1
|
Duarte D, Jurcic EJ, Dutour J, Villalba PV, Centurión C, Grattapaglia D, Cappa EP. Genomic selection in forest trees comes to life: unraveling its potential in an advanced four-generation Eucalyptus grandis population. FRONTIERS IN PLANT SCIENCE 2024; 15:1462285. [PMID: 39539292 PMCID: PMC11558521 DOI: 10.3389/fpls.2024.1462285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi-generational findings underscore GS's potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
Collapse
Affiliation(s)
| | - Esteban J. Jurcic
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Pamela V. Villalba
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), INTA-CONICET, Buenos Aires, Argentina
| | | | - Dario Grattapaglia
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Eduardo P. Cappa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Aguirre NC, Villalba PV, García MN, Filippi CV, Rivas JG, Martínez MC, Acuña CV, López AJ, López JA, Pathauer P, Palazzini D, Harrand L, Oberschelp J, Marcó MA, Cisneros EF, Carreras R, Martins Alves AM, Rodrigues JC, Hopp HE, Grattapaglia D, Cappa EP, Paniego NB, Marcucci Poltri SN. Comparison of ddRADseq and EUChip60K SNP genotyping systems for population genetics and genomic selection in Eucalyptus dunnii (Maiden). Front Genet 2024; 15:1361418. [PMID: 38606359 PMCID: PMC11008695 DOI: 10.3389/fgene.2024.1361418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 04/13/2024] Open
Abstract
Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, E. dunnii holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages. In this work, we evaluated the performance of two single nucleotide polymorphism, (SNP), genotyping methods for population genetics analysis and Genomic Selection in E. dunnii. Double digest restriction-site associated DNA sequencing (ddRADseq) was compared with the EUChip60K array in 308 individuals from a provenance-progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs distributed along the 11 chromosomes, respectively. Although the two datasets differed in the percentage of missing data, genome coverage, minor allele frequency and estimated genetic diversity parameters, they revealed a similar genetic structure, showing two subpopulations with little differentiation between them, and low linkage disequilibrium. GS analyses were performed for eleven traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content, Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values for six traits, meanwhile, the values estimated using ddRADseq gave higher values for three other traits. The PAs correlated positively with narrow sense heritabilities, with the highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two genotyping methods, ddRADseq and EUChip60K, are generally comparable for population genetics and genomic prediction, demonstrating the utility of the former when subjected to rigorous SNP filtering. The results of this study provide a basis for future whole-genome studies using ddRADseq in non-model forest species for which SNP arrays have not yet been developed.
Collapse
Affiliation(s)
| | | | - Martín Nahuel García
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Juan Gabriel Rivas
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - María Carolina Martínez
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Cintia Vanesa Acuña
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Augusto J. López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Juan Adolfo López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Pablo Pathauer
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Dino Palazzini
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Leonel Harrand
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Javier Oberschelp
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Martín Alberto Marcó
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Esteban Felipe Cisneros
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Rocío Carreras
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Ana Maria Martins Alves
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - José Carlos Rodrigues
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - H. Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Dario Grattapaglia
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | - Eduardo Pablo Cappa
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | | |
Collapse
|
3
|
Ashwath MN, Lavale SA, Santhoshkumar AV, Mohapatra SR, Bhardwaj A, Dash U, Shiran K, Samantara K, Wani SH. Genome-wide association studies: an intuitive solution for SNP identification and gene mapping in trees. Funct Integr Genomics 2023; 23:297. [PMID: 37700096 DOI: 10.1007/s10142-023-01224-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Analysis of natural diversity in wild/cultivated plants can be used to understand the genetic basis for plant breeding programs. Recent advancements in DNA sequencing have expanded the possibilities for genetically altering essential features. There have been several recently disclosed statistical genetic methods for discovering the genes impacting target qualities. One of these useful methods is the genome-wide association study (GWAS), which effectively identifies candidate genes for a variety of plant properties by examining the relationship between a molecular marker (such as SNP) and a target trait. Conventional QTL mapping with highly structured populations has major limitations. The limited number of recombination events results in poor resolution for quantitative traits. Only two alleles at any given locus can be studied simultaneously. Conventional mapping approach fails to work in perennial plants and vegetatively propagated crops. These limitations are sidestepped by association mapping or GWAS. The flexibility of GWAS comes from the fact that the individuals being examined need not be linked to one another, allowing for the use of all meiotic and recombination events to increase resolution. Phenotyping, genotyping, population structure analysis, kinship analysis, and marker-trait association analysis are the fundamental phases of GWAS. With the rapid development of sequencing technologies and computational methods, GWAS is becoming a potent tool for identifying the natural variations that underlie complex characteristics in crops. The use of high-throughput sequencing technologies along with genotyping approaches like genotyping-by-sequencing (GBS) and restriction site associated DNA (RAD) sequencing may be highly useful in fast-forward mapping approach like GWAS. Breeders may use GWAS to quickly unravel the genomes through QTL and association mapping by taking advantage of natural variances. The drawbacks of conventional linkage mapping can be successfully overcome with the use of high-resolution mapping and the inclusion of multiple alleles in GWAS.
Collapse
Affiliation(s)
- M N Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Shivaji Ajinath Lavale
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - A V Santhoshkumar
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751 003, India.
| | - Ankita Bhardwaj
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Umakanta Dash
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - K Shiran
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Shabir Hussain Wani
- Mountain Research Center for Field crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Quezada M, Giorello FM, Da Silva CC, Aguilar I, Balmelli G. Single-step genome-wide association study for susceptibility to Teratosphaeria nubilosa and precocity of vegetative phase change in Eucalyptus globulus. FRONTIERS IN PLANT SCIENCE 2023; 14:1124768. [PMID: 37465383 PMCID: PMC10350686 DOI: 10.3389/fpls.2023.1124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/24/2023] [Indexed: 07/20/2023]
Abstract
Introduction Mycosphaerella leaf disease (MLD) is one of the most prevalent foliar diseases of Eucalyptus globulus plantations around the world. Since resistance management strategies have not been effective in commercial plantations, breeding to develop more resistant genotypes is the most promising strategy. Available genomic information can be used to detect genomic regions associated with resistance to MLD, which could significantly speed up the process of genetic improvement. Methods We investigated the genetic basis of MLD resistance in a breeding population of E. globulus which was genotyped with the EUChip60K SNP array. Resistance to MLD was evaluated through resistance of the juvenile foliage, as defoliation and leaf spot severity, and through precocity of change to resistant adult foliage. Genome-wide association studies (GWAS) were carried out applying four Single-SNP models, a Genomic Best Linear Unbiased Prediction (GBLUP-GWAS) approach, and a Single-step genome-wide association study (ssGWAS). Results The Single-SNP (model K) and GBLUP-GWAS models detected 13 and 16 SNP-trait associations in chromosomes 2, 3 y 11; whereas the ssGWAS detected 66 SNP-trait associations in the same chromosomes, and additional significant SNP-trait associations in chromosomes 5 to 9 for the precocity of phase change (proportion of adult foliage). For this trait, the two main regions in chromosomes 3 and 11 were identified for the three approaches. The SNPs identified in these regions were positioned near the key miRNA genes, miR156.5 and miR157.4, which have a main role in the regulation of the timing of vegetative change, and also in the response to environmental stresses in plants. Discussion Our results demonstrated that ssGWAS was more powerful in detecting regions that affect resistance than conventional GWAS approaches. Additionally, the results suggest a polygenic genetic architecture for the heteroblastic transition in E. globulus and identified useful SNP markers for the development of marker-assisted selection strategies for resistance to MLD.
Collapse
Affiliation(s)
- Marianella Quezada
- Programa Nacional de Investigación en Producción de Leche, Estación Experimental “Wilson Ferreira Adulnate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Facundo Matias Giorello
- PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Cecilia Corina Da Silva
- PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Ignacio Aguilar
- Programa Nacional de Investigación en Producción de Leche, Estación Experimental “Wilson Ferreira Adulnate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Gustavo Balmelli
- Programa Nacional de Investigación en Producción Forestal, Estación Experimental del Norte, Instituto Nacional de Investigación Agropecuaria, Tacuarembó, Uruguay
| |
Collapse
|
5
|
Cappa EP, Chen C, Klutsch JG, Sebastian-Azcona J, Ratcliffe B, Wei X, Da Ros L, Ullah A, Liu Y, Benowicz A, Sadoway S, Mansfield SD, Erbilgin N, Thomas BR, El-Kassaby YA. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine. BMC Genomics 2022; 23:536. [PMID: 35870886 PMCID: PMC9308220 DOI: 10.1186/s12864-022-08747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. Results MT-GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic effects. Averaging across traits, PA from the studied ST-GP models did not differ significantly from each other, with generally a slight superiority of the RKHS method. MT-GP models showed significantly higher PA (and lower bias) than the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP. Conclusions The power of GWA and the accuracy of GP were improved when MT models were used in this lodgepole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine population to date. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08747-7.
Collapse
|
6
|
Younessi-Hamzekhanlu M, Gailing O. Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection. Int J Mol Sci 2022; 23:ijms232012315. [PMID: 36293169 PMCID: PMC9604372 DOI: 10.3390/ijms232012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The ecological and economic importance of forest trees is evident and their survival is necessary to provide the raw materials needed for wood and paper industries, to preserve the diversity of associated animal and plant species, to protect water and soil, and to regulate climate. Forest trees are threatened by anthropogenic factors and biotic and abiotic stresses. Various diseases, including those caused by fungal pathogens, are one of the main threats to forest trees that lead to their dieback. Genomics and transcriptomics studies using next-generation sequencing (NGS) methods can help reveal the architecture of resistance to various diseases and exploit natural genetic diversity to select elite genotypes with high resistance to diseases. In the last two decades, QTL mapping studies led to the identification of QTLs related to disease resistance traits and gene families and transcription factors involved in them, including NB-LRR, WRKY, bZIP and MYB. On the other hand, due to the limitation of recombination events in traditional QTL mapping in families derived from bi-parental crosses, genome-wide association studies (GWAS) that are based on linkage disequilibrium (LD) in unstructured populations overcame these limitations and were able to narrow down QTLs to single genes through genotyping of many individuals using high-throughput markers. Association and QTL mapping studies, by identifying markers closely linked to the target trait, are the prerequisite for marker-assisted selection (MAS) and reduce the breeding period in perennial forest trees. The genomic selection (GS) method uses the information on all markers across the whole genome, regardless of their significance for development of a predictive model for the performance of individuals in relation to a specific trait. GS studies also increase gain per unit of time and dramatically increase the speed of breeding programs. This review article is focused on the progress achieved in the field of dissecting forest tree disease resistance architecture through GWAS and QTL mapping studies. Finally, the merit of methods such as GS in accelerating forest tree breeding programs is also discussed.
Collapse
Affiliation(s)
- Mehdi Younessi-Hamzekhanlu
- Department of Forestry and Medicinal Plants, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, 29 Bahman Blvd., Tabriz P.O. Box 5166616471, Iran
- Correspondence: (M.Y.-H.); (O.G.)
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Correspondence: (M.Y.-H.); (O.G.)
| |
Collapse
|
7
|
Tan B, Ingvarsson PK. Integrating genome-wide association mapping of additive and dominance genetic effects to improve genomic prediction accuracy in Eucalyptus. THE PLANT GENOME 2022; 15:e20208. [PMID: 35441826 DOI: 10.1002/tpg2.20208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) is a powerful and widely used approach to decipher the genetic control of complex traits. Still, a significant challenge for dissecting quantitative traits in forest trees is statistical power. This study uses a population consisting of 1,123 samples derived from two successive generations of crosses between Eucalyptus grandis (W. Hill) and E. urophylla (S.T. Blake). All samples have been phenotyped for growth and wood property traits and genotyped using the EuChip60K chip, yielding 37,832 informative single nucleotide polymorphisms (SNPs). We use multi-locus GWAS models to assess additive and dominance effects to identify markers associated with growth and wood property traits in the eucalypt hybrids. Additive and dominance association models identified 78 and 82 significant SNPs across all traits, respectively, which captured between 39 and 86% of the genomic-based heritability. We also used SNPs identified from the GWAS and SNPs using less stringent significance thresholds to evaluate predictive abilities in a genomic selection framework. Genomic selection models based on the top 1% SNPs captured a substantially greater proportion of the genetic variance of traits compared with when we used all SNPs for model training. The prediction ability of estimated breeding values improved significantly for all traits when using either the top 1% SNPs or SNPs identified using a relaxed p value threshold (p < 10-3 ). This study also highlights the added value of incorporating dominance effects for identifying genomic regions controlling growth traits in trees. Moreover, integrating GWAS results into genomic selection method provides enhanced power relative to discrete associations for identifying genomic variation potentially valuable for forest tree breeding.
Collapse
Affiliation(s)
- Biyue Tan
- Umeå Plant Science Centre, Dep. of Ecology and Environmental Science, Umeå Univ., Umeå, SE-90187, Sweden
- Stora Enso AB, Nacka, SE-131 04, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Uppsala BioCenter, Swedish Univ. of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| |
Collapse
|
8
|
Genome Wide Association Study Identifies Candidate Genes Related to the Earlywood Tracheid Properties in Picea crassifolia Kom. FORESTS 2022. [DOI: 10.3390/f13020332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Picea crassifolia Kom. is one of the timber and ecological conifers in China and its wood tracheid traits directly affect wood formation and adaptability under harsh environment. Molecular studies on P. crassifolia remain inadequate because relatively few genes have been associated with these traits. To identify markers and candidate genes that can potentially be used for genetic improvement of wood tracheid traits, we examined 106 clones of P. crassifolia, and investigated phenotypic data for 14 wood tracheid traits before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome wide association study (GWAS). Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the studied traits. We developed 4,058,883 SLAF-tags and 12,275,765 SNP loci, and our analyses identified a total of 96 SNP loci that showed significant correlations with three earlywood tracheid traits using a mixed linear model (MLM). Next, candidate genes were screened in the 100 kb zone (50 kb upstream, 50 kb downstream) of each of the SNP loci, whereby 67 candidate genes were obtained in earlywood tracheid traits, including 34 genes of known function and 33 genes of unknown function. We provide the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in wood traits improvement and candidate genes for the development of earlywood tracheid in P. crassifolia.
Collapse
|
9
|
Zhu X, Weng Q, Bush D, Zhou C, Zhao H, Wang P, Li F. High-density genetic linkage mapping reveals low stability of QTLs across environments for economic traits in Eucalyptus. FRONTIERS IN PLANT SCIENCE 2022; 13:1099705. [PMID: 37082511 PMCID: PMC10112524 DOI: 10.3389/fpls.2022.1099705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 05/03/2023]
Abstract
Introduction Eucalyptus urophylla, E. tereticornis and their hybrids are the most important commercial forest tree species in South China where they are grown for pulpwood and solid wood production. Construction of a fine-scale genetic linkage map and detecting quantitative trait loci (QTL) for economically important traits linked to these end-uses will facilitate identification of the main candidate genes and elucidate the regulatory mechanisms. Method A high-density consensus map (a total of 2754 SNPs with 1359.18 cM) was constructed using genotyping by sequencing (GBS) on clonal progenies of E. urophylla × tereticornis hybrids. QTL mapping of growth and wood property traits were conducted in three common garden experiments, resulting in a total of 108 QTLs. A total of 1052 candidate genes were screened by the efficient combination of QTL mapping and transcriptome analysis. Results Only ten QTLs were found to be stable across two environments, and only one (qSG10Stable mapped on chromosome 10, and associated with lignin syringyl-to-guaiacyl ratio) was stable across all three environments. Compared to other QTLs, qSG10Stable explained a very high level of phenotypic variation (18.4-23.6%), perhaps suggesting that QTLs with strong effects may be more stably inherited across multiple environments. Screened candidate genes were associated with some transcription factor families, such as TALE, which play an important role in the secondary growth of plant cell walls and the regulation of wood formation. Discussion While QTLs such as qSG10Stable, found to be stable across three sites, appear to be comparatively uncommon, their identification is likely to be a key to practical QTL-based breeding. Further research involving clonally-replicated populations, deployed across multiple target planting sites, will be required to further elucidate QTL-by-environment interactions.
Collapse
Affiliation(s)
- Xianliang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qijie Weng
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - David Bush
- Commonwealth Scientific and Industrial Research Organisation (CRISO) Australian Tree Seed Centre, Canberra, ACT, Australia
| | - Changpin Zhou
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Haiwen Zhao
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Ping Wang
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Fagen Li
- Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- *Correspondence: Fagen Li,
| |
Collapse
|
10
|
Ghosh Dasgupta M, Abdul Bari MP, Shanmugavel S, Dharanishanthi V, Muthupandi M, Kumar N, Chauhan SS, Kalaivanan J, Mohan H, Krutovsky KV, Rajasugunasekar D. Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis × E. grandis. Genomics 2021; 113:4276-4292. [PMID: 34785351 DOI: 10.1016/j.ygeno.2021.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Globally, Eucalyptus plantations occupy 22 million ha area and is one of the preferred hardwood species due to their short rotation, rapid growth, adaptability and wood properties. In this study, we present results of GWAS in parents and 100 hybrids of Eucalyptus tereticornis × E. grandis using 762 genes presumably involved in wood formation. Comparative analysis between parents predicted 32,202 polymorphic SNPs with high average read depth of 269-562× per individual per nucleotide. Seventeen wood related traits were phenotyped across three diverse environments and GWAS was conducted using 13,610 SNPs. A total of 45 SNP-trait associations were predicted across two locations. Seven large effect markers were identified which explained more than 80% of phenotypic variation for fibre area. This study has provided an array of candidate genes which may govern fibre morphology in this genus and has predicted potential SNPs which can guide future breeding programs in tropical Eucalyptus.
Collapse
Affiliation(s)
| | | | | | | | - Muthusamy Muthupandi
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Naveen Kumar
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | - Shakti Singh Chauhan
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | | | - Haritha Mohan
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany; Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany; Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia; Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843-2138, USA
| | | |
Collapse
|
11
|
Ferik F, Ates D, Ercisli S, Erdogan A, Orhan E, Tanyolac MB. Genome-wide association links candidate genes to fruit firmness, fruit flesh color, flowering time, and soluble solid content in apricot (Prunus armeniaca L.). Mol Biol Rep 2021; 49:5283-5291. [PMID: 34741707 DOI: 10.1007/s11033-021-06856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Apricots originated from China, Central Asia and the Near East and arrived in Anatolia, and particularly in their second homeland of Malatya province in Turkey. Apricots are outstanding summer fruits, with their beautiful attractive color, delicious sweet taste, aroma and high vitamin and mineral content. METHODS AND RESULTS In the current study, a total of 259 apricots genotypes from different geographical origins in Turkey were used. Significant variations were detected in fruit firmness (FF), fruit flesh color (FFC), flowering time (FT), and soluble solid content (SSC). A total of 11,532 SNPs based on DArT were developed and used in the analyses of population structure and association mapping (AM). According to the STRUCTURE (v.2.2) analysis, the apricot genotypes were divided into three groups. The mixed linear model with Q and K matrixes were used to detect the associations between the SNPs and four traits. A total of 131 SNPs were associated with FF, FFC and SSC. No SNP marker was detected associated with FT. CONCLUSION The results demonstrated that AM had high potential of revealing the markers associated with economically important traits in apricot. The SNPs identified in the study can be used in future breeding programs for marker-assisted selection in apricot.
Collapse
Affiliation(s)
- Filiz Ferik
- Engineering Faculty, Department of Bioengineering, Ege University, Bornova, 35040, Izmir, Turkey
| | - Duygu Ates
- Engineering Faculty, Department of Bioengineering, Ege University, Bornova, 35040, Izmir, Turkey
| | - Sezai Ercisli
- Agriculture Faculty, Department of Horticulture, Ataturk University, Yakutiye, 25030, Erzurum, Turkey
| | - Abdullah Erdogan
- Institute for Apricot Research of Malatya, 44090, Malatya, Turkey
| | - Emine Orhan
- Agriculture Faculty, Department of Horticulture, Ataturk University, Yakutiye, 25030, Erzurum, Turkey
| | | |
Collapse
|
12
|
Paril JF, Balding DJ, Fournier-Level A. Optimizing sampling design and sequencing strategy for the genomic analysis of quantitative traits in natural populations. Mol Ecol Resour 2021; 22:137-152. [PMID: 34192415 DOI: 10.1111/1755-0998.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/02/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
Mapping the genes underlying ecologically relevant traits in natural populations is fundamental to develop a molecular understanding of species adaptation. Current sequencing technologies enable the characterization of a species' genetic diversity across the landscape or even over its whole range. The relevant capture of the genetic diversity across the landscape is critical for a successful genetic mapping of traits and there are no clear guidelines on how to achieve an optimal sampling and which sequencing strategy to implement. Here we determine, through simulation, the sampling scheme that maximizes the power to map the genetic basis of a complex trait in an outbreeding species across an idealized landscape and draw genomic predictions for the trait, comparing individual and pool sequencing strategies. Our results show that quantitative trait locus detection power and prediction accuracy are higher when more populations over the landscape are sampled and this is more cost-effectively done with pool sequencing than with individual sequencing. Additionally, we recommend sampling populations from areas of high genetic diversity. As progress in sequencing enables the integration of trait-based functional ecology into landscape genomics studies, these findings will guide study designs allowing direct measures of genetic effects in natural populations across the environment.
Collapse
Affiliation(s)
- Jefferson F Paril
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David J Balding
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandre Fournier-Level
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Haplotype- and SNP-Based GWAS for Growth and Wood Quality Traits in Eucalyptus cladocalyx Trees under Arid Conditions. PLANTS 2021; 10:plants10010148. [PMID: 33450896 PMCID: PMC7828368 DOI: 10.3390/plants10010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.
Collapse
|
14
|
Baison J, Zhou L, Forsberg N, Mörling T, Grahn T, Olsson L, Karlsson B, Wu HX, Mellerowicz EJ, Lundqvist SO, García-Gil MR. Genetic control of tracheid properties in Norway spruce wood. Sci Rep 2020; 10:18089. [PMID: 33093525 PMCID: PMC7581746 DOI: 10.1038/s41598-020-72586-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/03/2020] [Indexed: 01/20/2023] Open
Abstract
Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study employed an exome capture genotyping approach that generated 178 101 Single Nucleotide Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. We applied a least absolute shrinkage and selection operator (LASSO) based association mapping method using a functional multi-locus mapping approach, with a stability selection probability method as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The analysis has provided 30 significant associations, the majority of which show specific expression in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, their cell wall thickness and microfibril angle. Among the most promising candidates based on our results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar to wall-associated receptor kinases, which were both associated with cell wall thickness. The results demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant tracheid traits in Norway spruce.
Collapse
Affiliation(s)
- J Baison
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Linghua Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Nils Forsberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Tommy Mörling
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Thomas Grahn
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Lars Olsson
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Bo Karlsson
- Skogforsk, Ekebo 2250, 268 90, Svalov, Sweden
| | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Sven-Olof Lundqvist
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
- IIC, Rosenlundsgatan 48B, 11863, Stockholm, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden.
| |
Collapse
|
15
|
A Complete Transcriptional Landscape Analysis of Pinus elliottii Engelm. Using Third-Generation Sequencing and Comparative Analysis in the Pinus Phylogeny. FORESTS 2019. [DOI: 10.3390/f10110942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The planting of Pinus elliottii Engelm. has now reached close to three million ha in China. Molecular breeding as part of the improvement program for P. elliottii in southern China has been carried out in recent years. Third-generation sequencing (Pacbio sequencing technology, TGS) was used to obtain the exome of P. elliottii for molecular breeding. A total of 35.8 Gb clean reads were generated using TGS. After removing the redundant reads, we obtained 80,339 high-accuracy transcripts. Significantly, a total of 76,411 transcripts (95.1%) were blasted to public annotation databases. We predicted 65,062 intact coding sequences (CDSs), 8916 alternative splicing events, 1937 long non-coding RNAs, and 22,109 simple sequence repeats (SSRs) based on these obtained transcripts. Using the public databases and the data obtained above, 23 orthologous single-copy genes were identified to analyze the phylogenetic relationships for Pinus firstly including P. elliottii. Many positive selection genes involved in important biological processes and metabolism pathways were identified between P. elliottii and other pines. These positive selection genes could be candidate genes to be researched on the genetic basis of superior performance. Our study is the first to reveal the full-length and well-annotated transcripts of P. elliottii, which could provide reference for short transcriptome sequences in the research of genetics, phylogenetics, and genetic improvement for the non-reference genome species.
Collapse
|
16
|
Xia W, Luo T, Dou Y, Zhang W, Mason AS, Huang D, Huang X, Tang W, Wang J, Zhang C, Xiao Y. Identification and Validation of Candidate Genes Involved in Fatty Acid Content in Oil Palm by Genome-Wide Association Analysis. FRONTIERS IN PLANT SCIENCE 2019; 10:1263. [PMID: 31681369 PMCID: PMC6804545 DOI: 10.3389/fpls.2019.01263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/11/2019] [Indexed: 05/15/2023]
Abstract
Oil palm (Elaeis guineensis) is the highest yielding oil crop per unit area worldwide, but its oil is considered unhealthy for human consumption due to its high palmitic acid content (C16:0). In order to facilitate breeding for fatty acid content in oil palm, genome-wide association analysis (GWAS) was used to identify and validate single-nucleotide polymorphism (SNP) markers and underlying candidate genes associated with fatty acid content in a diversity panel of 200 oil palm individuals. A total of 1,261,501 SNP markers previously developed using SLAF-seq (specific locus amplified fragment sequencing) were used for GWAS. Based on this analysis, 62 SNP markers were significantly associated with fatty acid composition, and 223 candidate genes were identified in the flanking regions of these SNPs. We found one gene (acyl-ACP thioesterase B genes) that was involved in fatty acid biosynthesis and that was associated with high palmitic acid content in the mesocarp. Over-expression of this gene caused a significant increase in palmitic acid content. Our study provides key loci that can be used for breeding oil palm cultivars with low palmitic acid content.
Collapse
Affiliation(s)
- Wei Xia
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Tingting Luo
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yajing Dou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wei Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Dongyi Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiaolong Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wenqi Tang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jihua Wang
- Guangdong Key Laboratory for Crops Genetic Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong, China
| | - Chunyu Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, China
| |
Collapse
|
17
|
Ballesta P, Maldonado C, Pérez-Rodríguez P, Mora F. SNP and Haplotype-Based Genomic Selection of Quantitative Traits in Eucalyptus globulus. PLANTS 2019; 8:plants8090331. [PMID: 31492041 PMCID: PMC6783840 DOI: 10.3390/plants8090331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/02/2023]
Abstract
Eucalyptus globulus (Labill.) is one of the most important cultivated eucalypts in temperate and subtropical regions and has been successfully subjected to intensive breeding. In this study, Bayesian genomic models that include the effects of haplotype and single nucleotide polymorphisms (SNP) were assessed to predict quantitative traits related to wood quality and tree growth in a 6-year-old breeding population. To this end, the following markers were considered: (a) ~14 K SNP markers (SNP), (b) ~3 K haplotypes (HAP), and (c) haplotypes and SNPs that were not assigned to a haplotype (HAP-SNP). Predictive ability values (PA) were dependent on the genomic prediction models and markers. On average, Bayesian ridge regression (BRR) and Bayes C had the highest PA for the majority of traits. Notably, genomic models that included the haplotype effect (either HAP or HAP-SNP) significantly increased the PA of low-heritability traits. For instance, BRR based on HAP had the highest PA (0.58) for stem straightness. Consistently, the heritability estimates from genomic models were higher than the pedigree-based estimates for these traits. The results provide additional perspectives for the implementation of genomic selection in Eucalyptus breeding programs, which could be especially beneficial for improving traits with low heritability.
Collapse
Affiliation(s)
- Paulina Ballesta
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| | - Carlos Maldonado
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| | - Paulino Pérez-Rodríguez
- Colegio de Postgraduados, Statistics and Computer Sciences, Montecillos, Edo. de México 56230, Mexico.
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| |
Collapse
|
18
|
Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation. FORESTS 2019. [DOI: 10.3390/f10090728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To maximize utilization of our forest resources, detailed knowledge of wood property variation and the impacts this has on end-product performance is required at multiple scales (within and among trees, regionally). As many wood properties are difficult and time-consuming to measure our knowledge regarding their variation is often inadequate as is our understanding of their responses to genetic and silvicultural manipulation. The emergence of many non-destructive evaluation (NDE) methodologies offers the potential to greatly enhance our understanding of the forest resource; however, it is critical to recognize that any technique has its limitations and it is important to select the appropriate technique for a given application. In this review, we will discuss the following technologies for assessing wood properties both in the field: acoustics, Pilodyn, Resistograph and Rigidimeter and the lab: computer tomography (CT) scanning, DiscBot, near infrared (NIR) spectroscopy, radial sample acoustics and SilviScan. We will discuss these techniques, explore their utilization, and list applications that best suit each methodology. As an end goal, NDE technologies will help researchers worldwide characterize wood properties, develop accurate models for prediction, and utilize field equipment that can validate the predictions. The continued advancement of NDE technologies will also allow researchers to better understand the impact on wood properties on product performance.
Collapse
|
19
|
Kainer D, Padovan A, Degenhardt J, Krause S, Mondal P, Foley WJ, Külheim C. High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. THE NEW PHYTOLOGIST 2019; 223:1489-1504. [PMID: 31066055 DOI: 10.1111/nph.15887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
Terpenoid-based essential oils are economically important commodities, yet beyond their biosynthetic pathways, little is known about the genetic architecture of terpene oil yield from plants. Transport, storage, evaporative loss, transcriptional regulation and precursor competition may be important contributors to this complex trait. Here, we associate 2.39 million single nucleotide polymorphisms derived from shallow whole-genome sequencing of 468 Eucalyptus polybractea individuals with 12 traits related to the overall terpene yield, eight direct measures of terpene concentration and four biomass-related traits. Our results show that in addition to terpene biosynthesis, development of secretory cavities, where terpenes are both synthesized and stored, and transport of terpenes were important components of terpene yield. For sesquiterpene concentrations, the availability of precursors in the cytosol was important. Candidate terpene synthase genes for the production of 1,8-cineole and α-pinene, and β-pinene (which comprised > 80% of the total terpenes) were functionally characterized as a 1,8-cineole synthase and a β/α-pinene synthase. Our results provide novel insights into the genomic architecture of terpene yield and we provide candidate genes for breeding or engineering of crops for biofuels or the production of industrially valuable terpenes.
Collapse
Affiliation(s)
- David Kainer
- Center for BioEnergy Innovation, Bioscience Division, Oak Ridge National Laboratories, Oak Ridge, TN, 37831, USA
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Amanda Padovan
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- CSIRO, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - Joerg Degenhardt
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Sandra Krause
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Prodyut Mondal
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Carsten Külheim
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
20
|
Cappa EP, de Lima BM, da Silva-Junior OB, Garcia CC, Mansfield SD, Grattapaglia D. Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:9-15. [PMID: 31084883 DOI: 10.1016/j.plantsci.2019.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/14/2019] [Accepted: 03/22/2019] [Indexed: 05/10/2023]
Abstract
Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach (ssGBLUP) allows genomic prediction to take into account both genotyped and non-genotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and bias, of including phenotypic observation from non-genotyped trees in a standard tree GBLUP evaluation. We compared the efficiency of the conventional pedigree-based (ABLUP), GBLUP and ssGBLUP approaches to evaluate eight growth and wood quality traits in a Eucalyptus hybrid population, genotyped with 33,398 single nucleotide polymorphisms (SNPs) using the EucHIP60k. Theoretical accuracies, predictive ability and bias were calculated by ten-fold cross validation on all traits. The use of additional phenotypic information from non-genotyped trees by means of ssGBLUP provided higher predictive ability (from 37% to 75%) and lower prediction bias (from 21% to 73%) for the genetic component of non-phenotyped but genotyped trees when compared to GBLUP. The increase (decrease) in the prediction accuracy (bias) became stronger as trait heritability decreased. We concluded that ssGBLUP is a promising breeding tool to improve accuracies and bias over classical GBLUP for genomic evaluation in Eucalyptus breeding practice.
Collapse
Affiliation(s)
- Eduardo P Cappa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, De Los Reseros y Dr. Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | | | | | - Carla C Garcia
- International Paper of Brazil, Rodovia SP 340 KM 171, 13840-970, Mogi Guaçu, SP, Brazil
| | - Shawn D Mansfield
- University of British Columbia, Department of Wood Science, Faculty of Forestry, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology, EPQB Final W5 Norte, 70770-917, Brasilia, DF, Brazil; Genomic Sciences Program, Universidade Católica de Brasília, SGAN 916, Brasilia, DF, Brazil
| |
Collapse
|
21
|
Bayesian Mapping Reveals Large-Effect Pleiotropic QTLs for Wood Density and Slenderness Index in 17-Year-Old Trees of Eucalyptus cladocalyx. FORESTS 2019. [DOI: 10.3390/f10030241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eucalyptus cladocalyx F. Muell is a tree species suitable for low-rainfall sites, even with annual average precipitation as low as 150 mm per year. Its wood is classified as highly durable and its permanence in soil is longer than 25 years, so it can be used for multiple applications. Given that about 41% of the world’s land area is classified as drylands, added to the impact of climate change on the availability of water resources, it becomes necessary to use plant species that can tolerate environments with low water availability. In this study, a Bayesian analysis of genetic parameters showed that wood density (WD) was moderately heritable, with a posterior mean of h2 = 0.29 and a Bayesian credibility region (90%) of 0.06–0.74, while the slenderness coefficient (SC) was highly heritable, with a posterior mean of h2 = 0.48 and a Bayesian credibility region (90%) of 0.11–0.87. Through Bayesian regression analysis, we identified four and three significant associations for WD and SC, respectively. Another important finding of the bi-trait Bayesian analysis was the detection of three large-effect pleiotropic QTLs located on LG4 at 52 cM, on LG2 at 125 cM, and on LG6 at 81 cM. Bayesian bi-trait regression and the posterior probability of association indicated that three QTLs presented strong evidence of association with WD and SC. This provides convincing evidence that the loci qtlWD130/qtlSC130, qtlWD195/qtlSC195, and qtlWD196/qtlSC196 have a significant pleiotropic effect. The association mapping based on multivariate Bayesian regression was useful for the identification of genomic regions with pleiotropic effects. These loci can be used in molecular marker-assisted breeding to select trees with better wood density.
Collapse
|
22
|
Font i Forcada C, Guajardo V, Chin-Wo SR, Moreno MÁ. Association Mapping Analysis for Fruit Quality Traits in Prunus persica Using SNP Markers. FRONTIERS IN PLANT SCIENCE 2019; 9:2005. [PMID: 30705685 PMCID: PMC6344403 DOI: 10.3389/fpls.2018.02005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/28/2018] [Indexed: 05/24/2023]
Abstract
The identification of genes involved in variation of peach fruit quality would assist breeders to create new cultivars with improved fruit quality. Peach is a genetic and genomic model within the Rosaceae. A large quantity of useful data suitable for fine mapping using Single Nucleotide Polymorphisms (SNPs) from the peach genome sequence was used in this study. A set of 94 individuals from a peach germplasm collection was phenotyped and genotyped, including local Spanish and modern cultivars maintained at the Experimental Station of Aula Dei, Spain. Phenotypic evaluation based on agronomical, pomological and fruit quality traits was performed at least 3 years. A set of 4,558 out of a total of 8,144 SNPs markers developed by the Illumina Infinium BeadArray (v1.0) technology platform, covering the peach genome, were analyzed for population structure analysis and genome-wide association studies (GWAS). Population structure analysis identified two subpopulations, with admixture within them. While one subpopulation contains only modern cultivars, the other one is formed by local Spanish and several modern cultivars from international breeding programs. To test the marker trait associations between markers and phenotypic traits, four models comprising both general linear model (GLM) and mixed linear model (MLM) were selected. The MLM approach using co-ancestry values from population structure and kinship estimates (K model) identified a maximum of 347 significant associations between markers and traits. The associations found appeared to map within the interval where many candidate genes involved in different pathways are predicted in the peach genome. These results represent a promising situation for GWAS in the identification of SNP variants associated to fruit quality traits, potentially applicable in peach breeding programs.
Collapse
|
23
|
Müller BSF, de Almeida Filho JE, Lima BM, Garcia CC, Missiaggia A, Aguiar AM, Takahashi E, Kirst M, Gezan SA, Silva-Junior OB, Neves LG, Grattapaglia D. Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. THE NEW PHYTOLOGIST 2019; 221:818-833. [PMID: 30252143 DOI: 10.1111/nph.15449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform. While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associations at high-stringency in each population, gene-based Joint-GWAS revealed nine genes significantly associated with tree height. Associations detected using single-SNP GWAS, RHM and Joint-GWAS set-based models explained on average 3-20% of the phenotypic variance. Whole-genome regression, conversely, captured 64-89% of the pedigree-based heritability in all populations. Several associations independently detected for the same SNPs in different populations provided unprecedented GWAS validation results in forest trees. Rare and common associations were discovered in eight genes involved in cell wall biosynthesis and lignification. With the increasing adoption of genomic prediction of complex phenotypes using shared SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide increasing power to pinpoint discrete associations potentially useful toward tree breeding and molecular applications.
Collapse
Affiliation(s)
- Bárbara S F Müller
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
| | - Janeo E de Almeida Filho
- Plant Breeding Laboratory, State University of North Fluminense "Darcy Ribeiro", Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Bruno M Lima
- FIBRIA S.A. Technology Center, Jacareí, SP, 12340-010, Brazil
| | - Carla C Garcia
- International Paper of Brazil, Rodovia SP 340 KM 171, Mogi Guaçu, SP, 13840-970, Brazil
| | | | | | - Elizabete Takahashi
- Celulose Nipo-Brasileira (CENIBRA) S.A., Belo Oriente, MG, 35196-000, Brazil
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Salvador A Gezan
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Orzenil B Silva-Junior
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| | | | - Dario Grattapaglia
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| |
Collapse
|
24
|
Pina-Martins F, Baptista J, Pappas G, Paulo OS. New insights into adaptation and population structure of cork oak using genotyping by sequencing. GLOBAL CHANGE BIOLOGY 2019; 25:337-350. [PMID: 30358018 DOI: 10.1111/gcb.14497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 05/25/2023]
Abstract
Species respond to global climatic changes in a local context. Understanding this process, including its speed and intensity, is paramount due to the pace at which such changes are currently occurring. Tree species are particularly interesting to study in this regard due to their long generation times, sedentarism, and ecological and economic importance. Quercus suber L. is an evergreen forest tree species of the Fagaceae family with an essentially Western Mediterranean distribution. Despite frequent assessments of the species' evolutionary history, large-scale genetic studies have mostly relied on plastidial markers, whereas nuclear markers have been used on studies with locally focused sampling strategies. In this work, "Genotyping by sequencing" is used to derive 1,996 single nucleotide polymorphism markers to assess the species' evolutionary history from a nuclear DNA perspective, gain insights into how local adaptation is shaping the species' genetic background, and to forecast how Q. suber may respond to global climatic changes from a genetic perspective. Results reveal (a) an essentially unstructured species, where (b) a balance between gene flow and local adaptation keeps the species' gene pool somewhat homogeneous across its distribution, but still allowing (c) variation clines for the individuals to cope with local conditions. "Risk of Non-Adaptedness" (RONA) analyses suggest that for the considered variables and most sampled locations, (d) the cork oak should not require large shifts in allele frequencies to survive the predicted climatic changes. Future directions include integrating these results with ecological niche modeling perspectives, improving the RONA methodology, and expanding its use to other species. With the implementation presented in this work, the RONA can now also be easily assessed for other organisms.
Collapse
Affiliation(s)
- Francisco Pina-Martins
- Computational Biology and Population Genomics Group, Departamento de Biologia Animal, Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisboa, Portugal
| | - João Baptista
- Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal
| | - Georgios Pappas
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, Departamento de Biologia Animal, Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Du Q, Lu W, Quan M, Xiao L, Song F, Li P, Zhou D, Xie J, Wang L, Zhang D. Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. FRONTIERS IN PLANT SCIENCE 2018; 9:1912. [PMID: 30622554 PMCID: PMC6309013 DOI: 10.3389/fpls.2018.01912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Wood formation is an excellent model system for quantitative trait analysis due to the strong associations between the transcriptional and metabolic traits that contribute to this complex process. Investigating the genetic architecture and regulatory mechanisms underlying wood formation will enhance our understanding of the quantitative genetics and genomics of complex phenotypic variation. Genome-wide association studies (GWASs) represent an ideal statistical strategy for dissecting the genetic basis of complex quantitative traits. However, elucidating the molecular mechanisms underlying many favorable loci that contribute to wood formation and optimizing GWAS design remain challenging in this omics era. In this review, we summarize the recent progress in GWAS-based functional genomics of wood property traits in major timber species such as Eucalyptus, Populus, and various coniferous species. We discuss several appropriate experimental designs for extensive GWAS in a given undomesticated tree population, such as omics-wide association studies and high-throughput phenotyping technologies. We also explain why more attention should be paid to rare allelic and major structural variation. Finally, we explore the potential use of GWAS for the molecular breeding of trees. Such studies will help provide an integrated understanding of complex quantitative traits and should enable the molecular design of new cultivars.
Collapse
Affiliation(s)
- Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Genomic Prediction of Growth and Stem Quality Traits in Eucalyptus globulus Labill. at Its Southernmost Distribution Limit in Chile. FORESTS 2018. [DOI: 10.3390/f9120779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was undertaken to examine the ability of different genomic selection (GS) models to predict growth traits (diameter at breast height, tree height and wood volume), stem straightness and branching quality of Eucalyptus globulus Labill. trees using a genome-wide Single Nucleotide Polymorphism (SNP) chip (60 K), in one of the southernmost progeny trials of the species, close to its southern distribution limit in Chile. The GS methods examined were Ridge Regression-BLUP (RRBLUP), Bayes-A, Bayes-B, Bayesian least absolute shrinkage and selection operator (BLASSO), principal component regression (PCR), supervised PCR and a variant of the RRBLUP method that involves the previous selection of predictor variables (RRBLUP-B). RRBLUP-B and supervised PCR models presented the greatest predictive ability (PA), followed by the PCR method, for most of the traits studied. The highest PA was obtained for the branching quality (~0.7). For the growth traits, the maximum values of PA varied from 0.43 to 0.54, while for stem straightness, the maximum value of PA reached 0.62 (supervised PCR). The study population presented a more extended linkage disequilibrium (LD) than other populations of E. globulus previously studied. The genome-wide LD decayed rapidly within 0.76 Mbp (threshold value of r2 = 0.1). The average LD on all chromosomes was r2 = 0.09. In addition, the 0.15% of total pairs of linked SNPs were in a complete LD (r2 = 1), and the 3% had an r2 value >0.5. Genomic prediction, which is based on the reduction in dimensionality and variable selection may be a promising method, considering the early growth of the trees and the low-to-moderate values of heritability found in the traits evaluated. These findings provide new understanding of how develop novel breeding strategies for tree improvement of E. globulus at its southernmost range limit in Chile, which could represent new opportunities for forest planting that can benefit the local economy.
Collapse
|
27
|
Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA. Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding. FRONTIERS IN PLANT SCIENCE 2018; 9:1693. [PMID: 30524463 PMCID: PMC6262028 DOI: 10.3389/fpls.2018.01693] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/31/2018] [Indexed: 05/18/2023]
Abstract
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Collapse
Affiliation(s)
- Dario Grattapaglia
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Programa de Ciências Genômicas e BiotecnologiaUniversidade Católica de Brasília, Brasília, Brazil
- Departamento de Biologia CelularUniversidade de Brasília, Brasília, Brazil
- Department of Forestry and Environmental Resources, North Carolina State UniversityRaleigh, NC, United States
| | - Orzenil B. Silva-Junior
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Programa de Ciências Genômicas e BiotecnologiaUniversidade Católica de Brasília, Brasília, Brazil
| | | | - Eduardo P. Cappa
- Centro de Investigación de Recursos Naturales, Instituto de Recursos BiológicosINTA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Bárbara S. F. Müller
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Departamento de Biologia CelularUniversidade de Brasília, Brasília, Brazil
| | - Biyue Tan
- Biomaterials DivisionStora Enso AB, Stockholm, Sweden
| | - Fikret Isik
- Department of Forestry and Environmental Resources, North Carolina State UniversityRaleigh, NC, United States
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British ColumbiaVancouver, BC, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
28
|
N’Diaye A, Haile JK, Nilsen KT, Walkowiak S, Ruan Y, Singh AK, Clarke FR, Clarke JM, Pozniak CJ. Haplotype Loci Under Selection in Canadian Durum Wheat Germplasm Over 60 Years of Breeding: Association With Grain Yield, Quality Traits, Protein Loss, and Plant Height. FRONTIERS IN PLANT SCIENCE 2018; 9:1589. [PMID: 30455711 PMCID: PMC6230583 DOI: 10.3389/fpls.2018.01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 05/21/2023]
Abstract
Durum wheat was introduced in the southern prairies of western Canada in the late nineteenth century. Breeding efforts have mainly focused on improving quality traits to meet the pasta industry demands. For this study, 192 durum wheat lines were genotyped using the Illumina 90K Infinium iSelect assay, and resulted in a total of 14,324 polymorphic SNPs. Genetic diversity changed over time, declining during the first 20 years of breeding in Canada, then increased in the late 1980s and early 1990s. We scanned the genome for signatures of selection, using the total variance Fst-based outlier detection method (Lositan), the hierarchical island model (Arlequin) and the Bayesian genome scan method (BayeScan). A total of 407 outliers were identified and clustered into 84 LD-based haplotype loci, spanning all 14 chromosomes of the durum wheat genome. The association analysis detected 54 haplotype loci, of which 39% contained markers with a complete reversal of allelic state. This tendency to fixation of favorable alleles corroborates the success of the Canadian durum wheat breeding programs over time. Twenty-one haplotype loci were associated with multiple traits. In particular, hap_4B_1 explained 20.6, 17.9 and 16.6% of the phenotypic variance of pigment loss, pasta b∗ and dough extensibility, respectively. The locus hap_2B_9 explained 15.9 and 17.8% of the variation of protein content and protein loss, respectively. All these pleiotropic haplotype loci offer breeders the unique opportunity for further improving multiple traits, facilitating marker-assisted selection in durum wheat, and could help in identifying genes as functional annotations of the wheat genome become available.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirby T. Nilsen
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sean Walkowiak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuefeng Ruan
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, Canada
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Fran R. Clarke
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, Canada
| | - John M. Clarke
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
29
|
Arriagada O, do Amaral Junior AT, Mora F. Thirteen years under arid conditions: exploring marker-trait associations in Eucalyptus cladocalyx for complex traits related to flowering, stem form and growth. BREEDING SCIENCE 2018; 68:367-374. [PMID: 30100804 PMCID: PMC6081299 DOI: 10.1270/jsbbs.17131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
We present an association analysis for seven key traits related to flowering, stem form and growth in Eucalyptus cladocalyx, a tree species suitable for low rainfall sites, using a long-term progeny trial with 49 open-pollinated maternal families in the southern Atacama Desert, Chile. The progeny trial was carried out in an arid environment with a mean annual rainfall of 152 mm. Simple sequence repeats (SSR) from a full consensus map of Eucalyptus were used for genotyping 245 individual trees. Twenty-three significant marker-trait associations were identified, explaining between 5.9 and 23.7% of the phenotypic variance. The marker EMBRA101 located on LG10 at 56.5 cM was concomitantly associated with diameter at breast height and tree height. Nine SSR were significantly associated with stem forking and stem straightness, explaining between 5.9 and 14.8% of the phenotypic variation. To our knowledge, this is the first study reporting a SSR-based association mapping analysis for stem form traits in Eucalyptus. These results provide novel and valuable information for understanding the genetic base of key traits in E. cladocalyx for breeding purposes under arid conditions.
Collapse
Affiliation(s)
- Osvin Arriagada
- Institute of Biological Sciences, University of Talca,
2 Norte 685, 3460000 Talca,
Chile
| | - Antonio Teixeira do Amaral Junior
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro,
Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes,
Brazil
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca,
2 Norte 685, 3460000 Talca,
Chile
| |
Collapse
|
30
|
Contreras-Soto RI, Mora F, Lazzari F, de Oliveira MAR, Scapim CA, Schuster I. Genome-wide association mapping for flowering and maturity in tropical soybean: implications for breeding strategies. BREEDING SCIENCE 2017; 67:435-449. [PMID: 29398937 PMCID: PMC5790042 DOI: 10.1270/jsbbs.17024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Knowledge of the genetic architecture of flowering and maturity is needed to develop effective breeding strategies in tropical soybean. The aim of this study was to identify haplotypes across multiple environments that contribute to flowering time and maturity, with the purpose of selecting desired alleles, but maintaining a minimal impact on yield-related traits. For this purpose, a genome-wide association study (GWAS) was undertaken to identify genomic regions that control days to flowering (DTF) and maturity (DTM) using a soybean association mapping panel genotyped for single nucleotide polymorphism (SNP) markers. Complementarily, yield-related traits were also assessed to discuss the implications for breeding strategies. To detect either stable or specific associations, the soybean cultivars (N = 141) were field-evaluated across eight tropical environments of Brazil. Seventy-two and forty associations were significant at the genome-wide level relating respectively to DTM and DTF, in two or more environments. Haplotype-based GWAS identified three haplotypes (Gm12_Hap12; Gm19_Hap42 and Gm20_Hap32) significantly co-associated with DTF, DTM and yield-related traits in single and multiple environments. These results indicate that these genomic regions may contain genes that have pleiotropic effects on time to flowering, maturity and yield-related traits, which are tightly linked with multiple other genes with high rates of linkage disequilibrium.
Collapse
Affiliation(s)
- Rodrigo Iván Contreras-Soto
- Departamento de Agronomia, Universidade Estadual de Maringá,
Av. Colombo, 5790, Maringá PR, 87020-900,
Brazil
- Instituto de Ciencias Agronómicas, Universidad de O’Higgins,
Av. Libertador Bernardo O’Higgins 611, Rancagua, 2820000,
Chile
- Centro de Estudios Avanzados en Fruticultura,
Camino a Las Parcelas 882 Km 105, Ruta 5 Sur, Rengo, 2940000,
Chile
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca,
Talca, 3460000,
Chile
| | - Fabiane Lazzari
- Dow Agrosciences,
Rod. Anhanguera S/N Km 330, Cravinhos SP, 14140-000,
Brazil
| | | | - Carlos Alberto Scapim
- Departamento de Agronomia, Universidade Estadual de Maringá,
Av. Colombo, 5790, Maringá PR, 87020-900,
Brazil
| | - Ivan Schuster
- Dow Agrosciences,
Rod. Anhanguera S/N Km 330, Cravinhos SP, 14140-000,
Brazil
| |
Collapse
|
31
|
Harrisson KA, Amish SJ, Pavlova A, Narum SR, Telonis‐Scott M, Rourke ML, Lyon J, Tonkin Z, Gilligan DM, Ingram BA, Lintermans M, Gan HM, Austin CM, Luikart G, Sunnucks P. Signatures of polygenic adaptation associated with climate across the range of a threatened fish species with high genetic connectivity. Mol Ecol 2017; 26:6253-6269. [DOI: 10.1111/mec.14368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Katherine A. Harrisson
- School of Biological Sciences Monash University Clayton Vic. Australia
- Department of Ecology Environment and Evolution School of Life Sciences La Trobe University Bundoora Vic. Australia
- Arthur Rylah Institute for Environmental Research Heidelberg Vic. Australia
| | - Stephen J. Amish
- Conservation Genomics Group Division of Biological Sciences University of Montana Missoula MT USA
- Flathead Lake Biological Station University of Montana Polson MT USA
| | - Alexandra Pavlova
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish Commission Hagerman Fish Culture Experiment Station Hagerman IDUSA
| | | | - Meaghan L. Rourke
- Department of Primary Industries DPI Fisheries Narrandera NSW Australia
| | - Jarod Lyon
- Arthur Rylah Institute for Environmental Research Heidelberg Vic. Australia
| | - Zeb Tonkin
- Arthur Rylah Institute for Environmental Research Heidelberg Vic. Australia
| | - Dean M. Gilligan
- Department of Primary Industries DPI Fisheries, Batemans Bay Fisheries Office Batemans Bay NSW Australia
| | | | - Mark Lintermans
- Institute for Applied Ecology University of Canberra Canberra ACT Australia
| | - Han Ming Gan
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Vic. Australia
- School of Science Monash University Malaysia Petaling Jaya Selangor Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform Monash University Malaysia Petaling Jaya Selangor Malaysia
| | - Christopher M. Austin
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Vic. Australia
- School of Science Monash University Malaysia Petaling Jaya Selangor Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform Monash University Malaysia Petaling Jaya Selangor Malaysia
| | - Gordon Luikart
- Conservation Genomics Group Division of Biological Sciences University of Montana Missoula MT USA
- Flathead Lake Biological Station University of Montana Polson MT USA
| | - Paul Sunnucks
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
32
|
Wei L, Jian H, Lu K, Yin N, Wang J, Duan X, Li W, Liu L, Xu X, Wang R, Paterson AH, Li J. Genetic and transcriptomic analyses of lignin- and lodging-related traits in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1961-1973. [PMID: 28634809 DOI: 10.1007/s00122-017-2937-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/15/2017] [Indexed: 05/27/2023]
Abstract
Candidate genes associated with lignin and lodging traits were identified by combining phenotypic, genotypic, and gene expression data in B. napus. Brassica napus is one of the world's most important oilseed crops, but its yield can be dramatically reduced by lodging, bending, and falling of its vertical stems. Lignin has been shown to contribute to stem mechanical strength. In this study, we found that the syringyl/guaiacyl (S/G) monolignol ratio exhibits a significant negative correlation with disease and lodging resistance. A total of 92 and 50 SNP and SSR loci, respectively, were found to be significantly associated with five traits, breaking force, breaking strength, lodging coefficient, acid detergent lignin content, and the S/G monolignol ratio using GWAS. To identify novel genes involved in lignin biosynthesis, transcriptome sequencing of high- (H) and low (L)-ADL content accessions was performed. The up-regulated genes were mainly involved in glycoside catabolic processes (especially glucosinolate catabolism) and cell wall biogenesis, while down-regulated genes were involved in glucosinolate biosynthesis, indicating that crosstalk exists between glucosinolate metabolic processes and lignin biosynthesis. Integrating this differential expression with the GWAS analysis, we identified four candidate genes regulating lignin, including glycosyl hydrolase (BnaA01g00480D), CYT1 (BnaA04g22820D), and two encoding transcription factors, SHINE1 (ERF family) and DAR6 (LIM family). This study provides insight into the genetic control of lodging and lignin in B. napus.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Plant Genome Mapping Laboratory, University of Georgia, Athens, 30605, GA, USA
| | - Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jia Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiujian Duan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Wei Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, 30605, GA, USA.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
33
|
Müller BSF, Neves LG, de Almeida Filho JE, Resende MFR, Muñoz PR, Dos Santos PET, Filho EP, Kirst M, Grattapaglia D. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics 2017; 18:524. [PMID: 28693539 PMCID: PMC5504793 DOI: 10.1186/s12864-017-3920-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/03/2017] [Indexed: 02/05/2023] Open
Abstract
Background The advent of high-throughput genotyping technologies coupled to genomic prediction methods established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the development of germplasm adapted to environmental stresses. Results Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the infinitesimal model. Genomic prediction models using ~5000–10,000 SNPs provided predictive abilities equivalent to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD) was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita, illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in this study. Conclusions This study provides further experimental data supporting positive prospects of using genome-wide data to capture large proportions of trait heritability and predict growth traits in trees with accuracies equal or better than those attainable by phenotypic selection. Additionally, our results document the superiority of the whole-genome regression approach in accounting for large proportions of the heritability of complex traits such as growth in contrast to the limited value of the local GWAS approach toward breeding applications in forest trees. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3920-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bárbara S F Müller
- Cell Biology Department, Molecular Biology Program, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.,EMBRAPA Genetic Resources and Biotechnology, Estação Parque Biológico, Brasília, DF, 70770-910, Brazil.,Forest Genomics Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | | | - Janeo E de Almeida Filho
- Forest Genomics Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | | | - Patricio R Muñoz
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | | | | | - Matias Kirst
- Forest Genomics Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Dario Grattapaglia
- Cell Biology Department, Molecular Biology Program, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil. .,EMBRAPA Genetic Resources and Biotechnology, Estação Parque Biológico, Brasília, DF, 70770-910, Brazil.
| |
Collapse
|
34
|
Contreras-Soto RI, Mora F, de Oliveira MAR, Higashi W, Scapim CA, Schuster I. A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis. PLoS One 2017; 12:e0171105. [PMID: 28152092 PMCID: PMC5289539 DOI: 10.1371/journal.pone.0171105] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/15/2017] [Indexed: 01/06/2023] Open
Abstract
Mapping quantitative trait loci through the use of linkage disequilibrium (LD) in populations of unrelated individuals provides a valuable approach for dissecting the genetic basis of complex traits in soybean (Glycine max). The haplotype-based genome-wide association study (GWAS) has now been proposed as a complementary approach to intensify benefits from LD, which enable to assess the genetic determinants of agronomic traits. In this study a GWAS was undertaken to identify genomic regions that control 100-seed weight (SW), plant height (PH) and seed yield (SY) in a soybean association mapping panel using single nucleotide polymorphism (SNP) markers and haplotype information. The soybean cultivars (N = 169) were field-evaluated across four locations of southern Brazil. The genome-wide haplotype association analysis (941 haplotypes) identified eleven, seventeen and fifty-nine SNP-based haplotypes significantly associated with SY, SW and PH, respectively. Although most marker-trait associations were environment and trait specific, stable haplotype associations were identified for SY and SW across environments (i.e., haplotypes Gm12_Hap12). The haplotype block 42 on Chr19 (Gm19_Hap42) was confirmed to be associated with PH in two environments. These findings enable us to refine the breeding strategy for tropical soybean, which confirm that haplotype-based GWAS can provide new insights on the genetic determinants that are not captured by the single-marker approach.
Collapse
Affiliation(s)
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca, Casilla, Talca, Chile
| | | | | | - Carlos Alberto Scapim
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, PR, Brasil
| | - Ivan Schuster
- Dow Agrosciences, Rod. Anhanguera, Cravinhos, SP, Brazil
| |
Collapse
|
35
|
Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D. Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. THE NEW PHYTOLOGIST 2017; 213:1287-1300. [PMID: 28079935 DOI: 10.1111/nph.14266] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/08/2016] [Indexed: 05/18/2023]
Abstract
Although genome-wide association studies (GWAS) have provided valuable insights into the decoding of the relationships between sequence variation and complex phenotypes, they have explained little heritability. Regional heritability mapping (RHM) provides heritability estimates for genomic segments containing both common and rare allelic effects that individually contribute too little variance to be detected by GWAS. We carried out GWAS and RHM for seven growth, wood and disease resistance traits in a breeding population of 768 Eucalyptus hybrid trees using EuCHIP60K. Total genomic heritabilities accounted for large proportions (64-89%) of pedigree-based trait heritabilities, providing additional evidence that complex traits in eucalypts are controlled by many sequence variants across the frequency spectrum, each with small contributions to the phenotypic variance. RHM detected 26 quantitative trait loci (QTLs) encompassing 2191 single nucleotide polymorphisms (SNPs), whereas GWAS detected 13 single SNP-trait associations. RHM and GWAS QTLs individually explained 5-15% and 4-6% of the genomic heritability, respectively. RHM was superior to GWAS in capturing larger proportions of genomic heritability. Equated to previously mapped QTLs, our results highlighted genomic regions for further examination towards gene discovery. RHM-QTLs bearing a combination of common and rare variants could be useful enhancements to incorporate prior knowledge of the underlying genetic architecture in genomic prediction models.
Collapse
Affiliation(s)
| | - Marcos Deon Vilela Resende
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- EMBRAPA Forestry Research, Colombo, PR, 83411-000, Brazil
| | - Fabyano Fonseca Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | - Orzenil Bonfim Silva-Junior
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade Católica de Brasília - SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade Católica de Brasília - SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil
| |
Collapse
|
36
|
N’Diaye A, Haile JK, Cory AT, Clarke FR, Clarke JM, Knox RE, Pozniak CJ. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map. PLoS One 2017; 12:e0170941. [PMID: 28135299 PMCID: PMC5279799 DOI: 10.1371/journal.pone.0170941] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aron T. Cory
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fran R. Clarke
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - John M. Clarke
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ron E. Knox
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
37
|
Bartholomé J, Bink MCAM, van Heerwaarden J, Chancerel E, Boury C, Lesur I, Isik F, Bouffier L, Plomion C. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness. PLoS One 2016; 11:e0165323. [PMID: 27806077 PMCID: PMC5091878 DOI: 10.1371/journal.pone.0165323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/10/2016] [Indexed: 01/26/2023] Open
Abstract
Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.
Collapse
Affiliation(s)
| | - Marco CAM Bink
- Biometris, Wageningen University and Research Centre, NL-6700 AC, Wageningen, Netherlands
| | - Joost van Heerwaarden
- Biometris, Wageningen University and Research Centre, NL-6700 AC, Wageningen, Netherlands
| | | | | | - Isabelle Lesur
- BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France
- HelixVenture, Mérignac, France
| | - Fikret Isik
- North Carolina State University, Department of Forestry and Environmental Resources, Raleigh, NC, United States of America
| | | | | |
Collapse
|
38
|
Genome-wide association study identifies three key loci for high mesocarp oil content in perennial crop oil palm. Sci Rep 2016; 6:19075. [PMID: 26743827 PMCID: PMC4705476 DOI: 10.1038/srep19075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/02/2015] [Indexed: 11/25/2022] Open
Abstract
GWAS in out-crossing perennial crops is typically limited by insufficient marker density to account for population diversity and effects of population structure resulting in high false positive rates. The perennial crop oil palm is the most productive oil crop. We performed GWAS for oil-to-dry-mesocarp content (O/DM) on 2,045 genotyped tenera palms using 200K SNPs that were selected based on the short-range linkage disequilibrium distance, which is inherent with long breeding cycles and heterogeneous breeding populations. Eighty loci were significantly associated with O/DM (p ≤ 10−4) and three key signals were found. We then evaluated the progeny of a Deli x AVROS breeding trial and a 4% higher O/DM was observed amongst those having the beneficial genotypes at two of the three key loci (p < 0.05). We have initiated MAS and large-scale planting of elite dura and pisifera parents to generate the new commercial tenera palms with higher O/DM potential.
Collapse
|
39
|
Plomion C, Bartholomé J, Lesur I, Boury C, Rodríguez-Quilón I, Lagraulet H, Ehrenmann F, Bouffier L, Gion JM, Grivet D, de Miguel M, de María N, Cervera MT, Bagnoli F, Isik F, Vendramin GG, González-Martínez SC. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Mol Ecol Resour 2015; 16:574-87. [PMID: 26358548 DOI: 10.1111/1755-0998.12464] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/18/2022]
Abstract
Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.
Collapse
Affiliation(s)
- C Plomion
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - J Bartholomé
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - I Lesur
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,HelixVenture, F-33700, Mérignac, France
| | - C Boury
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | | | - H Lagraulet
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - F Ehrenmann
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - L Bouffier
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - J M Gion
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,UMR AGAP, CIRAD, F-33612, Cestas, France
| | - D Grivet
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - M de Miguel
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - N de María
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - M T Cervera
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - F Bagnoli
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (FI), Italy
| | - F Isik
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - G G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (FI), Italy
| | | |
Collapse
|
40
|
Silva-Junior OB, Faria DA, Grattapaglia D. A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. THE NEW PHYTOLOGIST 2015; 206:1527-40. [PMID: 25684350 DOI: 10.1111/nph.13322] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/02/2015] [Indexed: 05/23/2023]
Abstract
We used whole genome resequencing of pooled individuals to develop a high-density single-nucleotide polymorphism (SNP) chip for Eucalyptus. Genomes of 240 trees of 12 species were sequenced at 3.5× each, and 46 997 586 raw SNP variants were subject to multivariable filtering metrics toward a multispecies, genome-wide distributed chip content. Of the 60 904 SNPs on the chip, 59 222 were genotyped and 51 204 were polymorphic across 14 Eucalyptus species, providing a 96% genome-wide coverage with 1 SNP/12-20 kb, and 47 069 SNPs at ≤ 10 kb from 30 444 of the 33 917 genes in the Eucalyptus genome. Given the EUChip60K multi-species genotyping flexibility, we show that both the sample size and taxonomic composition of cluster files impact heterozygous call specificity and sensitivity by benchmarking against 'gold standard' genotypes derived from deeply sequenced individual tree genomes. Thousands of SNPs were shared across species, likely representing ancient variants arisen before the split of these taxa, hinting to a recent eucalypt radiation. We show that the variable SNP filtering constraints allowed coverage of the entire site frequency spectrum, mitigating SNP ascertainment bias. The EUChip60K represents an outstanding tool with which to address population genomics questions in Eucalyptus and to empower genomic selection, GWAS and the broader study of complex trait variation in eucalypts.
Collapse
Affiliation(s)
- Orzenil B Silva-Junior
- Laboratório de Bioinformática, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, 70770-970, Brasilia, DF, Brazil
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916, 70790-160, Brasilia, DF, Brazil
| | - Danielle A Faria
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, 70770-970, Brasilia, DF, Brazil
| | - Dario Grattapaglia
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916, 70790-160, Brasilia, DF, Brazil
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, 70770-970, Brasilia, DF, Brazil
| |
Collapse
|
41
|
Gutiérrez L, Germán S, Pereyra S, Hayes PM, Pérez CA, Capettini F, Locatelli A, Berberian NM, Falconi EE, Estrada R, Fros D, Gonza V, Altamirano H, Huerta-Espino J, Neyra E, Orjeda G, Sandoval-Islas S, Singh R, Turkington K, Castro AJ. Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:501-16. [PMID: 25548806 DOI: 10.1007/s00122-014-2448-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Multi-environment multi-QTL mixed models were used in a GWAS context to identify QTL for disease resistance. The use of mega-environments aided the interpretation of environment-specific and general QTL. Diseases represent a major constraint for barley (Hordeum vulgare L.) production in Latin America. Spot blotch (caused by Cochliobolus sativus), stripe rust (caused by Puccinia striiformis f.sp. hordei) and leaf rust (caused by Puccinia hordei) are three of the most important diseases that affect the crop in the region. Since fungicide application is not an economically or environmentally sound solution, the development of durably resistant varieties is a priority for breeding programs. Therefore, new resistance sources are needed. The objective of this work was to detect genomic regions associated with field level plant resistance to spot blotch, stripe rust, and leaf rust in Latin American germplasm. Disease severities measured in multi-environment trials across the Americas and 1,096 SNPs in a population of 360 genotypes were used to identify genomic regions associated with disease resistance. Optimized experimental design and spatial modeling were used in each trial to estimate genotypic means. Genome-Wide Association Mapping (GWAS) in each environment was used to detect Quantitative Trait Loci (QTL). All significant environment-specific QTL were subsequently included in a multi-environment-multi-QTL (MEMQ) model. Geographical origin and inflorescence type were the main determinants of population structure. Spot blotch severity was low to intermediate while leaf and stripe rust severity was high in all environments. Mega-environments were defined by locations for spot blotch and leaf rust. Significant marker-trait associations for spot blotch (9 QTL), leaf (6 QTL) and stripe rust (7 QTL) and both global and environment-specific QTL were detected that will be useful for future breeding efforts.
Collapse
Affiliation(s)
- Lucia Gutiérrez
- Departmento de Biometria, Estadistica y Computo, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, Uruguay,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bolibok-Brągoszewska H, Targońska M, Bolibok L, Kilian A, Rakoczy-Trojanowska M. Genome-wide characterization of genetic diversity and population structure in Secale. BMC PLANT BIOLOGY 2014; 14:184. [PMID: 25085433 PMCID: PMC4236688 DOI: 10.1186/1471-2229-14-184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/27/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. RESULTS Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. CONCLUSIONS Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies.
Collapse
Affiliation(s)
- Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Targońska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Leszek Bolibok
- Department of Silviculture, Faculty of Forestry, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Kilian
- Diversity Arrays Technology Pty. Ltd, Yarralumla ACT, Australia
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|