with the adjuvant double mutant heat-labile toxin (dmLT) induces a robust endogenous, vaccine-specific, isotype-switched B cell response. When the vaccine was intradermally boosted, we detected non-circulating vaccine-specific B cell responses in the lamina propria of the large intestines, Peyer's patches, and lungs. When compared to the TLR9 ligand adjuvant CpG, only dmLT was able to drive the establishment of isotype-switched resident B cells in these mucosal tissues, even when the dmLT-adjuvanted vaccine was administered non-mucosally. Further, we found that the transcription factor Batf3 was important for the full germinal center reaction, isotype switching, and Peyer's patch migration of these B cells. Collectively, these data indicate that specific adjuvants can promote mucosal homing and the establishment of activated, antigen-specific B cells in mucosal tissues, even when these adjuvants are delivered by a non-mucosal route. These findings could fundamentally change the way future vaccines are formulated and delivered.
Collapse
Affiliation(s)
- John T Prior
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew S Godwin
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
4
|
Fraser R, Orta-Resendiz A, Mazein A, Dockrell DH. Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends Mol Med 2023; 29:255-267. [PMID: 36764906 PMCID: PMC9868365 DOI: 10.1016/j.molmed.2023.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
SARS-CoV-2 vaccination significantly reduces morbidity and mortality, but has less impact on viral transmission rates, thus aiding viral evolution, and the longevity of vaccine-induced immunity rapidly declines. Immune responses in respiratory tract mucosal tissues are crucial for early control of infection, and can generate long-term antigen-specific protection with prompt recall responses. However, currently approved SARS-CoV-2 vaccines are not amenable to adequate respiratory mucosal delivery, particularly in the upper airways, which could account for the high vaccine breakthrough infection rates and limited duration of vaccine-mediated protection. In view of these drawbacks, we outline a strategy that has the potential to enhance both the efficacy and durability of existing SARS-CoV-2 vaccines, by inducing robust memory responses in the upper respiratory tract (URT) mucosa.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, F-75015 Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - David H Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
5
|
Combinatorial Viral Vector-Based and Live Attenuated Vaccines without an Adjuvant to Generate Broader Immune Responses to Effectively Combat Pneumonic Plague. mBio 2021; 12:e0322321. [PMID: 34872353 PMCID: PMC8649767 DOI: 10.1128/mbio.03223-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF−) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF− mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response.
Collapse
|
6
|
Hodgins B, Pillet S, Landry N, Ward BJ. Prime-pull vaccination with a plant-derived virus-like particle influenza vaccine elicits a broad immune response and protects aged mice from death and frailty after challenge. IMMUNITY & AGEING 2019; 16:27. [PMID: 31700523 PMCID: PMC6829930 DOI: 10.1186/s12979-019-0167-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
Background Administered intramuscularly (IM), plant-derived, virus-like-particle (VLP) vaccines based on the influenza hemagglutinin (HA) protein elicit both humoral and cellular responses that can protect aged mice from lethal challenge. Unlike split virus vaccines, VLPs can be administered by different routes including intranasally (IN). We evaluated novel vaccine strategies such as prime-pull (IM boosted by IN) and multi-modality vaccination (IM and IN given simultaneously). We wished to determine if these approaches would provide better quality protection in old mice after less severe (borderline-lethal) challenge (ie: immunogenicity, frailty and survival). Results Survival rates were similar in all vaccinated groups. Antibody responses were modest in all groups but tended to be higher in VLP groups compared to inactivated influenza vaccine (IIV) recipients. All VLP groups had higher splenocyte T cell responses than the split virus group. Lung homogenate chemokine/cytokine levels and virus loads were lower in the VLP groups compared to IIV recipients 3 days after challenge (p < 0.05 for viral load vs all VLP groups combined). The VLP-vaccinated groups also had less weight loss and recovered more rapidly than the IIV recipients. There was limited evidence of an immunologic or survival advantage with IN delivery of the VLP vaccine. Conclusion Compared to IIV, the plant-derived VLP vaccine induced a broader immune response in aged mice (cellular and humoral) using either traditional (IM/IM) or novel schedules (multi-modality, prime-pull).
Collapse
Affiliation(s)
- Breanna Hodgins
- 1Department of Experimental Medicine, McGill University, Montreal, Quebec Canada
| | - Stephane Pillet
- 2Research Institute of McGill University Health Centre, 1001 Boul Decarie, Room EM33248, Montreal, QC H4A 3J1 Canada.,3Medicago Inc., Quebec City, Quebec Canada
| | | | - Brian J Ward
- 2Research Institute of McGill University Health Centre, 1001 Boul Decarie, Room EM33248, Montreal, QC H4A 3J1 Canada.,3Medicago Inc., Quebec City, Quebec Canada
| |
Collapse
|
7
|
Manjaly Thomas ZR, Satti I, Marshall JL, Harris SA, Lopez Ramon R, Hamidi A, Minhinnick A, Riste M, Stockdale L, Lawrie AM, Vermaak S, Wilkie M, Bettinson H, McShane H. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial. PLoS Med 2019; 16:e1002790. [PMID: 31039172 PMCID: PMC6490884 DOI: 10.1371/journal.pmed.1002790] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is an urgent need for an effective tuberculosis (TB) vaccine. Heterologous prime-boost regimens induce potent cellular immunity. MVA85A is a candidate TB vaccine. This phase I clinical trial was designed to evaluate whether alternating aerosol and intradermal vaccination routes would boost cellular immunity to the Mycobacterium tuberculosis antigen 85A (Ag85A). METHODS AND FINDINGS Between December 2013 and January 2016, 36 bacille Calmette-Guérin-vaccinated, healthy UK adults were randomised equally between 3 groups to receive 2 MVA85A vaccinations 1 month apart using either heterologous (Group 1, aerosol-intradermal; Group 2, intradermal-aerosol) or homologous (Group 3, intradermal-intradermal) immunisation. Bronchoscopy and bronchoalveolar lavage (BAL) were performed 7 days post-vaccination. Adverse events (AEs) and peripheral blood were collected for 6 months post-vaccination. The laboratory and bronchoscopy teams were blinded to treatment allocation. One participant was withdrawn and was replaced. Participants were aged 21-42 years, and 28/37 were female. In a per protocol analysis, aerosol delivery of MVA85A as a priming immunisation was well tolerated and highly immunogenic. Most AEs were mild local injection site reactions following intradermal vaccination. Transient systemic AEs occurred following vaccination by both routes and were most frequently mild. All respiratory AEs following primary aerosol MVA85A (Group 1) were mild. Boosting an intradermal MVA85A prime with an aerosolised MVA85A boost 1 month later (Group 2) resulted in transient moderate/severe respiratory and systemic AEs. There were no serious adverse events and no bronchoscopy-related complications. Only the intradermal-aerosol vaccination regimen (Group 2) resulted in modest, significant boosting of the cell-mediated immune response to Ag85A (p = 0.027; 95% CI: 28 to 630 spot forming cells per 1 × 106 peripheral blood mononuclear cells). All 3 regimens induced systemic cellular immune responses to the modified vaccinia virus Ankara (MVA) vector. Serum antibodies to Ag85A and MVA were only induced after intradermal vaccination. Aerosolised MVA85A induced significantly higher levels of Ag85A lung mucosal CD4+ and CD8+ T cell cytokines compared to intradermal vaccination. Boosting with aerosol-inhaled MVA85A enhanced the intradermal primed responses in Group 2. The magnitude of BAL MVA-specific CD4+ T cell responses was lower than the Ag85A-specific responses. A limitation of the study is that while the intradermal-aerosol regimen induced the most potent cellular Ag85A immune responses, we did not boost the last 3 participants in this group because of the AE profile. Timing of bronchoscopies aimed to capture peak mucosal response; however, peak responses may have occurred outside of this time frame. CONCLUSIONS To our knowledge, this is the first human randomised clinical trial to explore heterologous prime-boost regimes using aerosol and systemic routes of administration of a virally vectored vaccine. In this trial, the aerosol prime-intradermal boost regime was well tolerated, but intradermal prime-aerosol boost resulted in transient but significant respiratory AEs. Aerosol vaccination induced potent cellular Ag85A-specific mucosal and systemic immune responses. Whilst the implications of inducing potent mucosal and systemic immunity for protection are unclear, these findings are of relevance for the development of aerosolised vaccines for TB and other respiratory and mucosal pathogens. TRIAL REGISTRATION ClinicalTrials.gov NCT01954563.
Collapse
Affiliation(s)
- Zita-Rose Manjaly Thomas
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Julia L. Marshall
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie A. Harris
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Raquel Lopez Ramon
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ali Hamidi
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Minhinnick
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Riste
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Lisa Stockdale
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alison M. Lawrie
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Samantha Vermaak
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Morven Wilkie
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Gary EN, Kutzler MA. Defensive Driving: Directing HIV-1 Vaccine-Induced Humoral Immunity to the Mucosa with Chemokine Adjuvants. J Immunol Res 2018; 2018:3734207. [PMID: 30648120 PMCID: PMC6311813 DOI: 10.1155/2018/3734207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
A myriad of pathogens gain access to the host via the mucosal route; thus, vaccinations that protect against mucosal pathogens are critical. Pathogens such as HIV, HSV, and influenza enter the host at mucosal sites such as the intestinal, urogenital, and respiratory tracts. All currently licensed vaccines mediate protection by inducing the production of antibodies which can limit pathogen replication at the site of infection. Unfortunately, parenteral vaccination rarely induces the production of an antigen-specific antibody at mucosal surfaces and thus relies on transudation of systemically generated antibody to mucosal surfaces to mediate protection. Mucosa-associated lymphoid tissues (MALTs) consist of a complex network of immune organs and tissues that orchestrate the interaction between the host, commensal microbes, and pathogens at these surfaces. This complexity necessitates strict control of the entry and exit of lymphocytes in the MALT. This control is mediated by chemoattractant chemokines or cytokines which recruit immune cells expressing the cognate receptors and adhesion molecules. Exploiting mucosal chemokine trafficking pathways to mobilize specific subsets of lymphocytes to mucosal tissues in the context of vaccination has improved immunogenicity and efficacy in preclinical models. This review describes the novel use of MALT chemokines as vaccine adjuvants. Specific attention will be placed upon the use of such adjuvants to enhance HIV-specific mucosal humoral immunity in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Ebony N. Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michele A. Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- The Division of Infectious Diseases and HIV Medicine, The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Airway T cells protect against RSV infection in the absence of antibody. Mucosal Immunol 2018; 11:249-256. [PMID: 28537249 DOI: 10.1038/mi.2017.46] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/02/2017] [Indexed: 02/04/2023]
Abstract
Tissue resident memory T (Trm) cells act as sentinels and early responders to infection. Respiratory syncytial virus (RSV)-specific Trm cells have been detected in the lungs after human RSV infection, but whether they have a protective role is unknown. To dissect the protective function of Trm cells, BALB/c mice were infected with RSV; infected mice developed antigen-specific CD8+ Trm cells (CD103+/CD69+) in the lungs and airways. Intranasally transferring cells from the airways of previously infected animals to naïve animals reduced weight loss on infection in the recipient mice. Transfer of airway CD8 cells led to reduced disease and viral load and increased interferon-γ in the airways of recipient mice, while CD4 transfer reduced tumor necrosis factor-α in the airways. Because DNA vaccines induce a systemic T-cell response, we compared vaccination with infection for the effect of memory CD8 cells generated in different compartments. Intramuscular DNA immunization induced RSV-specific CD8 T cells, but they were immunopathogenic and not protective. Notably, there was a marked difference in the induction of Trm cells; infection but not immunization induced antigen-specific Trm cells in a range of tissues. These findings demonstrate a protective role for airway CD8 against RSV and support the need for vaccines to induce antigen-specific airway cells.
Collapse
|
10
|
Veazey RS, Siddiqui A, Klein K, Buffa V, Fischetti L, Doyle-Meyers L, King DF, Tregoning JS, Shattock RJ. Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques. Hum Vaccin Immunother 2016; 11:2913-22. [PMID: 26697975 DOI: 10.1080/21645515.2015.1070998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Delivering vaccine antigens to mucosal surfaces is potentially very attractive, especially as protection from mucosal infections may be mediated by local immune responses. However, to date mucosal immunization has had limited successes, with issues of both safety and poor immunogenicity. One approach to improve immunogenicity is to develop adjuvants that are effective and safe at mucosal surfaces. Differences in immune responses between mice and men have overstated the value of some experimental adjuvants which have subsequently performed poorly in the clinic. Due to their closer similarity, non-human primates can provide a more accurate picture of adjuvant performance. In this study we immunised rhesus macaques (Macaca mulatta) using a unique matrix experimental design that maximised the number of adjuvants screened while reducing the animal usage. Macaques were immunised by the intranasal, sublingual and intrarectal routes with the model protein antigens keyhole limpet haemocyanin (KLH), β-galactosidase (β-Gal) and ovalbumin (OVA) in combination with the experimental adjuvants Poly(I:C), Pam3CSK4, chitosan, Thymic Stromal Lymphopoietin (TSLP), MPLA and R848 (Resiquimod). Of the routes used, only intranasal immunization with KLH and R848 induced a detectable antibody response. When compared to intramuscular immunization, intranasal administration gave slightly lower levels of antigen specific antibody in the plasma, but enhanced local responses. Following intranasal delivery of R848, we observed a mildly inflammatory response, but no difference to the control. From this we conclude that R848 is able to boost antibody responses to mucosally delivered antigen, without causing excess local inflammation.
Collapse
Affiliation(s)
- Ronald S Veazey
- a Tulane National Primate Research Center; Tulane University School of Medicine ; Covington , LA USA
| | - Asna Siddiqui
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Katja Klein
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK.,c Present affiliation: University of Western Ontario ; Ontario , Canada
| | - Viviana Buffa
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Lucia Fischetti
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Lara Doyle-Meyers
- a Tulane National Primate Research Center; Tulane University School of Medicine ; Covington , LA USA
| | - Deborah F King
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK.,d Present affiliation: IAVI Human Immunology Lab; Chelsea and Westminster; Imperial College London ; London , UK
| | - John S Tregoning
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Robin J Shattock
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| |
Collapse
|
11
|
Affiliation(s)
- Akiko Iwasaki
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520;
| |
Collapse
|
12
|
Mohan T, Kim J, Berman Z, Wang S, Compans RW, Wang BZ. Co-delivery of GPI-anchored CCL28 and influenza HA in chimeric virus-like particles induces cross-protective immunity against H3N2 viruses. J Control Release 2016; 233:208-19. [PMID: 27178810 DOI: 10.1016/j.jconrel.2016.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Influenza infection typically initiates at respiratory mucosal surfaces. Induction of immune responses at the sites where pathogens initiate replication is crucial for the prevention of infection. We studied the adjuvanticity of GPI-anchored CCL28 co-incorporated with influenza HA-antigens in chimeric virus-like particles (cVLPs), in boosting strong protective immune responses through an intranasal (i.n.) route in mice. We compared the immune responses to that from influenza VLPs without CCL28, or physically mixed with soluble CCL28 at systemic and various mucosal compartments. The cVLPs containing GPI-CCL28 showed in-vitro chemotactic activity towards spleen and lung cells expressing CCR3/CCR10 chemokine receptors. The cVLPs induced antigen specific endpoint titers and avidity indices of IgG in sera and IgA in tracheal, lung, and intestinal secretions, significantly higher (4-6 fold) than other formulations. Significantly higher (3-5 fold) hemagglutination inhibition titers and high serum neutralization against H3N2 viruses were also detected with CCL28-containing VLPs compared to other groups. The CCL28-containing VLPs showed complete and 80% protection, when vaccinated animals were challenged with A/Aichi/2/1968/H3N2 (homologous) and A/Philippines/2/1982/H3N2 (heterologous) viruses, respectively. Thus, GPI-anchored CCL28 in influenza VLPs act as a strong immunostimulator at both systemic and mucosal sites, boosting significant cross-protection in animals against heterologous viruses across a large distance.
Collapse
Affiliation(s)
- Teena Mohan
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Jongrok Kim
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Zachary Berman
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Shelly Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
13
|
Badamchi-Zadeh A, McKay PF, Holland MJ, Paes W, Brzozowski A, Lacey C, Follmann F, Tregoning JS, Shattock RJ. Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies. PLoS One 2015; 10:e0141209. [PMID: 26501198 PMCID: PMC4621052 DOI: 10.1371/journal.pone.0141209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/05/2015] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs), antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP) specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication. METHODS We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA) and protein vaccines based on the major outer membrane protein (MOMP) as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice. RESULTS Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens. CONCLUSIONS If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid and high throughput evaluation of future trachoma vaccines.
Collapse
Affiliation(s)
- Alexander Badamchi-Zadeh
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Paul F. McKay
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Martin J. Holland
- London School of Hygiene and Tropical Medicine, Keppel St, London, United Kingdom
| | - Wayne Paes
- Centre for Immunology and Infection, Hull York Medical School, University of York, York, United Kingdom
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Andrzej Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Charles Lacey
- Centre for Immunology and Infection, Hull York Medical School, University of York, York, United Kingdom
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - John S. Tregoning
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Robin J. Shattock
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St Mary’s Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1004-12. [PMID: 26135973 PMCID: PMC4550664 DOI: 10.1128/cvi.00736-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/17/2015] [Indexed: 01/06/2023]
Abstract
The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines.
Collapse
|
15
|
Zhang N, Channappanavar R, Ma C, Wang L, Tang J, Garron T, Tao X, Tasneem S, Lu L, Tseng CTK, Zhou Y, Perlman S, Jiang S, Du L. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol 2015; 13:180-90. [PMID: 25640653 PMCID: PMC4786625 DOI: 10.1038/cmi.2015.03] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/09/2022] Open
Abstract
Middle East respiratory syndrome (MERS), an emerging infectious disease caused by MERS coronavirus (MERS-CoV), has garnered worldwide attention as a consequence of its continuous spread and pandemic potential, making the development of effective vaccines a high priority. We previously demonstrated that residues 377–588 of MERS-CoV spike (S) protein receptor-binding domain (RBD) is a very promising MERS subunit vaccine candidate, capable of inducing potent neutralization antibody responses. In this study, we sought to identify an adjuvant that optimally enhanced the immunogenicity of S377–588 protein fused with Fc of human IgG (S377–588-Fc). Specifically, we compared several commercially available adjuvants, including Freund's adjuvant, aluminum, Monophosphoryl lipid A, Montanide ISA51 and MF59 with regard to their capacity to enhance the immunogenicity of this subunit vaccine. In the absence of adjuvant, S377–588-Fc alone induced readily detectable neutralizing antibody and T-cell responses in immunized mice. However, incorporating an adjuvant improved its immunogenicity. Particularly, among the aforementioned adjuvants evaluated, MF59 is the most potent as judged by its superior ability to induce the highest titers of IgG, IgG1 and IgG2a subtypes, and neutralizing antibodies. The addition of MF59 significantly augmented the immunogenicity of S377–588-Fc to induce strong IgG and neutralizing antibody responses as well as protection against MERS-CoV infection in mice, suggesting that MF59 is an optimal adjuvant for MERS-CoV RBD-based subunit vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | | | - Cuiqing Ma
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lili Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jian Tang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Xiang-Ya Medical College, Central South University, Changsha, China
| | - Tania Garron
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinrong Tao
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Sumaiya Tasneem
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai, Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Xiang-Ya Medical College, Central South University, Changsha, China
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai, Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
16
|
McElrath MJ. Mucosal Immunity and Vaccines Against Simian Immunodeficiency Virus and Human Immunodeficiency Virus. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00060-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Rafferty H, Sibeko S, Rowland-Jones S. How can we design better vaccines to prevent HIV infection in women? Front Microbiol 2014; 5:572. [PMID: 25408686 PMCID: PMC4219488 DOI: 10.3389/fmicb.2014.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022] Open
Abstract
The human immunodeficiency virus (HIV) burden in women continues to increase, and heterosexual contact is now the most common route of infection worldwide. Effective protection of women against HIV-1 infection may require a vaccine specifically targeting mucosal immune responses in the female genital tract (FGT). To achieve this goal, a much better understanding of the immunology of the FGT is needed. Here we review the architecture of the immune system of the FGT, recent studies of potential methods to achieve the goal of mucosal protection in women, including systemic-prime, mucosal-boost, FGT-tropic vectors and immune response altering adjuvants. Advances in other fields that enhance our understanding of female genital immune correlates and the interplay between hormonal and immunological systems may also help to achieve protection of women from HIV infection.
Collapse
Affiliation(s)
- Hannah Rafferty
- Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Sengeziwe Sibeko
- Nuffield Department of Medicine, University of Oxford Oxford, UK
| | | |
Collapse
|
18
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
19
|
Chanzu N, Ondondo B. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy. Front Immunol 2014; 5:202. [PMID: 24847327 PMCID: PMC4021115 DOI: 10.3389/fimmu.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/28/2023] Open
Abstract
The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
Collapse
Affiliation(s)
- Nadia Chanzu
- Institute of Tropical and Infectious Diseases, College of Health Sciences, University of Nairobi , Nairobi , Kenya
| | - Beatrice Ondondo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|