1
|
Sørensen J, Cuenca A, Schmidt JG, Madsen SB, Iburg TM, Madsen L, Vendramin N. A novel high-throughput qPCR chip for solving co-infections in RAS farmed rainbow trout. Sci Rep 2024; 14:16802. [PMID: 39039114 PMCID: PMC11263403 DOI: 10.1038/s41598-024-65697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Recirculating aquaculture systems (RAS) have become more attractive due to reduced water consumption and effluent discharge. However, intensification of production increases the risk of introducing pathogens at farming sites. The emergence of uncultivable pathogens and RAS pathobiome diversity shifts the traditional disease paradigm from "one pathogen, one disease" to complex multiple-pathogen disease cases. Piscine orthoreovirus genotype 3 (PRV-3) is an excellent example, as it is capable of inducing anemia and heart pathology resembling heart and skeletal muscle inflammation under experimental conditions, and is associated with increased mortality in association with other pathogens in the field. The aim of this study was to develop a method for detection of multiple pathogens and putative pathogens, as co-infections are common in aquaculture. To do this, in the pilot study, we mapped the pathobiome of RAS-farmed rainbow trout (Oncorhynchus mykiss) (commercial RAS, farm A) using both standard diagnostic methods and metabarcording (16S rRNA) to investigate the gill microbiome. During this study, we observed infections with multiple pathogens, and detected two putative gill pathogens Candidatus Branchiomonas cysticola and Candidatus Piscichlamydia salmonis, both of which have been linked with complex gill disease in Atlantic salmon (Salmo salar). Based on the pilot study, we developed and tested a high throughput qPCR (HT-qPCR) chip targeting 22 viral and bacterial pathogens and putative pathogens, followed by a surveillance of a fish cohort in a commercial RAS farm during production (farm B). Co-infection with PRV-3 and Ca. B. cysticola combined with stress inducing management practices may explain the severe disease outbreak observed (37% mortality). The time course study sets the base for a future screening scheme for disease prediction and addresses limitations of the method when testing environmental DNA/RNA.
Collapse
Affiliation(s)
- Juliane Sørensen
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Jacob Günther Schmidt
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Tine Moesgaard Iburg
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Lone Madsen
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Niccoló Vendramin
- National Institute of Aquatic Resources DTU Aqua, Section for Fish and Shellfish Diseases, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
2
|
Kim HJ, Kim KE, Kim YJ, Kang H, Shin JW, Kim S, Lee SH, Jung SW, Lee TK. Marine Bacterioplankton Community Dynamics and Potentially Pathogenic Bacteria in Seawater around Jeju Island, South Korea, via Metabarcoding. Int J Mol Sci 2023; 24:13561. [PMID: 37686367 PMCID: PMC10487856 DOI: 10.3390/ijms241713561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Understanding marine bacterioplankton composition and distribution is necessary for improving predictions of ecosystem responses to environmental change. Here, we used 16S rRNA metabarcoding to investigate marine bacterioplankton diversity and identify potential pathogenic bacteria in seawater samples collected in March, May, September, and December 2013 from two sites near Jeju Island, South Korea. We identified 1343 operational taxonomic units (OTUs) and observed that community diversity varied between months. Alpha- and Gamma-proteobacteria were the most abundant classes, and in all months, the predominant genera were Candidatus Pelagibacter, Leisingera, and Citromicrobium. The highest number of OTUs was observed in September, and Vibrio (7.80%), Pseudoalteromonas (6.53%), and Citromicrobium (6.16%) showed higher relative abundances or were detected only in this month. Water temperature and salinity significantly affected bacterial distribution, and these conditions, characteristic of September, were adverse for Aestuariibacter but favored Citromicrobium. Potentially pathogenic bacteria, among which Vibrio (28 OTUs) and Pseudoalteromonas (six OTUs) were the most abundant in September, were detected in 49 OTUs, and their abundances were significantly correlated with water temperature, increasing rapidly in September, the warmest month. These findings suggest that monthly temperature and salinity variations affect marine bacterioplankton diversity and potential pathogen abundance.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (H.-J.K.); (K.E.K.); (Y.J.K.); (J.W.S.); (S.K.)
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (H.-J.K.); (K.E.K.); (Y.J.K.); (J.W.S.); (S.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (H.-J.K.); (K.E.K.); (Y.J.K.); (J.W.S.); (S.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hangoo Kang
- Vessel Operation & Observation Team, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea;
| | - Ji Woo Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (H.-J.K.); (K.E.K.); (Y.J.K.); (J.W.S.); (S.K.)
| | - Soohyun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (H.-J.K.); (K.E.K.); (Y.J.K.); (J.W.S.); (S.K.)
| | - Sang Heon Lee
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; (H.-J.K.); (K.E.K.); (Y.J.K.); (J.W.S.); (S.K.)
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science & Technology, Daejeon 34113, Republic of Korea
- Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| |
Collapse
|
3
|
Almeida DB, Semedo M, Magalhães C, Blanquet I, Mucha AP. Sole microbiome progression in a hatchery life cycle, from egg to juvenile. Front Microbiol 2023; 14:1188876. [PMID: 37434707 PMCID: PMC10331008 DOI: 10.3389/fmicb.2023.1188876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Recirculating aquaculture systems (RAS) pose unique challenges in microbial community management since they rely on a stable community with key target groups, both in the RAS environment and in the host (in this case, Solea senegalensis). Our goal was to determine how much of the sole microbiome is inherited from the egg stage, and how much is acquired during the remainder of the sole life cycle in an aquaculture production batch, especially regarding potentially probiotic and pathogenic groups. Our work comprises sole tissue samples from 2 days before hatching and up to 146 days after hatching (-2 to 146 DAH), encompassing the egg, larval, weaning, and pre-ongrowing stages. Total DNA was isolated from the different sole tissues, as well as from live feed introduced in the first stages, and 16S rRNA gene was sequenced (V6-V8 region) using the Illumina MiSeq platform. The output was analysed with the DADA2 pipeline, and taxonomic attribution with SILVAngs version 138.1. Using the Bray-Curtis dissimilarity index, both age and life cycle stage appeared to be drivers of bacterial community dissimilarity. To try to distinguish the inherited (present since the egg stage) from the acquired community (detected at later stages), different tissues were analysed at 49, 119 and 146 DAH (gill, intestine, fin and mucus). Only a few genera were inherited, but those that were inherited accompany the sole microbiome throughout the life cycle. Two genera of potentially probiotic bacteria (Bacillus and Enterococcus) were already present in the eggs, while others were acquired later, in particularly, forty days after live feed was introduced. The potentially pathogenic genera Tenacibaculum and Vibrio were inherited from the eggs, while Photobacterium and Mycobacterium seemed to be acquired at 49 and 119 DAH, respectively. Significant co-occurrence was found between Tenacibaculum and both Photobacterium and Vibrio. On the other hand, significantly negative correlations were detected between Vibrio and Streptococcus, Bacillus, Limosilactobacillus and Gardnerella. Our work reinforces the importance of life cycle studies, which can contribute to improve production husbandry strategies. However, we still need more information on this topic as repetition of patterns in different settings is essential to confirm our findings.
Collapse
Affiliation(s)
- Diana Bastos Almeida
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- SEA EIGHT - Safiestela S.A., Estela, Portugal
| | - Miguel Semedo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Catarina Magalhães
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- FCUP – Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Ana Paula Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- FCUP – Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Zhu T, Yang R, Xiao R, Liu L, Zhu S, Zhao J, Ye Z. Effects of flow velocity on the growth performance, antioxidant activity, immunity and intestinal health of Chinese Perch (Siniperca chuatsi) in recirculating aquaculture systems. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108811. [PMID: 37169108 DOI: 10.1016/j.fsi.2023.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The cultivation of Chinese Perch (Siniperca chuatsi) in recirculating aquaculture systems (RASs) has become a common trend. To explore the effect of flow velocity on the growth performance, antioxidant activity, immunity and intestinal health of Chinese Perch in RAS, 240 Chinese Perch with an initial weight of 70.66 ± 0.34 g were selected and randomly divided into 4 groups: control group [CK, 0 body length per second (bl/s)], low flow velocity (LF, 0.4 bl/s), middle flow velocity (MF, 0.8 bl/s) and high flow velocity (HF, 1.2 bl/s) for a 56-days experiment. The results showed that the flow velocity significantly increased the weight gain rate and feed intake in Chinese Perch. At 1.2 bl/s, the flow velocity increased the intestinal trypsin content and intestinal villus length. Furthermore, the relative expression of appetite-related genes showed a tendency to increase, and the relative expression of appetite-inhibiting genes had a significant decrease in HF. Regarding immune-related indicators, the activities of alanine aminotransferase (ALT) and aspartate transaminase (AST) were significantly higher in MF and HF. However, the activities of lysozyme (LZM) significantly decreased. Moreover, the activities of total superoxide dismutase (T-SOD) and catalase (CAT) were significantly higher in the CK group than in the other groups. Excessive flow velocity also caused the mRNA level of most immune-relevant genes to markedly decrease. With regard to intestinal health, the intestinal content sequencing results showed that MF could increase the intestinal diversity index of Chinese Perch. In addition, with increasing flow velocity, the relative abundance of Proteobacteria gradually increased, while the proportion of Firmicutes decreased. In conclusion, although the high flow velocity could promote growth, feeding, and digestion, inhibit fat deposition and increase the intestinal microbial abundance, the flow velocity caused stress, which leads to a decline in immunity and increases the death rate and the risk of intestinal disease in Chinese Perch. These findings provide theoretical support for the development of RASs for Chinese Perch.
Collapse
Affiliation(s)
- Tingyao Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Ru Yang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Runguo Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Liwei Liu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Songming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China; Ocean Academy, Zhejiang University, Zhoushan, 316000, China
| | - Jian Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China.
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China; Ocean Academy, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
5
|
Nieri P, Carpi S, Esposito R, Costantini M, Zupo V. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients 2023; 15:464. [PMID: 36678334 PMCID: PMC9861441 DOI: 10.3390/nu15020464] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.
Collapse
Affiliation(s)
- Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Center of Marine Pharmacology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sara Carpi
- National Enterprise for NanoScience and Nanotechnology (NEST), Piazza San Silvestro, 56127 Pisa, Italy
| | - Roberta Esposito
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Valerio Zupo
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077 Ischia, Italy
| |
Collapse
|
6
|
Guan W, Li K, Li K. Bacterial communities in co-cultured fish intestines and rice field soil irrigated with aquaculture wastewater. AMB Express 2022; 12:132. [PMID: 36272009 DOI: 10.1186/s13568-022-01475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
In some regions, integrated rice-fish farms have been developed to balance the needs of aquaculture wastewater discharge and rice field irrigation. In this type of aqua-agriculture system, soil is irrigated with aquaculture wastewater, and intestinal bacteria in cultured fish species likely impact soil bacteria through irrigation. However, little is known about the relationship between soil bacteria and intestinal bacteria in some carp species commonly co-cultured in some Asian regions. Therefore, we co-cultured five carp species in aquaculture ponds and used the aquaculture wastewater to irrigate rice fields for over 5 years, and then compared carp intestinal bacterial communities with rice field soil bacterial communities. The results from analysis of similarity and SourceTracker analysis showed that a low similarity (R = 0.7908, P = 0.001) and contribution (an average of 9.9% of bacterial genera) of intestinal bacteria to soil bacterial communities although 77.5% of soil bacterial genera were shared by intestinal bacteria. Our results also indicated that intestinal bacteria in the numerically dominant fish species in the co-culture system do not necessarily impact soil bacteria more significantly than those of less abundant carp species, and that intestinal bacterial communities in one single fish species may impact certain soil bacterial phyla more significantly than others. Our results provide a better understanding of the impact of aquaculture wastewater on rice fields and will be helpful for the development of this type of aqua-agriculture system.
Collapse
Affiliation(s)
- Weibing Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kui Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Da Silva RRP, White CA, Bowman JP, Ross DJ. Composition and functionality of bacterioplankton communities in marine coastal zones adjacent to finfish aquaculture. MARINE POLLUTION BULLETIN 2022; 182:113957. [PMID: 35872476 DOI: 10.1016/j.marpolbul.2022.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Finfish aquaculture is a fast-growing primary industry and is increasingly common in coastal ecosystems. Bacterioplankton is ubiquitous in marine environment and respond rapidly to environmental changes. Changes in bacterioplankton community are not well understood in semi-enclosed stratified embayments. This study aims to examine aquaculture effects in the composition and functional profiles of the bacterioplankton community using amplicon sequencing along a distance gradient from two finfish leases in a marine embayment. Results revealed natural stratification in bacterioplankton associated to NOx, conductivity, salinity, temperature and PO4. Among the differentially abundant bacteria in leases, we found members associated with nutrient enrichment and aquaculture activities. Abundant predicted functions near leases were assigned to organic matter degradation, fermentation, and antibiotic resistance. This study provides a first effort to describe changes in the bacterioplankton community composition and function due to finfish aquaculture in a semi-enclosed and highly stratified embayment with a significant freshwater input.
Collapse
Affiliation(s)
- R R P Da Silva
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia.
| | - C A White
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| | - J P Bowman
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - D J Ross
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| |
Collapse
|
8
|
Monitoring Bacterial Community Dynamics in Abalone (Haliotis discus hannai) and the Correlations Associated with Aquatic Diseases. WATER 2022. [DOI: 10.3390/w14111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacteria are an integral component of their host. However, information about the microbiota living in and around many aquatic animals is lacking. In this study, multiplex bar-coded pyrosequencing of the 16S ribosomal RNA gene was used to monitor the dynamics of abalone, Haliotis discus hannai, bacterial communities in the intestine, water from cement culture ponds, and surrounding sea areas. Correlations between the bacterial communities and common aquaculture diseases were also evaluated. A total of 329,798 valid sequences and 15,277 operational taxonomic units (OTUs) from 32 samples were obtained by 454 tag amplicon pyrosequencing. The Shannon indices of the seawater samples ranged from 2.84 to 5.6 and the Shannon indices of the abalone intestine samples ranged from 1.2 to 5.12, which were much lower than those of seawater. The dominant phyla in seawater samples were Proteobacteria, Bacteroidetes, Fusobacteria, Cyanobacteria, etc. The dominant phyla in the abalone intestine varied greatly in different months. The dominant genera in the seawater of the cement culture ponds changed in different months, mainly Psychrilyobacter and Pseudoalteromonas. The dominant genera in seawater from the open sea vary considerably between months. The dominant genus of bacteria in the abalone intestine during the months when abalones are susceptible to disease is mainly Mycoplasma spp. Canonical correspondence analysis revealed that bacterial communities in seawater and the intestine responded differently to environmental variables, with similar microbiota in the same area. pH, dissolved oxygen concentration, and temperature were closely related to the samples from the sea area. Oxidation-reduction potential, salinity, phosphate, nitrate, and ammonia nitrogen concentrations were closely related to the water samples from the artificial pools. These findings may add significantly to our understanding of the complex interactions between microbiota and environmental variables in the abalone intestine as well as in the surrounding seawater.
Collapse
|
9
|
Lukassen MB, Menanteau-Ledouble S, de Jonge N, Schram E, Nielsen JL. Impact of water quality parameters on geosmin levels and geosmin producers in European recirculating aquaculture systems. J Appl Microbiol 2021; 132:2475-2487. [PMID: 34773307 DOI: 10.1111/jam.15358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
AIMS Geosmin is associated with off-flavour problems in recirculating aquaculture systems (RAS) and represents an economic problem for the aquaculture industry. This study aims at investigating factors influencing the composition of the bacterial microbiota, in particular the presence of geosmin producers and the environmental and farming factors favouring geosmin accumulation. METHODS AND RESULTS Several water quality parameters were correlated to the composition of the microbiota with special emphasis on the presence of geosmin producers within 26 different RAS from four European countries. Three novel groups of geosmin-producing bacteria were quantified to identify potential correlations with geosmin concentration. CONCLUSIONS The microbiome differed significantly between systems. However, phosphate levels, calcium levels and redox potential correlated to geosmin concentration in the water and the presence of the Actinomycetales geosmin-producers but not with the presence of other groups of geosmin-producing bacteria. Oxygen levels and conductivity were found to negatively correlate with geosmin concentration. A large proportion of the detected geosmin producers represented novel taxonomic groups not previously linked with this activity. SIGNIFICANCE AND IMPACT OF THE STUDY These results improve our understanding of the diversity of microbiota in RAS and the water quality parameters favouring the populations of geosmin-producing bacteria and the production of geosmin.
Collapse
Affiliation(s)
- Mie Bech Lukassen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | | | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Edward Schram
- Wageningen Marine Research, IJmuiden, The Netherlands
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
10
|
Heins A, Amann RI, Harder J. Cultivation of particle-associated heterotrophic bacteria during a spring phytoplankton bloom in the North Sea. Syst Appl Microbiol 2021; 44:126232. [PMID: 34399113 DOI: 10.1016/j.syapm.2021.126232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Seawater contains free-living and particle-attached bacteria. Only a small fraction is cultivable on plates. As free-living and particle-associated bacteria differ in their physiological traits, their cultivability on plates may coincide with particle association. Using filtration and Imhoff sedimentation cones, particles were collected during a spring phytoplankton bloom off Helgoland (North Sea) in order to obtain particle-associated bacteria as inocula. Direct dilution plating resulted in 526 strains from 3 µm filtration retentates and 597 strains from settled particles. Motile Gammaproteobacteria from the genera Pseudoalteromonas, Shewanella, Psychrobacter, Vibrio and Colwellia, as well as particle-attached Flavobacteriia affiliating with the genera Tenacibaculum and Gramella, were frequently isolated. As a result, a diverse collection comprised of 266 strains was deposited. Two strains were most likely to represent novel genera and 78 strains were probably novel species. Recently, a high-throughput cultivation study from the same site using seawater as an inoculum had retrieved 271 operational phylogenetic units (OPUs) that represented 88% of the 4136 characterized strains at the species level. A comparison of 16S rRNA gene sequences revealed that the collection obtained matched 104 of the 271 seawater OPUs at the species level and an additional 113 at the genus level. This large overlap indicated a significant contribution of particle-associated bacteria to the cultivable microbiome from seawater. The presence of 49 genera not identified in the larger seawater study suggested that sample fractionation was an efficient strategy to cultivate rare members of the planktonic microbiome. The diverse collection of heterotrophic bacteria retrieved in this study will be a rich source for future studies on the biology of particle-associated bacteria.
Collapse
Affiliation(s)
- Anneke Heins
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf I Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
11
|
Khalil S, Panda P, Ghadamgahi F, Rosberg A, Vetukuri RR. Comparison of two commercial recirculated aquacultural systems and their microbial potential in plant disease suppression. BMC Microbiol 2021; 21:205. [PMID: 34225658 PMCID: PMC8259135 DOI: 10.1186/s12866-021-02273-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aquaponics are food production systems advocated for food security and health. Their sustainability from a nutritional and plant health perspective is, however, a significant challenge. Recirculated aquaculture systems (RAS) form a major part of aquaponic systems, but knowledge about their microbial potential to benefit plant growth and plant health is limited. The current study tested if the diversity and function of microbial communities in two commercial RAS were specific to the fish species used (Tilapia or Clarias) and sampling site (fish tanks and wastewaters), and whether they confer benefits to plants and have in vitro antagonistic potential towards plant pathogens. RESULTS Microbial diversity and composition was found to be dependent on fish species and sample site. The Tilapia RAS hosted higher bacterial diversity than the Clarias RAS; but the later hosted higher fungal diversity. Both Tilapia and Clarias RAS hosted bacterial and fungal communities that promoted plant growth, inhibited plant pathogens and encouraged biodegradation. The production of extracellular enzymes, related to nutrient availability and pathogen control, by bacterial strains isolated from the Tilapia and Clarias systems, makes them a promising tool in aquaponics and in their system design. CONCLUSIONS This study explored the microbial diversity and potential of the commercial RAS with either Tilapia or Clarias as a tool to benefit the aquaponic system with respect to plant growth promotion and control of plant diseases.
Collapse
Affiliation(s)
- Sammar Khalil
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, 230 53, Alnarp, Sweden.
| | - Preeti Panda
- Plant and Food Research, Plant Protection, Lincoln, New Zealand
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 102, 230 53, Alnarp, Sweden
| | - AnnaKarin Rosberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, 230 53, Alnarp, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 102, 230 53, Alnarp, Sweden
| |
Collapse
|
12
|
Wei D, Xing C, Hou D, Zeng S, Zhou R, Yu L, Wang H, Deng Z, Weng S, He J, Huang Z. Distinct bacterial communities in the environmental water, sediment and intestine between two crayfish-plant coculture ecosystems. Appl Microbiol Biotechnol 2021; 105:5087-5101. [PMID: 34086119 DOI: 10.1007/s00253-021-11369-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Microorganisms are an important part of productivity, water quality, and biogeochemical cycles in an aquaculture ecosystems and play a key role in determining the growth and fitness of aquaculture animals. Coculture ecosystems are widely applied with great significance in agricultural production worldwide. The crayfish-rice coculture ecosystem (CRCE) and crayfish-waterweed coculture ecosystem (CWCE) are two high-profile artificial ecosystems for crayfish culture. However, the bacterial communities of the environmental water, sediment, and intestine in the CRCE and CWCE remain elusive. In this study, we investigated the diversity, composition, and function of bacterial communities in water, sediment, and intestine samples from the CRCE to CWCE. The physicochemical factors of water [such as ORP (oxidation-reduction potential), TC (total carbon), TOC (total oxygen carbon), and NO3--N] and sediment [such as TC, TOC, TN (total nitrogen), and TP (total phosphate)] were significantly different in the CRCE and CWCE. The abundances of Proteobacteria, Actinobacteria, Verrucomicrobia, Cyanobacteria, Chlorobi, Chloroflexi, and Firmicutes were significantly different in the water bacterial communities of the CRCE and CWCE. The abundance of Vibrio in the crayfish intestine was higher in the CRCE than in the CWCE. The most abundant phyla in the CRCE and CWCE sediment were Proteobacteria and Bacteroidetes. The abundances of genes involved in transporters and ABC transporters were different in water of CRCE and CWCE. The abundances of genes involved in oxidative phosphorylation were significantly higher in the crayfish intestine of the CRCE than in that of the CWCE. Furthermore, the functional genes associated with carbon metabolism were significantly more abundant in the sediment of the CRCE than in that of the CWCE. Spearman correlation analysis and redundancy analysis (RDA) showed that the bacterial communities of the water and sediment in the CRCE and CWCE were correlated with environmental factors (pH, total carbon (TC), total oxygen carbon (TOC), total nitrogen (TN), and total phosphorus (TP)). Our findings showed that the composition, diversity and function of the bacterial communities were distinct in the environmental water, sediment, and intestine of the CRCE and CWCE crayfish coculture ecosystems due to their different ecological patterns. These results can help guide healthy farming practices and deepen the understanding of bacterial communities in crayfish-plant coculture ecosystems from the perspective of bacterial ecology. KEY POINTS: • The composition of bacterial communities in the environmental water, sediment, and intestine of the CRCE and CWCE were distinct. ̉• The abundances of genes involved in transporters and ABC transporters were different in the water of the CRCE and CWCE. • The bacterial communities of the water and sediment in the CRCE and CWCE were correlated with some environmental factors.
Collapse
Affiliation(s)
- Dongdong Wei
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengguang Xing
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Renjun Zhou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingfei Yu
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Wang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhijian Huang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Nowlan JP, Lumsden JS, Russell S. Advancements in Characterizing Tenacibaculum Infections in Canada. Pathogens 2020; 9:pathogens9121029. [PMID: 33302445 PMCID: PMC7763822 DOI: 10.3390/pathogens9121029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Tenacibaculum is a genus of gram negative, marine, filamentous bacteria, associated with the presence of disease (tenacibaculosis) at aquaculture sites worldwide; however, infections induced by this genus are poorly characterized. Documents regarding the genus Tenacibaculum and close relatives were compiled for a literature review, concentrating on ecology, identification, and impacts of potentially pathogenic species, with a focus on Atlantic salmon in Canada. Tenacibaculum species likely have a cosmopolitan distribution, but local distributions around aquaculture sites are unknown. Eight species of Tenacibaculum are currently believed to be related to numerous mortality events of fishes and few mortality events in bivalves. The clinical signs in fishes often include epidermal ulcers, atypical behaviors, and mortality. Clinical signs in bivalves often include gross ulcers and discoloration of tissues. The observed disease may differ based on the host, isolate, transmission route, and local environmental conditions. Species-specific identification techniques are limited; high sequence similarities using conventional genes (16S rDNA) indicate that new genes should be investigated. Annotating full genomes, next-generation sequencing, multilocus sequence analysis/typing (MLSA/MLST), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), and fatty acid methylesters (FAME) profiles could be further explored for identification purposes. However, each aforementioned technique has disadvantages. Since tenacibaculosis has been observed world-wide in fishes and other eukaryotes, and the disease has substantial economic impacts, continued research is needed.
Collapse
Affiliation(s)
- Joseph P. Nowlan
- Department of Pathobiology, University of Guelph, Guelph, OT N1G 2W1, Canada;
- Center for Innovation in Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada;
- Correspondence:
| | - John S. Lumsden
- Department of Pathobiology, University of Guelph, Guelph, OT N1G 2W1, Canada;
| | - Spencer Russell
- Center for Innovation in Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada;
| |
Collapse
|
14
|
Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu Rev Anim Biosci 2020; 9:423-452. [PMID: 33256435 DOI: 10.1146/annurev-animal-062920-113114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.
Collapse
Affiliation(s)
- Nuno Borges
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Gracinda M M Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - António Louvado
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , , .,Centre of Marine Sciences, Algarve University, 8005-139 Faro, Portugal.,Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
16
|
Bacterial Community Dynamics During Nursery Rearing of Pacific White Shrimp ( Litopenaeus vannamei) Revealed via High-Throughput Sequencing. Indian J Microbiol 2020; 60:214-221. [PMID: 32255854 DOI: 10.1007/s12088-019-00853-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
A 20-day trial was conducted to reveal bacterial community dynamics in a commercial nursery of larval Litopenaeus vannamei larvae. The bacterial communities in the ambient water were profiled by high-throughput sequencing of the V4-V5 hypervariable region of the 16S rRNA gene. The results indicated that the dominant bacterial phyla between the metamorphosis stage and postlarval stage were Bacteroidetes, Proteobacteria, Cyanobacteria, and Firmicutes, representing more than 80.09% of the bacterial operational taxonomic units. The relative abundance among bacterial phyla notably differed between the two stages. The relative abundance of Cyanobacteria was higher in the metamorphosis stage, while that of Bacteroidetes was higher and more stable in the postlarval stage. At the class level, the relative abundance of Sphingobacteriia and Alphaproteobacteria increased markedly in the postlarval stage, while that of Flavobacteriia decreased. Redundancy analysis showed that bacterial composition in the metamorphosis stage was positively correlated with salinity, alkalinity, and pH, while in the postlarval stage, it was positively correlated with ammonium nitrogen and nitrite nitrogen. Thus, microbial community diversity in the nursery phase varies per rearing stage.
Collapse
|
17
|
Chen X, Fang S, Wei L, Zhong Q. Systematic evaluation of the gut microbiome of swamp eel ( Monopterus albus) by 16S rRNA gene sequencing. PeerJ 2019; 7:e8176. [PMID: 31875148 PMCID: PMC6927349 DOI: 10.7717/peerj.8176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background The swamp eel (Monopterus albus) is a commercially important farmed species in China. The dysbiosis and homeostasis of gut microbiota has been suggested to be associated with the swamp eel’s disease pathogenesis and food digestion. Although the contributions of gut microbiome in fish growth and health has been increasingly recognized, little is known about the microbial community in the intestine of the swamp eel (Monopterus albus). Methods The intestinal microbiomes of the five distinct gut sections (midgut content and mucosa, hindgut content and mucosa, and stools) of swamp eel were compared using Illumina MiSeq sequencing of the bacterial 16S rRNA gene sequence and statistical analysis. Results The results showed that the number of observed OTUs in the intestine decreased proximally to distally. Principal coordinate analysis revealed significant separations among samples from different gut sections. There were 54 core OTUs shared by all gut sections and 36 of these core OTUs varied significantly in their abundances. Additionally, we discovered 66 section-specific enriched KEGG pathways. These section-specific enriched microbial taxa (e.g., Bacillus, Lactobacillus) and potential function capacities (e.g., amino acid metabolism, carbohydrate metabolism) might play vital roles in nutrient metabolism, immune modulation and host-microbe interactions of the swamp eel. Conclusions Our results showed that microbial diversity, composition and function capacity varied substantially across different gut sections. The gut section-specific enriched core microbial taxa and function capacities may perform important roles in swamp eel’s nutrient metabolism, immune modulation, and host-microbe interactions. This study should provide insights into the gut microbiome of the swamp eel.
Collapse
Affiliation(s)
- Xuan Chen
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shaoming Fang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiwang Zhong
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Sun F, Wang C, Chen L, Weng G, Zheng Z. The intestinal bacterial community of healthy and diseased animals and its association with the aquaculture environment. Appl Microbiol Biotechnol 2019; 104:775-783. [PMID: 31781816 DOI: 10.1007/s00253-019-10236-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
Although increasing levels of attention have been targeted towards aquaculture-associated bacteria, the bacterial community of animal intestines and its relationship with the aquaculture environment need to be further investigated. In this study, we used high-throughput sequencing to analyze the bacterial community of pond water, sediment, and the intestines of diseased and healthy animals. Our data showed that Proteobacteria, Firmicutes, Cyanobacteria, and Bacteroidetes were the dominant taxa of bacteria across all samples and accounted for more than 90% of the total sequence. Difference analysis and Venn diagrams showed that most of the intestinal bacterial OTUs (operational taxonomic units) of diseased and healthy animals were the same as those of sediment and water, indicating that the aquaculture environment was the main source of intestinal bacteria. Compared with healthy animals, a considerable reduction of OTUs was evident in diseased animals. Welch's t test showed that the dominant bacterial taxa in sediment, water, and animal intestine were significantly different (p < 0.05) and each had its own unique dominant microorganisms. In addition, differences between the intestinal bacteria of healthy and diseased animals were represented by potential probiotics and pathogens, such as Bacillus, Vibrio, Oceanobacillus, and Lactococcus. Principal component analysis (PcoA) showed that a similar environment shaped a similar microbial structure. There was a large difference in the spectrum of intestinal bacteria in diseased animals; furthermore, the spectrum of intestinal bacteria in diseased animals was very different from the environment than in healthy animals. This study provides a theoretical basis for a relationship between the intestinal bacteria of healthy and diseased animals and the environment and provides guidance for environmental regulation and disease prevention in aquaculture areas.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, 518000, China.
| | - Chunzhong Wang
- Putian Institute of Aquaculture Science of Fujian Province, Putian, 351100, China.
| | - Lijuan Chen
- Putian Tian Ran Xing Agriculture Development Co. Ltd., Putian, 351100, Fujian, China
| | - Guozhu Weng
- Putian Customs Comprehensive Technical Service Center, Putian, 351100, China
| | - Zhipeng Zheng
- Putian Tian Ran Xing Agriculture Development Co. Ltd., Putian, 351100, Fujian, China
| |
Collapse
|
19
|
Chen Z, Chang Z, Zhang L, Jiang Y, Ge H, Song X, Chen S, Zhao F, Li J. Effects of water recirculation rate on the microbial community and water quality in relation to the growth and survival of white shrimp (Litopenaeus vannamei). BMC Microbiol 2019; 19:192. [PMID: 31426738 PMCID: PMC6701121 DOI: 10.1186/s12866-019-1564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/04/2019] [Indexed: 11/10/2022] Open
Abstract
Background Microbial community and its management are crucial to the stabilization of culture environment for recirculating aquaculture system (RAS). Although several studies have been carried out for the microbial community of RAS, few studies were on the RAS for shrimp. Water recirculation ratio is an important factor for the microbial community and the management of RAS. Therefore, low (LC), medium (MC) and high (HC) recirculation ratio systems were set to explore the microbial community constitution of RAS for Litopenaeus vannamei and study the effect of water recirculation rate on it. Results The bacterial community of bioreactor was mainly dominated by Proteobacteria (41.6–70.7%), followed with Planctomycetes (12.5–31.0%), Bacteroidetes (10.5–26.0%), Actinobacteria (1.1–4.8%) and Verrucomicrobia (1.4–6.8%) phylum. The most dominant family of bioreactor was Rhodobacteraceae or Planctomycetaceae. The bacterial community of culture water was simpler than bioreactor and dominated by Proteobacteria (61.8–96.4%). The dominant bacterial groups of bioreactor and culture water are also different among the three water recirculation rates, and the proportions of dominant groups showed a trend with the variety of water recirculation rate. Water quality indexes including ammonia and nitrite decreased with the increasing of water recirculation rate. According to the growth performance of L. vannamei, shrimp had better performance of growth rate and final weight in MC and HC, however, shrimp had higher survival and yield in LC. Shrimp survival and yield had an inverse correlation with water recirculation rate. Conclusions The results demonstrate the microbial community of RAS for shrimp, highlight the importance of further studies on the function of bacterial taxa, and promote the understanding of the effects of water recirculation rate on the microbiota. The findings suggest that water recirculation rate has important impacts on the microbial community, water quality and shrimp growth. Increasing the water recirculation rate could improve the water quality and promote the growth of shrimp. However, the survival rate and yield of L. vannamei are higher under low water recirculation rate. Recirculation rate is an effective method to manage RAS, and its impact on RAS needs further study, especially in the application of low level of water recirculation.
Collapse
Affiliation(s)
- Zhao Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.,Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhiqiang Chang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Long Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Yuli Jiang
- Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hongxing Ge
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Xiefa Song
- Fisheries College, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Shibo Chen
- Qingdao Excellent Ocean Group Co., Ltd, Qingdao, 266400, People's Republic of China
| | - Fazhen Zhao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Jian Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
20
|
Xaxiri NA, Nikouli E, Berillis P, Kormas KA. Bacterial biofilm development during experimental degradation of Melicertus kerathurus exoskeleton in seawater. AIMS Microbiol 2019; 4:397-412. [PMID: 31294223 PMCID: PMC6604942 DOI: 10.3934/microbiol.2018.3.397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Chitinolytic bacteria are widespread in marine and terrestrial environment, and this is rather a reflection of their principle growth substrate's ubiquity, chitin, in our planet. In this paper, we investigated the development of naturally occurring bacterial biofilms on the exoskeleton of the shrimp Melicertus kerathurus during its degradation in sea water. During a 12-day experiment with exoskeleton fragments in batch cultures containing only sea water as the growth medium at 18 °C in darkness, we analysed the formation and succession of biofilms by scanning electron microscopy and 16S rRNA gene diversity by next generation sequencing. Bacteria belonging to the γ- and α-Proteobacteria and Bacteroidetes showed marked (less or more than 10%) changes in their relative abundance from the beginning of the experiment. These bacterial taxa related to known chitinolytic bacteria were the Pseudolateromonas porphyrae, Halomonasaquamarina, Reinekea aestuarii, Colwellia asteriadis and Vibrio crassostreae. These bacteria could be considered as appropriate candidates for the degradation of chitinous crustacean waste from the seafood industry as they dominated in the biofilms developed on the shrimp's exoskeleton in natural sea water with no added substrates and the degradation of the shrimp exoskeleton was also evidenced.
Collapse
Affiliation(s)
- Nikolina-Alexandra Xaxiri
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Eleni Nikouli
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Panagiotis Berillis
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
21
|
Brailo M, Schreier HJ, McDonald R, Maršić-Lučić J, Gavrilović A, Pećarević M, Jug-Dujaković J. Bacterial community analysis of marine recirculating aquaculture system bioreactors for complete nitrogen removal established from a commercial inoculum. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2019; 503:198-206. [PMID: 30778266 PMCID: PMC6376983 DOI: 10.1016/j.aquaculture.2018.12.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An experimental recirculating aquaculture system was constructed under ambient seawater conditions to compare microbial community diversity of nitrifying and denitrifying biofilters that were derived from a commercial inoculum used for aquarium applications. Next generation sequencing revealed distinct and diverse microbial communities in samples analyzed from the commercial inoculant and the denitrification and nitrification biofilters. In all samples, communities were represented by a few dominant operational taxonomic units (OTUs). Bacteria having the capacity to carry out ammonia and nitrite oxidation were more abundant in the nitrification biofilter. Similarly, the proportion of the bacterial taxa known to carry out heterotrophic and autotrophic denitrification and participate in sulfur cycling were found in the denitrification bioreactor, and likely originated from the ambient environmental water source. Our results indicated that environmental seawater can be a favorable enhancement to the bacterial consortium of recirculating aquaculture systems biofilters.
Collapse
Affiliation(s)
- Marina Brailo
- Department of Aquaculture, University of Dubrovnik, Ćira Carića 4, Dubrovnik 20000, Croatia
| | - Harold J. Schreier
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt St., Baltimore, MD 21202, USA
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Ryan McDonald
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Jasna Maršić-Lučić
- Institute of Oceanography and Fisheries, PO Box 500, Šetalište Ivana Meštrovića 63, Split 21000, Croatia
| | - Ana Gavrilović
- Department of Fisheries, Beekeeping, Game Management and Special Zoology, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Marijana Pećarević
- Department of Aquaculture, University of Dubrovnik, Ćira Carića 4, Dubrovnik 20000, Croatia
| | - Jurica Jug-Dujaković
- Sustainable Aquaculture Systems Inc., 715 Pittstown Road, Frenchtown, NJ 08825, USA
| |
Collapse
|
22
|
Tapia-Paniagua ST, Fumanal M, Anguís V, Fernández-Díaz C, Alarcón FJ, Moriñigo MA, Balebona MC. Modulation of Intestinal Microbiota in Solea senegalensis Fed Low Dietary Level of Ulva ohnoi. Front Microbiol 2019; 10:171. [PMID: 30792706 PMCID: PMC6374555 DOI: 10.3389/fmicb.2019.00171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Gastrointestinal (GI) microbiota has a relevant role in animal nutrition, modulation of the immune system and protection against pathogen invasion. Interest in algae as source of nutrients and functional ingredients for aquafeeds is increasing in order to substitute conventional feedstuffs by more sustainable resources. The diet is an important factor in the modulation of the microbiota composition, and functional ingredients have been proposed to shape the microbiota and contribute benefits to the host. However, fish microbiome research is still limited compared to other hosts. Solea senegalensis is a flat fish with high potential for aquaculture in South Europe. In this study, a characterization of the microbiome of S. senegalensis (GI) tract and the effects of feeding Ulva ohnoi supplemented diet has been carried out. Differences in the composition of the microbiota of anterior and posterior sections of S. senegalensis GI tract have been observed, Pseudomonas being more abundant in the anterior sections and Mycoplasmataceae the dominant taxa in the posterior GI tract sections. In addition, modulation of the GI microbiota of juvenile Senegalese sole fed for 45 days a diet containing low percentage of U. ohnoi has been observed in the present study. Microbiota of the anterior regions of the intestinal tract was mainly modulated, with higher abundance of Vibrio spp. in the GI tract of fish fed dietary U. ohnoi.
Collapse
Affiliation(s)
| | - Milena Fumanal
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | | | - F Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Almería, Spain
| | - Miguel A Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - M Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
23
|
Duarte LN, Coelho FJRC, Oliveira V, Cleary DFR, Martins P, Gomes NCM. Characterization of bacterioplankton communities from a hatchery recirculating aquaculture system (RAS) for juvenile sole (Solea senegalensis) production. PLoS One 2019; 14:e0211209. [PMID: 30682196 PMCID: PMC6347143 DOI: 10.1371/journal.pone.0211209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
There is a growing consensus that future technological developments of aquaculture systems should account for the structure and function of microbial communities in the whole system and not only in fish guts. In this study, we aimed to investigate the composition of bacterioplankton communities of a hatchery recirculating aquaculture system (RAS) used for the production of Senegalese sole (Solea senegalensis) juveniles. To this end, we used a 16S rRNA gene based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analyses to characterize the bacterioplankton communities of the RAS and its water supply. Overall, the most abundant orders were Alteromonadales, Rhodobacterales, Oceanospirillales, Vibrionales, Flavobacteriales, Lactobacillales, Thiotrichales, Burkholderiales and Bdellovibrionales. Although we found a clear distinction between the RAS and the water supply bacterioplankton communities, most of the abundant OTUs (≥50 sequences) in the hatchery RAS were also present in the water supply. These included OTUs related to Pseudoalteromonas genus and the Roseobacter clade, which are known to comprise bacterial members with activity against Vibrio fish pathogens. Overall, in contrast to previous findings for sole grow-out RAS, our results suggest that the water supply may influence the bacterioplankton community structure of sole hatchery RAS. Further studies are needed to investigate the effect of aquaculture practices on RAS bacterioplankton communities and identification of the key drivers of their structure and diversity.
Collapse
Affiliation(s)
- Letícia N. Duarte
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Vanessa Oliveira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Patrícia Martins
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Newton C. M. Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
- * E-mail:
| |
Collapse
|
24
|
Nguyen PL, Sudheesh PS, Thomas AC, Sinnesael M, Haman K, Cain KD. Rapid Detection and Monitoring of Flavobacterium psychrophilum in Water by Using a Handheld, Field-Portable Quantitative PCR System. JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:302-311. [PMID: 30269364 DOI: 10.1002/aah.10046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Advances in technology are making it easier for rapid field detection of microbes in aquaculture. Specifically, real-time quantitative PCR (qPCR) analysis, which has traditionally been confined to laboratory-based protocols, is now available in a handheld, field-portable system. The feasibility of using the Biomeme handheld qPCR system for rapid (<50 min) on-site detection and monitoring of Flavobacterium psychrophilum from filtered water samples was evaluated. Paired water samples were collected over a 23-d period from microcosm tanks that housed fish injected with known levels of F. psychrophilum. Water samples were filtered through 0.45-μm nitrocellulose filters and were analyzed with both the Biomeme qPCR platform and a traditional bench qPCR protocol. The two methods identified similar fluctuations in F. psychrophilum DNA throughout the study. Standard curves relating quantification cycles to the number of F. psychrophilum colony-forming units (CFU) were constructed and analyzed; results indicated that CFU increased rapidly between days 6 and 8 of the trial and then progressively decreased during the remaining 15 d. Average calculated log10 (CFU/mL) values were significantly correlated between the two platforms. Rapid, field-based qPCR can be incorporated into daily water quality monitoring protocols to help detect and monitor microbes in aquaculture systems.
Collapse
Affiliation(s)
- Phong L Nguyen
- Smith-Root, Inc., 16603 Northeast 50th Avenue, Vancouver, Washington, 98686, USA
| | - Ponnerassery S Sudheesh
- Florida Department of Agriculture and Consumer Services, Bronson Animal Disease Diagnostic Laboratory, 2700 North John Young Parkway, Kissimmee, Florida, 34741, USA
| | - Austen C Thomas
- Smith-Root, Inc., 16603 Northeast 50th Avenue, Vancouver, Washington, 98686, USA
| | - Mieke Sinnesael
- Biomeme, 1015 Chestnut Street, Suite 1401, Philadelphia, Pennsylvania, 19107, USA
| | | | - Kenneth D Cain
- Department of Fish and Wildlife Sciences and Aquaculture Research Institute, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844, USA
| |
Collapse
|
25
|
Nho SW, Abdelhamed H, Paul D, Park S, Mauel MJ, Karsi A, Lawrence ML. Taxonomic and Functional Metagenomic Profile of Sediment From a Commercial Catfish Pond in Mississippi. Front Microbiol 2018; 9:2855. [PMID: 30524416 PMCID: PMC6262407 DOI: 10.3389/fmicb.2018.02855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022] Open
Abstract
Metagenomic analyses of microbial communities from aquatic sediments are relatively few, and there are no reported metagenomic studies on sediment from inland ponds used for aquaculture. Catfish ponds in the southeastern U.S. are eutrophic systems. They are fertilized to enhance algae growth and encourage natural food production, and catfish are fed with commercial feed from spring to fall. As result, catfish pond sediment (CPS) contains a very dense, diverse microbial community that has significant effects on the physiochemical parameters of pond dynamics. Here we conducted an in-depth metagenomic analysis of the taxonomic and metabolic capabilities of a catfish pond sediment microbiome from a southeastern U.S. aquaculture farm in Mississippi using Illumina next-generation sequencing. A total of 3.3 Gbp of sequence was obtained, 25,491,518 of which encoded predicted protein features. The pond sediment was dominated by Proteobacteria sequences, followed by Bacteroidetes, Firmicutes, Chloroflexi, and Actinobacteria. Enzyme pathways for methane metabolism/methanogenesis, denitrification, and sulfate reduction appeared nearly complete in the pond sediment metagenome profile. In particular, a large number of Deltaproteobacteria sequences and genes encoding anaerobic functional enzymes were found. This is the first study to characterize a catfish pond sediment microbiome, and it is expected to be useful for characterizing specific changes in microbial flora in response to production practices. It will also provide insight into the taxonomic diversity and metabolic capabilities of microbial communities in aquaculture. Furthermore, comparison with other environments (i.e., river and marine sediments) will reveal habitat-specific characteristics and adaptations caused by differences in nutrients, vegetation, and environmental stresses.
Collapse
Affiliation(s)
- Seong Won Nho
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Seongbin Park
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Michael J Mauel
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
26
|
Shang Q, Tang H, Wang Y, Yu K, Wang L, Zhang R, Wang S, Xue R, Wei C. Application of enzyme-hydrolyzed cassava dregs as a carbon source in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:681-690. [PMID: 28992495 DOI: 10.1016/j.scitotenv.2017.08.256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
As a kind of tropical agricultural solid waste, cassava dregs had become a thorny nonpoint source pollution problem. This study investigated the feasibility of applying cassava dregs as a substitute for sucrose in biofloc technology (BFT) systems. Three types of biofloc systems (using three different carbon sources sucrose (BFT1), cassava dregs (BFT2) and enzyme-hydrolyzed cassava dregs (BFT3) respectively), and the control were constructed in this experiment in 200L tanks with a C/N ratio of 20/1. The comparison of the water quality indicators (The total ammonia nitrogen (TAN), nitrite (NO2--N), nitrate (NO3--N), chemical oxygen demand (COD)), biofloc for the above four groups was performed, and the results indicated that BFT3 showed greater potential to the formation of biofloc, which was beneficial for the water quality control. So the shrimp survival rate was the highest and the feed conversion rate was the lowest in BFT3. Besides, the high-throughput sequencing results showed that the relative abundance of heterotrophic bacteria in the top 30 dominant microbial communities in BFT3 was higher than those in BFT1 and BFT2 by 20.70% and 1.19%, respectively, which could decrease TAN to improve the water quality. Overall, the results had proved that the cassava dregs of enzymes hydrolysis could be used as an ideal and cheap carbon source in BFT.
Collapse
Affiliation(s)
- Qian Shang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Environment, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Haifang Tang
- School of Environment, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Shaopeng Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Rui Xue
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Chaoshuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| |
Collapse
|
27
|
Coelho FJRC, Cleary DFR, Gomes NCM, Pólonia ARM, Huang YM, Liu LL, de Voogd NJ. Sponge Prokaryote Communities in Taiwanese Coral Reef and Shallow Hydrothermal Vent Ecosystems. MICROBIAL ECOLOGY 2018; 75:239-254. [PMID: 28699015 DOI: 10.1007/s00248-017-1023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Previously, it was believed that the prokaryote communities of typical 'low-microbial abundance' (LMA) or 'non-symbiont harboring' sponges were merely subsets of the prokaryote plankton community. Recent research has, however, shown that these sponges are dominated by particular clades of Proteobacteria or Cyanobacteria. Here, we expand on this research and assess the composition and putative functional profiles of prokaryotic communities from LMA sponges collected in two ecosystems (coral reef and hydrothermal vent) from vicinal islands of Taiwan with distinct physicochemical conditions. Six sponge species identified as Acanthella cavernosa (Bubarida), Echinodictyum asperum, Ptilocaulis spiculifer (Axinellida), Jaspis splendens (Tetractinellida), Stylissa carteri (Scopalinida) and Suberites sp. (Suberitida) were sampled in coral reefs in the Penghu archipelago. One sponge species provisionally identified as Hymeniacidon novo spec. (Suberitida) was sampled in hydrothermal vent habitat. Each sponge was dominated by a limited set of operational taxonomic units which were similar to sequences from organisms previously obtained from other LMA sponges. There was a distinct bacterial community between sponges collected in coral reef and in hydrothermal vents. The putative functional profile revealed that the prokaryote community from sponges collected in hydrothermal vents was significantly enriched for pathways related to DNA replication and repair.
Collapse
Affiliation(s)
- F J R C Coelho
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - D F R Cleary
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - N C M Gomes
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A R M Pólonia
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Y M Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Penghu, Taiwan
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - L-L Liu
- Department of Oceanography, National Sun Yet-Sen University, Kaohsiung, Taiwan
| | - N J de Voogd
- Naturalis Biodiversity Center, Leiden, the Netherlands.
| |
Collapse
|
28
|
Comparing salinities of 0, 10 and 20 in biofloc genetically improved farmed tilapia ( Oreochromis niloticus ) production systems. AQUACULTURE AND FISHERIES 2017. [DOI: 10.1016/j.aaf.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Nedashkovskaya OI, Kim SG, Zhukova NV, Mikhailov VV. Olleya algicola sp. nov., a marine bacterium isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 2017; 67:2205-2210. [DOI: 10.1099/ijsem.0.001926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Olga I. Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| | - Song-Gun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Natalia V. Zhukova
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
- A.V. Zhirmunsky Institute of Marine Biology of the Far-Eastern Branch of the Russian Academy of Sciences, Pal’chevskogo St. 17, 690032, Vladivostok, Russia
| | - Valery V. Mikhailov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| |
Collapse
|
30
|
Califano G, Castanho S, Soares F, Ribeiro L, Cox CJ, Mata L, Costa R. Molecular Taxonomic Profiling of Bacterial Communities in a Gilthead Seabream ( Sparus aurata) Hatchery. Front Microbiol 2017; 8:204. [PMID: 28261166 PMCID: PMC5306143 DOI: 10.3389/fmicb.2017.00204] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
As wild fish stocks decline worldwide, land-based fish rearing is likely to be of increasing relevance to feeding future human generations. Little is known about the structure and role of microbial communities in fish aquaculture, particularly at larval developmental stages where the fish microbiome develops and host animals are most susceptible to disease. We employed next-generation sequencing (NGS) of 16S rRNA gene reads amplified from total community DNA to reveal the structure of bacterial communities in a gilthead seabream (Sparus aurata) larviculture system. Early- (2 days after hatching) and late-stage (34 days after hatching) fish larvae presented remarkably divergent bacterial consortia, with the genera Pseudoalteromonas, Marinomonas, Acinetobacter, and Acidocella (besides several unclassified Alphaproteobacteria) dominating the former, and Actinobacillus, Streptococcus, Massilia, Paracoccus, and Pseudomonas being prevalent in the latter. A significant reduction in rearing-water bacterial diversity was observed during the larviculture trial, characterized by higher abundance of the Cryomorphaceae family (Bacteroidetes), known to populate microniches with high organic load, in late-stage rearing water in comparison with early-stage rearing-water. Furthermore, we observed the recruitment, into host tissues, of several bacterial phylotypes-including putative pathogens as well as mutualists-that were detected at negligible densities in rearing-water or in the live feed (i.e., rotifers and artemia). These results suggest that, besides host-driven selective forces, both the live feed and the surrounding rearing environment contribute to shaping the microbiome of farmed gilthead sea-bream larvae, and that a differential establishment of host-associated bacteria takes place during larval development.
Collapse
Affiliation(s)
- Gianmaria Califano
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of AlgarveFaro, Portugal; Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität JenaJena, Germany
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Florbela Soares
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Cymon J Cox
- Plant Systematics and Bioinformatics, Centre of Marine Sciences, University of Algarve Faro, Portugal
| | - Leonardo Mata
- MACRO-the Centre for Macroalgal Resources and Biotechnology, James Cook University Townsville, QLD, Australia
| | - Rodrigo Costa
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of AlgarveFaro, Portugal; Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
31
|
Xue S, Xu W, Wei J, Sun J. Impact of environmental bacterial communities on fish health in marine recirculating aquaculture systems. Vet Microbiol 2017; 203:34-39. [PMID: 28619164 DOI: 10.1016/j.vetmic.2017.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
Abstract
Marine cultured fish diseases caused by bacteria in recirculating aquaculture systems (RASs) greatly threaten fish aquaculture. To date, the dynamics of bacterial populations in RAS and their impacts to fish health remain largely unknown. In the present study, the bacterial communities in the water from two different marine RASs were analyzed using pyrosequencing technique. Fish disease syndromes and mortality had been reported from one RAS (RAS-d) while the fish in the other RAS remained healthy (RAS-h). The diversity of bacteria in each RAS and the abundance of each bacterium were identified based on sequencing the V4 hypervariable region of the 16S rRNA gene. A total number of 107,476 effective sequences were obtained from the pyrosequencing results. 640 and 844 operational taxonomic units (OTUs) were identified in RAS-d and RAS-h, respectively. In order level, tags annotation showed that Vibrionales and Flavobacteriales were the predominant strains in RAS-d with a relative abundance 50.5% and 36.5%, respectively. In contrast, the bacterial community in RAS-h contained 35.8% Vibrionales, 17.3% Alteromonadales, 10.7% Rhodobacterales, 7.43% Kordiimonadales, and 6.26% Oceanospirillales. In addition, the Vibrionaceae in the RAS-d represented 6.98% of the population which was significantly higher than that in RAS-h (0.40%). More potential pathogenic bacteria in fish, such as Vibrio harveyi, Vibrio rotiferianus were also found in the bacterial population in RAS-d. The results also showed that the bacteria community in RAS-h was more diverse and balanced than in RAS-d. These findings of this study suggested a potential correlation between fish diseases and environmental bacterial populations.
Collapse
Affiliation(s)
- Shuxia Xue
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Science, Tianjin Normal University, Tianjin, China; Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, China; Louisiana State University, Agricultural Center, United States
| | - Wei Xu
- Louisiana State University, Agricultural Center, United States; School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA, United States
| | - Junli Wei
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Science, Tianjin Normal University, Tianjin, China; Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, China.
| |
Collapse
|
32
|
Sato-Takabe Y, Nakao H, Kataoka T, Yokokawa T, Hamasaki K, Ohta K, Suzuki S. Abundance of Common Aerobic Anoxygenic Phototrophic Bacteria in a Coastal Aquaculture Area. Front Microbiol 2016; 7:1996. [PMID: 28018324 PMCID: PMC5156720 DOI: 10.3389/fmicb.2016.01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 11/21/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAnPB) rely on not only heterotrophic but also phototrophic energy gain. AAnPB are known to have high abundance in oligotrophic waters and are the major portion of the bacterial carbon stock in the environment. In a yearlong study in an aquaculture area in the Uwa Sea, Japan, AAnPB, accounted for 4.7 to 24% of the total bacteria by count. Since the cell volume of AAnPB is 2.23 ± 0.674 times larger than the mean for total bacteria, AAnPB biomass is estimated to account for 10–53% of the total bacterial assemblage. By examining pufM gene sequence, a common phylogenetic AAnPB species was found in all sampling sites through the year. The common species and other season-specific species were phylogenetically close to unculturable clones recorded in the Sargasso Sea and Pacific Ocean. The present study suggests that the common species may be a cosmopolitan species with worldwide distribution that is abundant not only in the oligotrophic open ocean but also in eutrophic aquaculture areas.
Collapse
Affiliation(s)
- Yuki Sato-Takabe
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Hironori Nakao
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Takafumi Kataoka
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Taichi Yokokawa
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo Kashiwa, Japan
| | - Kohei Ohta
- South Ehime Fisheries Research Center, Ehime University Ainan, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University Matsuyama, Japan
| |
Collapse
|
33
|
Badin A, Broholm MM, Jacobsen CS, Palau J, Dennis P, Hunkeler D. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 192:1-19. [PMID: 27318432 DOI: 10.1016/j.jconhyd.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.
Collapse
Affiliation(s)
- Alice Badin
- University of Neuchâtel, Centre for Hydrogeology & Geothermics (CHYN), Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Mette M Broholm
- Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej, DTU B113, DK 2800 Kgs. Lyngby, Denmark
| | - Carsten S Jacobsen
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Ø. Voldgade 10, 1350 København K, Denmark
| | - Jordi Palau
- University of Neuchâtel, Centre for Hydrogeology & Geothermics (CHYN), Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Philip Dennis
- SiREM, 130 Research Lane, Guelph, Ontario, N1G5G3, Canada
| | - Daniel Hunkeler
- University of Neuchâtel, Centre for Hydrogeology & Geothermics (CHYN), Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| |
Collapse
|
34
|
Coelho FJRC, Cleary DFR, Costa R, Ferreira M, Polónia ARM, Silva AMS, Simões MMQ, Oliveira V, Gomes NCM. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution. Mol Ecol 2016; 25:4645-59. [DOI: 10.1111/mec.13779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/25/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | - Daniel F. R. Cleary
- Department of Biology & CESAM; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Rodrigo Costa
- Centre of Marine Sciences (CCMAR); University of Algarve; Faro 8005-139 Algarve Portugal
- Institute for Bioengineering and Biosciences; Department of Bioengineering; Instituto Superior Técnico; Universidade de Lisboa; 1049-001 Lisbon Portugal
| | - Marina Ferreira
- Department of Biology & CESAM; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Ana R. M. Polónia
- Department of Biology & CESAM; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA; University of Aveiro; Campus Universitário de Santiago Aveiro Portugal
| | - Mário M. Q. Simões
- Department of Chemistry & QOPNA; University of Aveiro; Campus Universitário de Santiago Aveiro Portugal
| | - Vanessa Oliveira
- Department of Biology & CESAM; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Newton C. M. Gomes
- Department of Biology & CESAM; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
35
|
Qiu T, Liu L, Gao M, Zhang L, Tursun H, Wang X. Effects of solid-phase denitrification on the nitrate removal and bacterial community structure in recirculating aquaculture system. Biodegradation 2016; 27:165-78. [DOI: 10.1007/s10532-016-9764-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/18/2016] [Indexed: 12/01/2022]
|
36
|
Lee DE, Lee J, Kim YM, Myeong JI, Kim KH. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing. J Microbiol 2016; 54:296-304. [PMID: 27033205 DOI: 10.1007/s12275-016-5571-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 01/21/2023]
Abstract
Bacterial diversity in a seawater recirculating aquaculture system (RAS) was investigated using 16S rRNA amplicon sequencing to understand the roles of bacterial communities in the system. The RAS was operated at nine different combinations of temperature (15°C, 20°C, and 25°C) and salinity (20‰, 25‰, and 32.5‰). Samples were collected from five or six RAS tanks (biofilters) for each condition. Fifty samples were analyzed. Proteobacteria and Bacteroidetes were most common (sum of both phyla: 67.2% to 99.4%) and were inversely proportional to each other. Bacteria that were present at an average of ≥ 1% included Actinobacteria (2.9%) Planctomycetes (2.0%), Nitrospirae (1.5%), and Acidobacteria (1.0%); they were preferentially present in packed bed biofilters, mesh biofilters, and maturation biofilters. The three biofilters showed higher diversity than other RAS tanks (aerated biofilters, floating bed biofilters, and fish tanks) from phylum to operational taxonomic unit (OTU) level. Samples were clustered into several groups based on the bacterial communities. Major taxonomic groups related to family Rhodobacteraceae and Flavobacteriaceae were distributed widely in the samples. Several taxonomic groups like [Saprospiraceae], Cytophagaceae, Octadecabacter, and Marivita showed a cluster-oriented distribution. Phaeobacter and Sediminicola-related reads were detected frequently and abundantly at low temperature. Nitrifying bacteria were detected frequently and abundantly in the three biofilters. Phylogenetic analysis of the nitrifying bacteria showed several similar OTUs were observed widely through the biofilters. The diverse bacterial communities and the minor taxonomic groups, except for Proteobacteria and Bacteroidetes, seemed to play important roles and seemed necessary for nitrifying activity in the RAS, especially in packed bed biofilters, mesh biofilters, and maturation biofilters.
Collapse
Affiliation(s)
- Da-Eun Lee
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jinhwan Lee
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jeong-In Myeong
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Kyoung-Ho Kim
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
37
|
Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:480386. [PMID: 26509157 PMCID: PMC4609784 DOI: 10.1155/2015/480386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/17/2015] [Indexed: 11/17/2022]
Abstract
Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems.
Collapse
|
38
|
Fernández I, López-Joven C, Andree KB, Roque A, Gisbert E. Vitamin A supplementation enhances Senegalese sole (Solea senegalensis) early juvenile's immunocompetence: New insights on potential underlying pathways. FISH & SHELLFISH IMMUNOLOGY 2015; 46:703-709. [PMID: 26272637 DOI: 10.1016/j.fsi.2015.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Senegalese sole (Solea senegalensis) has been considered since the 1990's to be a promising flatfish species for diversifying European marine aquaculture. However, pathogen outbreaks leading to high mortality rates can impair Senegalese sole commercial production at the weaning phase. Different approaches have been shown to improve fish immunocompetence; with this in mind the objective of the work described herein was to determine whether increased levels of dietary vitamin A (VA) improve the immune response in early juveniles of Senegalese sole. For this purpose, Senegalese sole were reared and fed with Artemia metanauplii containing increased levels of VA (37,000; 44,666; 82,666 and 203,000 total VA IU Kg(-1)) from 6 to 60 days post-hatch (early juvenile stage). After an induced bacterial infection with a 50% lethal dose of Photobacterium damselae subsp. damselae, survival rate, as well as underlying gene expression of specific immune markers (C1inh, C3, C9, Lgals1, Hamp, LysC, Prdx1, Steap4 and Transf) were evaluated. Results showed that fish fed higher doses of dietary VA were more resistant to the bacterial challenge. The lower mortality was found to be related with differential expression of genes involved in the complement system and iron availability. We suggest that feeding metamorphosed Senegalese sole with 203,000 total VA IU Kg(-1) might be an effective, inexpensive and environmentally friendly method to improve Senegalese sole immunocompetence, thereby improving survival of juveniles and reducing economic losses.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centro de Ciências do Mar (CCMAR/CIMAR-LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Unitat de Cultius Experimentals, Crta. del Poble Nou s/n, 43540 Sant Carles de la Ràpita, Spain.
| | - Carmen López-Joven
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Unitat de Cultius Experimentals, Crta. del Poble Nou s/n, 43540 Sant Carles de la Ràpita, Spain; Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR 5244), Ifremer, CNRS, University of Montpellier, University of Perpignan Via Domitia, Place Eugène Bataillon, CC80, 34095 Montpellier cedex 5, France
| | - Karl B Andree
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Unitat de Cultius Experimentals, Crta. del Poble Nou s/n, 43540 Sant Carles de la Ràpita, Spain
| | - Ana Roque
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Unitat de Cultius Experimentals, Crta. del Poble Nou s/n, 43540 Sant Carles de la Ràpita, Spain
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Unitat de Cultius Experimentals, Crta. del Poble Nou s/n, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
39
|
Pegoraro N, Calado R, Duarte LN, Manco SC, Fernandes FJ, Polónia ARM, Cleary DFR, Gomes NCM. Molecular analysis of skin bacterial assemblages from codfish and pollock after dry-salted fish production. J Food Prot 2015; 78:983-9. [PMID: 25951394 DOI: 10.4315/0362-028x.jfp-14-390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dry-salted codfish and pollock are commercially important food products with a relatively long shelf life. To date, bacterial assemblages present in these products that are relevant for food safety have been monitored using only classical molecular and/or cultivation methods. The present study employed a rapid and accurate identification method involving PCR with denaturing gradient gel electrophoresis and pyrosequencing to characterize the bacterial assemblages in the skin of three closely related fishes: Gadus morhua, Gadus macrocephalus, and Theragra chalcogramma. This methodology can be crucial for timely identification of food spoilage, hazard analysis, and monitoring of critical control points during food production. Although all specimens were processed in the same factory, there were significant compositional differences in their skin bacterial communities. In general, the bacterial community was dominated by gram-negative species of the Gammaproteobacteria. Pyrosequencing yielded 90, 69, and 245 operational taxonomic units associated with G. morhua, G. macrocephalus, and T. chalcogramma, respectively. The most dominant operational taxonomic units were assigned in order to Pseudomonas sp., Serratia marcescens, Salinisphaera sp., and Psychrobacter pulmonis. Spoilage and pathogenic bacterial groups were detected in all the studied salted gadoid samples.
Collapse
Affiliation(s)
- Natália Pegoraro
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Letícia N Duarte
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia C Manco
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando J Fernandes
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
40
|
Kumaraswamy R, Amha YM, Anwar MZ, Henschel A, Rodríguez J, Ahmad F. Molecular analysis for screening human bacterial pathogens in municipal wastewater treatment and reuse. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11610-11619. [PMID: 25181426 DOI: 10.1021/es502546t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Effective and sensitive monitoring of human pathogenic bacteria in municipal wastewater treatment is important not only for managing public health risk related to treated wastewater reuse, but also for ensuring proper functioning of the treatment plant. In this study, three different 16S rRNA gene molecular analysis methodologies were employed to screen bacterial pathogens in samples collected at three different stages of an activated sludge plant. Overall bacterial diversity was analyzed using next generation sequencing (NGS) on the Illumina MiSeq platform, as well as PCR-DGGE followed by band sequencing. In addition, a microdiversity analysis was conducted using PCR-DGGE, targeting Escherichia coli. Bioinformatics analysis was performed using QIIME protocol by clustering sequences against the Human Pathogenic Bacteria Database. NGS data were also clustered against the Greengenes database for a genera-level diversity analysis. NGS proved to be the most effective approach screening the sequences of 21 potential human bacterial pathogens, while the E. coli microdiversity analysis yielded one (O157:H7 str. EDL933) out of the two E. coli strains picked up by NGS. Overall diversity using PCR-DGGE did not yield any pathogenic sequence matches even though a number of sequences matched the NGS results. Overall, sequences of Gram-negative pathogens decreased in relative abundance along the treatment train while those of Gram-positive pathogens increased.
Collapse
Affiliation(s)
- Rajkumari Kumaraswamy
- Institute Center for Water and Environment (iWATER), Masdar Institute of Science and Technology , P.O. Box 54224, Abu Dhabi, UAE
| | | | | | | | | | | |
Collapse
|
41
|
Fu S, Liu Y, Li X, Tu J, Lan R, Tian H. A preliminary stochastic model for managing microorganisms in a recirculating aquaculture system. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0958-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Tang Y, Tao P, Tan J, Mu H, Peng L, Yang D, Tong S, Chen L. Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns. Int J Mol Sci 2014; 15:13663-80. [PMID: 25105725 PMCID: PMC4159818 DOI: 10.3390/ijms150813663] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023] Open
Abstract
Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.
Collapse
Affiliation(s)
- Yuyi Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai 201306, China.
| | - Peiying Tao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai 201306, China.
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health, 951 Jinxiu Road, Shanghai 200135, China.
| | - Haizhen Mu
- Shanghai Key Laboratory of Meteorology and Health, 951 Jinxiu Road, Shanghai 200135, China.
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, 951 Jinxiu Road, Shanghai 200135, China.
| | - Dandan Yang
- Shanghai Key Laboratory of Meteorology and Health, 951 Jinxiu Road, Shanghai 200135, China.
| | - Shilu Tong
- School of Public Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia Kelvin Grove, QLD 4059, Australia.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
43
|
Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, Chandra R, Dimopoulos G. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol 2014; 16:2980-94. [PMID: 24428613 DOI: 10.1111/1462-2920.12381] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022]
Abstract
Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of five gut bacterial isolates from field-derived, and two from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's lifespan, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes' gut, compromising mosquito survival and inhibiting both Plasmodium sexual- and asexual-stage through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy.
Collapse
Affiliation(s)
- Ana C Bahia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|