1
|
Dost I, Abdel-Glil M, Persson S, Conza KL, Oleastro M, Alves F, Maurischat S, Scholtzek A, Mazuet C, Diancourt L, Tenson T, Schmoock G, Neubauer H, Schwarz S, Seyboldt C. Genomic study of European Clostridioides difficile ribotype 002/sequence type 8. Microb Genom 2024; 10:001270. [PMID: 39051872 PMCID: PMC11316560 DOI: 10.1099/mgen.0.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Clostridioides difficile has significant clinical importance as a leading cause of healthcare-associated infections, with symptoms ranging from mild diarrhoea to severe colitis, and possible life-threatening complications. C. difficile ribotype (RT) 002, mainly associated with MLST sequence type (ST) 8, is one of the most common RTs found in humans. This study aimed at investigating the genetic characteristics of 537 C. difficile genomes of ST8/RT002. To this end, we sequenced 298 C. difficile strains representing a new European genome collection, with strains from Germany, Denmark, France and Portugal. These sequences were analysed against a global dataset consisting of 1,437 ST8 genomes available through Enterobase. Our results showed close genetic relatedness among the studied ST8 genomes, a diverse array of antimicrobial resistance (AMR) genes and the presence of multiple mobile elements. Notably, the pangenome analysis revealed an open genomic structure. ST8 shows relatively low overall variation. Thus, clonal isolates were found across different One Health sectors (humans, animals, environment and food), time periods, and geographical locations, suggesting the lineage's stability and a universal environmental source. Importantly, this stability did not hinder the acquisition of AMR genes, emphasizing the adaptability of this bacterium to different selective pressures. Although only 2.4 % (41/1,735) of the studied genomes originated from non-human sources, such as animals, food, or the environment, we identified 9 cross-sectoral core genome multilocus sequence typing (cgMLST) clusters. Our study highlights the importance of ST8 as a prominent lineage of C. difficile with critical implications in the context of One Health. In addition, these findings strongly support the need for continued surveillance and investigation of non-human samples to gain a more comprehensive understanding of the epidemiology of C. difficile.
Collapse
Affiliation(s)
- Ines Dost
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Mostafa Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Søren Persson
- Statens Serum Institut, Dept. Bacteria, Parasites and Fungi, Unit of Foodborne Infections, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Karen Loaiza Conza
- Statens Serum Institut, Dept. Bacteria, Parasites and Fungi, Unit of Foodborne Infections, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Mónica Oleastro
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
| | - Frederico Alves
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
- Chief Scientific Office, European Food Safety Authority (EFSA), Parma, Italy
| | - Sven Maurischat
- German Federal Institute for Risk Assessment, Department Biological Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Anissa Scholtzek
- German Federal Institute for Risk Assessment, Department Biological Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Christelle Mazuet
- Institut Pasteur, Université Paris Cité, Centre National de Référence Bactéries anaérobies et Botulisme, F-75015 Paris, France
| | - Laure Diancourt
- Institut Pasteur, Université Paris Cité, Centre National de Référence Bactéries anaérobies et Botulisme, F-75015 Paris, France
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| |
Collapse
|
2
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Heuler J, Chandra H, Sun X. Mucosal Vaccination Strategies against Clostridioides difficile Infection. Vaccines (Basel) 2023; 11:vaccines11050887. [PMID: 37242991 DOI: 10.3390/vaccines11050887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) presents a major public health threat by causing frequently recurrent, life-threatening cases of diarrhea and intestinal inflammation. The ability of C. difficile to express antibiotic resistance and to form long-lasting spores makes the pathogen particularly challenging to eradicate from healthcare settings, raising the need for preventative measures to curb the spread of CDI. Since C. difficile utilizes the fecal-oral route of transmission, a mucosal vaccine could be a particularly promising strategy by generating strong IgA and IgG responses that prevent colonization and disease. This mini-review summarizes the progress toward mucosal vaccines against C. difficile toxins, cell-surface components, and spore proteins. By assessing the strengths and weaknesses of particular antigens, as well as methods for delivering these antigens to mucosal sites, we hope to guide future research toward an effective mucosal vaccine against CDI.
Collapse
Affiliation(s)
- Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Harish Chandra
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Razim A, Górska S, Gamian A. Non-Toxin-Based Clostridioides difficile Vaccination Approaches. Pathogens 2023; 12:235. [PMID: 36839507 PMCID: PMC9966970 DOI: 10.3390/pathogens12020235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile (CD) is a Gram-positive, anaerobic bacterium that infects mainly hospitalized and elderly people who have been treated with long-term antibiotic therapy leading to dysbiosis. The deteriorating demographic structure and the increase in the number of antibiotics used indicate that the problem of CD infections (CDI) will continue to increase. Thus far, there is no vaccine against CD on the market. Unfortunately, clinical trials conducted using the CD toxin-based antigens did not show sufficiently high efficacy, because they did not prevent colonization and transmission between patients. It seems that the vaccine should also include antigens found in the bacterium itself or its spores in order not only to fight the effects of toxins but also to prevent the colonization of the patient. This literature review summarizes the latest advances in research into vaccine antigens that do not contain CD toxins.
Collapse
Affiliation(s)
- Agnieszka Razim
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | | | | |
Collapse
|
5
|
Blackwood CB, Mateu-Borrás M, Sen-Kilic E, Pyles GM, Miller SJ, Weaver KL, Witt WT, Huckaby AB, Kang J, Chandler CE, Ernst RK, Heath Damron F, Barbier M. Bordetella pertussis whole cell immunization protects against Pseudomonas aeruginosa infections. NPJ Vaccines 2022; 7:143. [PMID: 36357402 PMCID: PMC9649022 DOI: 10.1038/s41541-022-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Whole cell vaccines are complex mixtures of antigens, immunogens, and sometimes adjuvants that can trigger potent and protective immune responses. In some instances, such as whole cell Bordetella pertussis vaccination, the immune response to vaccination extends beyond the pathogen the vaccine was intended for and contributes to protection against other clinically significant pathogens. In this study, we describe how B. pertussis whole cell vaccination protects mice against acute pneumonia caused by Pseudomonas aeruginosa. Using ELISA and western blot, we identified that B. pertussis whole cell vaccination induces production of antibodies that bind to lab-adapted and clinical strains of P. aeruginosa, regardless of immunization route or adjuvant used. The cross-reactive antigens were identified using immunoprecipitation, mass spectrometry, and subsequent immunoblotting. We determined that B. pertussis GroEL and OmpA present in the B. pertussis whole cell vaccine led to production of antibodies against P. aeruginosa GroEL and OprF, respectively. Finally, we showed that recombinant B. pertussis OmpA was sufficient to induce protection against P. aeruginosa acute murine pneumonia. This study highlights the potential for use of B. pertussis OmpA as a vaccine antigen for prevention of P. aeruginosa infection, and the potential of broadly protective antigens for vaccine development.
Collapse
Affiliation(s)
- Catherine B Blackwood
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Margalida Mateu-Borrás
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Emel Sen-Kilic
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Gage M Pyles
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Sarah Jo Miller
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Kelly L Weaver
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - William T Witt
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Annalisa B Huckaby
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Jason Kang
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Courtney E Chandler
- University of Maryland, Baltimore Department of Microbial Pathogenesis, School of Dentistry, 650 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Robert K Ernst
- University of Maryland, Baltimore Department of Microbial Pathogenesis, School of Dentistry, 650 W. Baltimore St., Baltimore, MD, 21201, USA
| | - F Heath Damron
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Mariette Barbier
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA.
| |
Collapse
|
6
|
Tan C, Zhu F, Xiao Y, Wu Y, Meng X, Liu S, Liu T, Chen S, Zhou J, Li C, Wu A. Immunoinformatics Approach Toward the Introduction of a Novel Multi-Epitope Vaccine Against Clostridium difficile. Front Immunol 2022; 13:887061. [PMID: 35720363 PMCID: PMC9204425 DOI: 10.3389/fimmu.2022.887061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium difficile (C.difficile) is an exclusively anaerobic, spore-forming, and Gram-positive pathogen that is the most common cause of nosocomial diarrhea and is becoming increasingly prevalent in the community. Because C. difficile is strictly anaerobic, spores that can survive for months in the external environment contribute to the persistence and diffusion of C. difficile within the healthcare environment and community. Antimicrobial therapy disrupts the natural intestinal flora, allowing spores to develop into propagules that colonize the colon and produce toxins, thus leading to antibiotic-associated diarrhea and pseudomembranous enteritis. However, there is no licensed vaccine to prevent Clostridium difficile infection (CDI). In this study, a multi-epitope vaccine was designed using modern computer methods. Two target proteins, CdeC, affecting spore germination, and fliD, affecting propagule colonization, were chosen to construct the vaccine so that it could simultaneously induce the immune response against two different forms (spore and propagule) of C. difficile. We obtained the protein sequences from the National Center for Biotechnology Information (NCBI) database. After the layers of filtration, 5 cytotoxic T-cell lymphocyte (CTL) epitopes, 5 helper T lymphocyte (HTL) epitopes, and 7 B-cell linear epitopes were finally selected for vaccine construction. Then, to enhance the immunogenicity of the designed vaccine, an adjuvant was added to construct the vaccine. The Prabi and RaptorX servers were used to predict the vaccine's two- and three-dimensional (3D) structures, respectively. Additionally, we refined and validated the structures of the vaccine construct. Molecular docking and molecular dynamics (MD) simulation were performed to check the interaction model of the vaccine-Toll-like receptor (TLR) complexes, vaccine-major histocompatibility complex (MHC) complexes, and vaccine-B-cell receptor (BCR) complex. Furthermore, immune stimulation, population coverage, and in silico molecular cloning were also conducted. The foregoing findings suggest that the final formulated vaccine is promising against the pathogen, but more researchers are needed to verify it.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Xiao
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqi Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sidi Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Siyao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, China
| |
Collapse
|
7
|
Towards Development of a Non-Toxigenic Clostridioides difficile Oral Spore Vaccine against Toxigenic C. difficile. Pharmaceutics 2022; 14:pharmaceutics14051086. [PMID: 35631671 PMCID: PMC9146386 DOI: 10.3390/pharmaceutics14051086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridioides difficile is an opportunistic gut pathogen which causes severe colitis, leading to significant morbidity and mortality due to its toxins, TcdA and TcdB. Two intra-muscular toxoid vaccines entered Phase III trials and strongly induced toxin-neutralising antibodies systemically but failed to provide local protection in the colon from primary C. difficile infection (CDI). Alternatively, by immunising orally, the ileum (main immune inductive site) can be directly targeted to confer protection in the large intestine. The gut commensal, non-toxigenic C. difficile (NTCD) was previously tested in animal models as an oral vaccine for natural delivery of an engineered toxin chimera to the small intestine and successfully induced toxin-neutralising antibodies. We investigated whether NTCD could be further exploited to induce antibodies that block the adherence of C. difficile to epithelial cells to target the first stage of pathogenesis. In NTCD strain T7, the colonisation factor, CD0873, and a domain of TcdB were overexpressed. Following oral immunisation of hamsters with spores of recombinant strain, T7-0873 or T7-TcdB, intestinal and systemic responses were investigated. Vaccination with T7-0873 successfully induced intestinal antibodies that significantly reduced adhesion of toxigenic C. difficile to Caco-2 cells, and these responses were mirrored in sera. Additional engineering of NTCD is now warranted to further develop this vaccine.
Collapse
|
8
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Noori Goodarzi N, Fereshteh S, Azizi O, Rahimi H, Bolourchi N, Badmasti F. Subtractive genomic approach toward introduction of novel immunogenic targets against Clostridioides difficile: Thinking out of the box. Microb Pathog 2021; 162:105372. [PMID: 34954046 DOI: 10.1016/j.micpath.2021.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Clostridioides difficile is one of the major causatives of nosocomial infections worldwide. Antibiotic-associated diarrhea, pseudomembranous colitis, and toxic megacolon are the most common forms of C. difficile infection (CDI). Considering the high antibiotic resistance of C. difficile isolates and the low efficacy of immunization with toxin-related vaccines, we suggested that surface-exposed and secreted proteins could be considered as potential immunogenic targets against CDI. Various immuninformatics databases were used to predict antigenicity, allergenicity, B-cell epitopes, MHC-II binding sites, conserved domains, prevalence and conservation of proteins among the most common sequence types, molecular docking, and immunosimulation of immunogenic targets. Finally, 16 proteins belonging to three functional groups were identified, including proteins involved in the cell wall and peptidoglycan layer (nine proteins), flagellar assembly (five proteins), spore germination (one protein), and a protein with unknown function. Molecular docking results showed that among all the mentioned proteins, WP_009892971.1 (Acd) and WP_009890599.1 (a C40 family peptidase) had the strongest interactions with human Toll-like receptor 2 (TLR-2) and TLR-4. This study proposes a combination of C. difficile toxoid (Tcd) and surface-exposed proteins such as Acd as a promising vaccine formulation for protection against circulating clinical strains of C. difficile.
Collapse
Affiliation(s)
- Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Omid Azizi
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Liu C, Hu J, Wu Y, Irwin DM, Chen W, Zhang Z, Yu L. Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins. J Genet Genomics 2021; 48:825-835. [PMID: 34474998 DOI: 10.1016/j.jgg.2021.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023]
Abstract
Pangolins are among the most critically endangered animals due to widespread poaching and worldwide trafficking. Captive breeding is considered to be one way to protect them and increase the sizes of their populations. However, comparative studies of captive and wild pangolins in the context of gut microbiota are rare. Here, the gut microbiome of captive and confiscated-rescued wild pangolins is compared, and the effects of different periods of captivity and captivity with and without antibiotic treatment are considered. We show that different diets and periods of captivity, as well as the application of antibiotic therapy, can alter gut community composition and abundance in pangolins. Compared to wild pangolins, captive pangolins have an increased capacity for chitin and cellulose/hemicellulose degradation, fatty acid metabolism, and short-chain fatty acid synthesis, but a reduced ability to metabolize exogenous substances. In addition to increasing the ability of the gut microbiota to metabolize nutrients in captivity, captive breeding imposes some risks for survival by resulting in a greater abundance of antibiotic resistance genes and virulence factors in captive pangolins than in wild pangolins. Our study is important for the development of guidelines for pangolin conservation, including health assessment, disease prevention, and rehabilitation of wild pangolin populations.
Collapse
Affiliation(s)
- Chunbing Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yajiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China.
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
11
|
Xu X, Bian Q, Luo Y, Song X, Lin S, Chen H, Liang Q, Wang M, Ye G, Zhu B, Chen L, Tang YW, Wang X, Jin D. Comparative Whole Genome Sequence Analysis and Biological Features of Clostridioides difficile Sequence Type 2 ‡. Front Microbiol 2021; 12:651520. [PMID: 34290677 PMCID: PMC8287029 DOI: 10.3389/fmicb.2021.651520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile sequence type 2 (ST2) has been increasingly recognized as one of the major genotypes in China, while the genomic characteristics and biological phenotypes of Chinese ST2 strains remain to be determined. We used whole-genome sequencing and phylogenetic analysis to investigate the genomic features of 182 ST2 strains, isolated between 2011 and 2017. PCR ribotyping (RT) was performed, and antibiotic resistance, toxin concentration, and sporulation capacity were measured. The core genome Maximum-likelihood phylogenetic analysis showed that ST2 strains were distinctly segregated into two genetically diverse lineages [L1 (67.0% from Northern America) and L2], while L2 further divided into two sub-lineages, SL2a and SL2b (73.5% from China). The 36 virulence-related genes were widely distributed in ST2 genomes, but in which only 11 antibiotic resistance-associated genes were dispersedly found. Among the 25 SL2b sequenced isolates, RT014 (40.0%, n = 10) and RT020 (28.0%, n = 7) were two main genotypes with no significant difference on antibiotic resistance (χ2 = 0.024-2.667, P > 0.05). A non-synonymous amino acid substitution was found in tcdB (Y1975D) which was specific to SL2b. Although there was no significant difference in sporulation capacity between the two lineages, the average toxin B concentration (5.11 ± 3.20 ng/μL) in SL2b was significantly lower in comparison to those in L1 (10.49 ± 15.82 ng/μL) and SL2a (13.92 ± 2.39 ng/μL) (χ2 = 12.30, P < 0.05). This study described the genomic characteristics of C. difficile ST2, with many virulence loci and few antibiotic resistance elements. The Chinese ST2 strains with the mutation in codon 1975 of the tcdB gene clustering in SL2b circulating in China express low toxin B, which may be associated with mild or moderate C. difficile infection.
Collapse
Affiliation(s)
- Xingxing Xu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qiao Bian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huan Chen
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Qian Liang
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Meixia Wang
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Guangyong Ye
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, Untied States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, Untied States
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, China
| | - Xianjun Wang
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China.,Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Sabna S, Kamboj DV, Kumar RB, Babele P, Rajoria S, Gupta MK, Alam SI. Strategy for the enrichment of protein biomarkers from diverse bacterial select agents. Protein Pept Lett 2021; 28:1071-1082. [PMID: 33820508 DOI: 10.2174/0929866528666210405160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002. India
| |
Collapse
|
13
|
Immunoproteomic analysis of Clostridium botulinum type B secretome for identification of immunogenic proteins against botulism. Biotechnol Lett 2021; 43:1019-1036. [PMID: 33629143 PMCID: PMC7904509 DOI: 10.1007/s10529-021-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
Objectives To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. Results In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. Conclusions Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03091-4.
Collapse
|
14
|
Borrelia burgdorferi Surface Exposed GroEL Is a Multifunctional Protein. Pathogens 2021; 10:pathogens10020226. [PMID: 33670728 PMCID: PMC7922809 DOI: 10.3390/pathogens10020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 01/03/2023] Open
Abstract
The spirochete, Borrelia burgdorferi, has a large number of membrane proteins involved in a complex life cycle, that includes a tick vector and a vertebrate host. Some of these proteins also serve different roles in infection and dissemination of the spirochete in the mammalian host. In this spirochete, a number of proteins have been associated with binding to plasminogen or components of the extracellular matrix, which is important for tissue colonization and dissemination. GroEL is a cytoplasmic chaperone protein that has previously been associated with the outer membrane of Borrelia. A His-tag purified B. burgdorferi GroEL was used to generate a polyclonal rabbit antibody showing that GroEL also localizes in the outer membrane and is surface exposed. GroEL binds plasminogen in a lysine dependent manner. GroEL may be part of the protein repertoire that Borrelia successfully uses to establish infection and disseminate in the host. Importantly, this chaperone is readily recognized by sera from experimentally infected mice and rabbits. In summary, GroEL is an immunogenic protein that in addition to its chaperon role it may contribute to pathogenesis of the spirochete by binding to plasminogen and components of the extra cellular matrix.
Collapse
|
15
|
Palmieri LJ, Rainteau D, Sokol H, Beaugerie L, Dior M, Coffin B, Humbert L, Eguether T, Bado A, Hoys S, Janoir C, Duboc H. Inhibitory Effect of Ursodeoxycholic Acid on Clostridium difficile Germination Is Insufficient to Prevent Colitis: A Study in Hamsters and Humans. Front Microbiol 2018; 9:2849. [PMID: 30524414 PMCID: PMC6262072 DOI: 10.3389/fmicb.2018.02849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction: Bile acids (BA) influence germination and growth of Clostridium difficile. Ursodeoxycholic acid (UDCA), a BA minor in human, used for cholestatic liver diseases, inhibits germination and growth of C. difficile in vitro, but was never tested in vivo with an infectious challenge versus control. We hypothesized that UDCA could prevent CDI. We evaluated the effects of UDCA on C. difficile in vitro and in hamsters, with pharmacokinetics study and with an infectious challenge. Then, we studied CDI incidence in UDCA–treated patients. Methods: We evaluated germination and growth of C. difficile, with 0.01, 0.05, and 0.1% UDCA. We analyzed fecal BA of hamsters receiving antibiotics and UDCA (50 mg/kg/day), antibiotics, or UDCA alone. Then, we challenged with spores of C. difficile at D6 hamsters treated with UDCA (50 mg/kg/day) from D1 to D13, versus control. In human, we analyzed the database of a cohort on CDI in acute flares of inflammatory bowel disease (IBD). As PSC-IBD patients were under UDCA treatment, we compared PSC-IBD patients to IBD patients without PSC. Results:In vitro, UDCA inhibited germination and growth of C. difficile at 0.05 and 0.1%, competing with 0.1% TCA (with 0.1%: 0.05% ± 0.05% colony forming unit versus 100% ± 0%, P < 0.0001). In hamsters, UDCA reached high levels only when administered with antibiotics (43.5% UDCA at D5). Without antibiotics, UDCA was in small amount in feces (max. 4.28%), probably because of UDCA transformation into LCA by gut microbiota. During infectious challenge, mortality was similar in animals treated or not with UDCA (62.5%, n = 5/8, P = 0.78). UDCA percentage was high, similar and with the same kinetics in dead and surviving hamsters. However, dead hamsters had a higher ratio of primary over secondary BA compared to surviving hamsters. 9% (n = 41/404) of IBD patients without PSC had a CDI, versus 25% (n = 4/12) of PSC-IBD patients treated with UDCA. Conclusion: We confirmed the inhibitory effect of UDCA on growth and germination of C. difficile in vitro, with 0.05 or 0.1% UDCA. However, in our hamster model, UDCA was inefficient to prevent CDI, despite high levels of UDCA in feces. Patients with PSC-IBD treated with UDCA did not have less CDI than IBD patients.
Collapse
Affiliation(s)
- Lola-Jade Palmieri
- ERL INSERM U1157/UMR7203, PM2, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine Saint-Antoine, Sorbonne Université, Paris, France.,EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,INSERM U1149, Centre de Recherche sur l'Inflammation, Faculté de Médecine Paris Diderot, Université Paris Diderot, Paris, France
| | - Dominique Rainteau
- ERL INSERM U1157/UMR7203, PM2, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine Saint-Antoine, Sorbonne Université, Paris, France
| | - Harry Sokol
- ERL INSERM U1157/UMR7203, PM2, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine Saint-Antoine, Sorbonne Université, Paris, France.,Department of Gastroenterology and Nutrition, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurent Beaugerie
- ERL INSERM U1157/UMR7203, PM2, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine Saint-Antoine, Sorbonne Université, Paris, France.,Department of Gastroenterology and Nutrition, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marie Dior
- Department of Gastroenterology, Louis Mourier Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Benoit Coffin
- INSERM U1149, Centre de Recherche sur l'Inflammation, Faculté de Médecine Paris Diderot, Université Paris Diderot, Paris, France.,Department of Gastroenterology, Louis Mourier Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Lydie Humbert
- ERL INSERM U1157/UMR7203, PM2, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine Saint-Antoine, Sorbonne Université, Paris, France
| | - Thibaut Eguether
- ERL INSERM U1157/UMR7203, PM2, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine Saint-Antoine, Sorbonne Université, Paris, France
| | - André Bado
- INSERM U1149, Centre de Recherche sur l'Inflammation, Faculté de Médecine Paris Diderot, Université Paris Diderot, Paris, France
| | - Sandra Hoys
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Claire Janoir
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Henri Duboc
- INSERM U1149, Centre de Recherche sur l'Inflammation, Faculté de Médecine Paris Diderot, Université Paris Diderot, Paris, France.,Department of Gastroenterology, Louis Mourier Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
16
|
Ghazaei C, Line El Helou M. Beyond proteostasis: Roles of type I chaperonins in bacterial pathogenesis. J Med Microbiol 2018; 67:1203-1211. [PMID: 30074472 DOI: 10.1099/jmm.0.000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all bacterial species express two or more chaperonin genes. Recent data indicate that type I chaperonins may be key players in bacterial infections. This is partly due to the well-known contribution of chaperonins in cellular proteostasis, the latter being compromised during bacterial host infection. In addition to their protein-folding activity, it has been revealed that certain chaperonins also exhibit moonlighting functions that can contribute in different ways to bacterial pathogenicity. Examples range from inducing adhesion molecules in Chlamydophila pneumoniae to supporting intracellular survival in Mycobacterium tuberculosis and Leishmania donovani, to inducing cytokines in Helicobacter pylori to promoting antimicrobial resistance in Escherichia coli, amongst others. This article provides a thorough reviews of our current understanding of the different mechanisms involving type I chaperonins during bacteria-host interactions, and suggests new areas to be explored and the potential of finding new targets for fighting bacterial infections.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- 1Department of Microbiology, University of Mohaghegh Ardabili, Ardabil, Iran
| | | |
Collapse
|
17
|
Development of vaccine for Clostridium difficile infection using membrane fraction of nontoxigenic Clostridium difficile. Microb Pathog 2018; 123:42-46. [PMID: 29959036 DOI: 10.1016/j.micpath.2018.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023]
Abstract
Although standard antibiotic therapy is performed for diarrhea and pseudomembranous colitis caused by Clostridium difficile, a high recurrence rate of C. difficile infection (CDI) remains a major problem. We previously showed that a membrane fraction of nontoxigenic C. difficile (ntCDMF) was effective as a vaccine antigen by in vitro experiments. In this study, we examined whether ntCDMF had an in vivo effect in animal challenge experiments. By intrarectal immunization with ntCDMF, the number of C. difficile cells in feces of mice was decreased approximately 99% compared to the control mice. In addition, survival rate of C. difficile-challenged hamsters was increased almost 30% by immunization with ntCDMF. These results showed that ntCDMF could be a practical vaccine candidate.
Collapse
|
18
|
Péchiné S, Bruxelle JF, Janoir C, Collignon A. Targeting Clostridium difficile Surface Components to Develop Immunotherapeutic Strategies Against Clostridium difficile Infection. Front Microbiol 2018; 9:1009. [PMID: 29875742 PMCID: PMC5974105 DOI: 10.3389/fmicb.2018.01009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
New therapies are needed to prevent and treat Clostridium difficile infection and to limit the rise in antibiotic resistance. Besides toxins, several surface components have been characterized as colonization factors and have been shown as immunogenic. This review will focus on passive and active immunization strategies targeting C. difficile surface components to combat C. difficile. Concerning passive immunization, the first strategies used antisera raised against the entire bacterium to prevent infection in the hamster model. Then, surface components such as the flagellin and the S-layer proteins were used for immunization and the passive transfer of antibodies was protective in animal models. Passive immunotherapy with polyvalent immunoglobulins was used in humans and bovine immunoglobulin concentrates were evaluated in clinical trials. Concerning active immunization, vaccine assays targeting surface components were tested mainly in animal models, mouse models of colonization and hamster models of infection. Bacterial extracts, spore proteins and surface components of vegetative cells such as cell wall proteins, flagellar proteins, and polysaccharides were used as vaccine targets. Vaccine assays were performed by parenteral and mucosal routes of immunization. Both gave promising results and pave the way to development of new vaccines.
Collapse
Affiliation(s)
- Séverine Péchiné
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean F Bruxelle
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Claire Janoir
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Anne Collignon
- EA 4043, Unités Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Multidrug resistance of bacterial pathogens has confronted physicians around the world with the threat of inefficacy of the antibiotic regime, which is particularly important for patients with sepsis. Antibiotic resistance has revived search for alternative nonantibiotic strategies. Among them, prophylaxis by vaccination is an appealing concept. RECENT FINDINGS This review provides a compact overview on available vaccines against community-acquired pathogens such as pneumococci (in synergy with influenza) and meningococci and provides an overview on the ongoing developments of vaccines targeting typical nosocomial pathogens such as Clostridium difficile, Staphylococcus aureus, Acintetobacter baumannii, Klebsiella pneumonia, and Pseudomonas aeruginosa. SUMMARY The effects achieved by some conjugated vaccines (e.g. against Haemophilus influenzae B and Streptococcus pneumoniae) are encouraging. Their widespread use has resulted in a decrease or almost elimination of invasive diseases by the covered pneumococcal serotypes or Haemophilus influenzae B, respectively. These vaccines confer not only individual protection but also exploit herd protection effects. However, a multitude of failures reflects the obstacles on the way to effective and well tolerated bacterial vaccines. Regional differences in strain prevalence and variability of antigens that limit cross-protectivity remain major obstacles. However, promising candidates are in clinical development.
Collapse
|
20
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
21
|
Bruxelle JF, Mizrahi A, Hoÿs S, Collignon A, Janoir C, Péchiné S. Clostridium difficile flagellin FliC: Evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile. PLoS One 2017; 12:e0187212. [PMID: 29176760 PMCID: PMC5703446 DOI: 10.1371/journal.pone.0187212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022] Open
Abstract
The immunogenicity of bacterial flagellin has been reported in different studies. By its close interaction with the immune system, the flagellin represents an interesting adjuvant and vaccine candidate. Salmonella Typhimurium flagellin has already been tested as adjuvant to stimulate mucosal immunity. Here, we assessed the ability of Clostridium difficile flagellin FliC to act as a mucosal adjuvant, first combined with ovalbumin as antigen and second with a C. difficile surface protein, the precursor of the S-layer proteins SlpA. Using ovalbumin as antigen, we compared the gut mucosal adjuvanticity of FliC to Salmonella Typhimurium flagellin and cholera toxin. Two routes of immunization were tested in a mouse model: intra-rectal and intra-peritoneal, following which, gut mucosal and systemic antibody responses against ovalbumin (Immunoglobulins G and Immunoglobulins A) were analyzed by Enzyme-Linked Immuno Assay in intestinal contents and in sera. In addition, ovalbumin-specific immunoglobulin producing cells were detected in the intestinal lamina propria by Enzyme-Linked Immunospot. Results showed that FliC as adjuvant for immunization targeting ovalbumin was able to stimulate a gut mucosal and systemic antibody response independently of the immunization route. In order to develop a mucosal vaccine to prevent C. difficile intestinal colonization, we assessed in a mouse model the efficacy of FliC as adjuvant compared with cholera toxin co-administrated with the C. difficile S-layer precursor SlpA as antigen. After challenge, a significant decrease of C. difficile intestinal colonization was observed in immunized groups compared to the control group. Our results showed that C. difficile FliC could be used as adjuvant in mucosal vaccination strategy against C. difficile infections.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Assaf Mizrahi
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
- Service de Microbiologie Clinique, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Sandra Hoÿs
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Anne Collignon
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Claire Janoir
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
| | - Séverine Péchiné
- EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France
- * E-mail:
| |
Collapse
|
22
|
Lourenço J, Watkins ER, Obolski U, Peacock SJ, Morris C, Maiden MCJ, Gupta S. Lineage structure of Streptococcus pneumoniae may be driven by immune selection on the groEL heat-shock protein. Sci Rep 2017; 7:9023. [PMID: 28831154 PMCID: PMC5567354 DOI: 10.1038/s41598-017-08990-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
Populations of Streptococcus pneumoniae (SP) are typically structured into groups of closely related organisms or lineages, but it is not clear whether they are maintained by selection or neutral processes. Here, we attempt to address this question by applying a machine learning technique to SP whole genomes. Our results indicate that lineages evolved through immune selection on the groEL chaperone protein. The groEL protein is part of the groESL operon and enables a large range of proteins to fold correctly within the physical environment of the nasopharynx, thereby explaining why lineage structure is so stable within SP despite high levels of genetic transfer. SP is also antigenically diverse, exhibiting a variety of distinct capsular serotypes. Associations exist between lineage and capsular serotype but these can be easily perturbed, such as by vaccination. Overall, our analyses indicate that the evolution of SP can be conceptualized as the rearrangement of modular functional units occurring on several different timescales under different pressures: some patterns have locked in early (such as the epistatic interactions between groESL and a constellation of other genes) and preserve the differentiation of lineages, while others (such as the associations between capsular serotype and lineage) remain in continuous flux.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | - Uri Obolski
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Samuel J Peacock
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Ferreira TG, Moura H, Barr JR, Pilotto Domingues RMC, Ferreira EDO. Ribotypes associated with Clostridium difficile outbreaks in Brazil display distinct surface protein profiles. Anaerobe 2017; 45:120-128. [PMID: 28435010 DOI: 10.1016/j.anaerobe.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 11/18/2022]
Abstract
Clostridium difficile is a spore-forming anaerobic intestinal pathogen that causes Clostridium difficile infection (CDI). C. difficile is the leading cause of toxin-mediated nosocomial antibiotic-associated diarrhea. The pathogenesis of CDI is attributed to two major virulence factors, TcdA and TcdB toxins, that cause the symptomatic infection. C. difficile also expresses a number of key proteins, including cell wall proteins (CWPs). S-layer proteins (SLPs) are CWPs that form a paracrystalline surface array that coats the surface of the bacterium. SLPs have a role in C. difficile binding to the gastrointestinal tract, but their importance in virulence need to be better elucidated. Here, we describe bottom-up proteomics analysis of surface-enriched proteins fractions obtained through glycine extraction of five C. difficile clinical isolates from Brazil using gel-based and gel-free approaches. We were able to identify approximately 250 proteins for each strain, among them SlpA, Cwp2, Cwp6, CwpV and Cwp84. Identified CWPs presented different amino acid coverage, which might suggest differences in post-translational modifications. Proteomic analysis of SLPs from ribotype 133, agent of C. difficile outbreaks in Brazil, revealed unique proteins and provided additional information towards in depth characterization of the strains causing CDI in Brazil.
Collapse
Affiliation(s)
- Thais Gonçalves Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil
| | - Hercules Moura
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - John R Barr
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Regina M C Pilotto Domingues
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil.
| | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro - Polo Xerém, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Kirk JA, Banerji O, Fagan RP. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb Biotechnol 2016; 10:76-90. [PMID: 27311697 PMCID: PMC5270738 DOI: 10.1111/1751-7915.12372] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a challenging threat to human health. Infections occur after disruption of the normal microbiota, most commonly through the use of antibiotics. Current treatment for CDI largely relies on the broad‐spectrum antibiotics vancomycin and metronidazole that further disrupt the microbiota resulting in frequent recurrence, highlighting the need for C. difficile‐specific antimicrobials. The cell surface of C. difficile represents a promising target for the development of new drugs. C. difficile possesses a highly deacetylated peptidoglycan cell wall containing unique secondary cell wall polymers. Bound to the cell wall is an essential S‐layer, formed of SlpA and decorated with an additional 28 related proteins. In addition to the S‐layer, many other cell surface proteins have been identified, including several with roles in host colonization. This review aims to summarize our current understanding of these different C. difficile cell surface components and their viability as therapeutic targets.
Collapse
Affiliation(s)
- Joseph A Kirk
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Oishik Banerji
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert P Fagan
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
25
|
Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. Anaerobe 2016; 37:78-84. [DOI: 10.1016/j.anaerobe.2015.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 01/01/2023]
|
26
|
Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 2016; 37:13-24. [DOI: 10.1016/j.anaerobe.2015.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
|
27
|
Ünal CM, Steinert M. Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Ther Targets 2015; 20:269-85. [PMID: 26565670 DOI: 10.1517/14728222.2016.1090428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, Clostridium difficile has become the primary cause of antibiotic-associated diarrhea and pseudomembranous colitis, resulting in long and complicated hospital stays that represent a serious burden for patients as well as health care systems. Currently, conservative treatment of C. difficile infection (CDI) relies on the antibiotics vancomycin, metronidazole or fidaxomicin, or in case of multiple recurrences, fecal microbiota transplantation (FMT). AREAS COVERED The fast-spreading, epidemic nature of this pathogen urgently necessitates the search for alternative treatment strategies as well as antibiotic targets. Accordingly, in this review, we highlight the recent findings regarding virulence associated traits of C. difficile, evaluate their potential as alternative drug targets, and present current efforts in designing inhibitory compounds, with the aim of pointing out possibilities for future treatment strategies. EXPERT OPINION Increased attention on systematic analysis of the virulence mechanisms of C. difficile has already led to the identification of several alternative drug targets. In the future, applying state of the art 'omics' and the development of novel infection models that mimic the human gut, a highly complex ecological niche, will unveil the genomic and metabolic plasticity of this pathogen and will certainly help dealing with future challenges.
Collapse
Affiliation(s)
- Can M Ünal
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,b 2 Türk-Alman Üniversitesi, Fen Fakültesi , Şahinkaya Cad. 86, 34820, Istanbul, Turkey
| | - Michael Steinert
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,c 3 Helmholtz Centre for Infection Research , Mascheroder Weg 1, 38124, Braunschweig, Germany
| |
Collapse
|
28
|
Kumar A, Hays M, Lim F, Foster LJ, Zhou M, Zhu G, Miesner T, Hardwidge PR. Protective Enterotoxigenic Escherichia coli Antigens in a Murine Intranasal Challenge Model. PLoS Negl Trop Dis 2015; 9:e0003924. [PMID: 26244636 PMCID: PMC4526226 DOI: 10.1371/journal.pntd.0003924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/19/2015] [Indexed: 12/19/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an endemic health threat in underdeveloped nations. Despite the significant effort extended to vaccine trials using ETEC colonization factors, these approaches have generally not been especially effective in mediating cross-protective immunity. We used quantitative proteomics to identify 24 proteins that differed in abundance in membrane protein preparations derived from wild-type vs. a type II secretion system mutant of ETEC. We expressed and purified a subset of these proteins and identified nine antigens that generated significant immune responses in mice. Sera from mice immunized with either the MltA-interacting protein MipA, the periplasmic chaperone seventeen kilodalton protein, Skp, or a long-chain fatty acid outer membrane transporter, ETEC_2479, reduced the adherence of multiple ETEC strains differing in colonization factor expression to human intestinal epithelial cells. In intranasal challenge assays of mice, immunization with ETEC_2479 protected 88% of mice from an otherwise lethal challenge with ETEC H10407. Immunization with either Skp or MipA provided an intermediate degree of protection, 68 and 64%, respectively. Protection was significantly correlated with the induction of a secretory immunoglobulin A response. This study has identified several proteins that are conserved among heterologous ETEC strains and may thus potentially improve cross-protective efficacy if incorporated into future vaccine designs.
Collapse
Affiliation(s)
- Amit Kumar
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Mike Hays
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Francis Lim
- Department of Biochemistry & Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mingxu Zhou
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Tracy Miesner
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Philip R. Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Inhibition of adhesion of Clostridium difficile to human intestinal cells after treatment with serum and intestinal fluid isolated from mice immunized with nontoxigenic C. difficile membrane fraction. Microb Pathog 2015; 81:1-5. [PMID: 25745878 DOI: 10.1016/j.micpath.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/05/2023]
Abstract
Diarrhea and pseudomembrane colitis caused by Clostridium difficile infection is a global health concern because of the high recurrence rate after standard antibiotic therapy. Vaccination presents a powerful countermeasure against disease recurrence. In this study, mice vaccinated with the nontoxigenic C. difficile membrane fraction generated a marked immune response to the antigen, as demonstrated by the serum IgG and intestinal fluid IgA levels. Significantly, pretreatment with harvested IgG- and IgA-containing fluids was sufficient to prevent in vitro adhesion of C. difficile to human Caco-2 intestinal cells. These results highlight the potential of nontoxigenic C. difficile membrane fraction as a vaccine candidate for C. difficile infection.
Collapse
|
30
|
Guo S, Yan W, McDonough SP, Lin N, Wu KJ, He H, Xiang H, Yang M, Moreira MAS, Chang YF. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine 2015; 33:1586-95. [DOI: 10.1016/j.vaccine.2015.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023]
|
31
|
Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against Clostridium difficile infections: State of the art. Anaerobe 2014; 30:210-9. [DOI: 10.1016/j.anaerobe.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
|
32
|
Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes 2014; 5:579-93. [PMID: 25483328 PMCID: PMC4615314 DOI: 10.4161/19490976.2014.969632] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.
Collapse
Key Words
- AAD, antibiotic associated diarrhea
- C. difficile,Clostridium difficile
- CDI, C. difficile infection
- CDT, Clostridium difficile transferase
- CDTLoc, CDT locus
- CDTa, CDT enzymatic component
- CDTb, CDT binding/translocation component
- CST, Clostridium spiroforme toxin
- CWPs, cell wall protein
- Clostridium
- ECF, extracytoplasmic function
- HMW, high molecular weight
- LMW, low molecular weight
- LSR, lipolysis-stimulated lipoprotein receptor
- PCR, polymerase chain reaction
- PFGE, pulsed field gel electrophoresis
- PaLoc, pathogenicity locus
- REA, restriction endonuclease analysis
- S-layer, surface layer
- SLPs, S-layer proteins
- TcdA, toxin A
- TcdB, toxin B
- antibiotic
- colitis
- difficile
- infection
- nosocomial
- toxin
- virulence factor
- ι-toxin, iota toxin
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | | | - Glen P Carter
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Edward Rose
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton, Victoria, Australia,Correspondence to: Dena Lyras;
| |
Collapse
|
33
|
Galdys AL, Curry SR, Harrison LH. AsymptomaticClostridium difficilecolonization as a reservoir forClostridium difficileinfection. Expert Rev Anti Infect Ther 2014; 12:967-80. [DOI: 10.1586/14787210.2014.920252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Ferrara F, Di Niro R, D'Angelo S, Busetti M, Marzari R, Not T, Sblattero D. Development of an enzyme-linked immunosorbent assay for Bartonella henselae infection detection. Lett Appl Microbiol 2014; 59:253-62. [PMID: 24834970 DOI: 10.1111/lam.12286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Several serological diagnostics rely on enzyme-linked immunosorbent assay (ELISA) to detect bacterial infections. However, for some pathogens, including Bartonella henselae, diagnosis still depends on manually intensive, time-consuming assays including micro-immunofluorescence, Western blotting or indirect immunofluorescence. For such pathogens, there is obviously still a need to identify antigens to establish a reliable, fast and high-throughput assay (Dupon et al. ). We evaluated two B. henselae proteins to develop a novel serological ELISA: a well-known antigen, the 17-kDa protein, and GroEL, identified during this study by a proteomic approach. When serum IgG were tested, the specificity and sensitivity were 76 and 65·7% for 17-kDa, respectively, and 82 and 42·9% for GroEL, respectively. IgM were found to be more sensitive and specific for both proteins: 17-kDa protein, specificity 86·2% and sensitivity 75%; GroEL, specificity 97·7% and sensitivity 45·3%. IgM antibodies were also measured in lymphoma patients and patients with Mycobacterium tuberculosis infection to assess the usefulness of our ELISA to distinguish them from B. henselae infected patients. The resulting specificities were 89·1 and 93·5% for 17-kDa protein and GroEL, respectively. Combining the results from the two tests, we obtained a sensitivity of 82·8% and a specificity of 83·9%. Our work described and validated a proteomic approach suitable to identify immunogenic proteins useful for developing a serological test of B. henselae infection. SIGNIFICANCE AND IMPACT OF THE STUDY A reliable serological assay for the diagnosis of Cat Scratch Disease (CSD) - a pathological condition caused by Bartonella henselae infection - has not yet been developed. Such an assay would be extremely useful to discriminate between CSD and other pathologies with similar symptoms but different aetiologies, for example lymphoma or tuberculosis. We investigate the use of two B. henselae proteins - GroEL and 17-kDa - to develop a serological-based ELISA, showing promising results with the potential for further development as an effective tool for the differential diagnosing of B. henselae infection.
Collapse
Affiliation(s)
- F Ferrara
- New Mexico Consortium, Los Alamos, NM, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Pechkova E, Bragazzi NL, Nicolini C. Advances in nanocrystallography as a proteomic tool. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:163-91. [PMID: 24985772 DOI: 10.1016/b978-0-12-800453-1.00005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to overcome the difficulties and hurdles too much often encountered in crystallizing a protein with the conventional techniques, our group has introduced the innovative Langmuir-Blodgett (LB)-based crystallization, as a major advance in the field of both structural and functional proteomics, thus pioneering the emerging field of the so-called nanocrystallography or nanobiocrystallography. This approach uniquely combines protein crystallography and nanotechnologies within an integrated, coherent framework that allows one to obtain highly stable protein crystals and to fully characterize them at a nano- and subnanoscale. A variety of experimental techniques and theoretical/semi-theoretical approaches, ranging from atomic force microscopy, circular dichroism, Raman spectroscopy and other spectroscopic methods, microbeam grazing-incidence small-angle X-ray scattering to in silico simulations, bioinformatics, and molecular dynamics, has been exploited in order to study the LB-films and to investigate the kinetics and the main features of LB-grown crystals. When compared to classical hanging-drop crystallization, LB technique appears strikingly superior and yields results comparable with crystallization in microgravity environments. Therefore, the achievement of LB-based crystallography can have a tremendous impact in the field of industrial and clinical/therapeutic applications, opening new perspectives for personalized medicine. These implications are envisaged and discussed in the present contribution.
Collapse
Affiliation(s)
- Eugenia Pechkova
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy
| | - Nicola Luigi Bragazzi
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Claudio Nicolini
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|