1
|
Dallinger R. Metals and metallothionein evolution in snails: a contribution to the concept of metal-specific functionality from an animal model group. Biometals 2024; 37:671-696. [PMID: 38416244 PMCID: PMC11101346 DOI: 10.1007/s10534-024-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
This is a critical review of what we know so far about the evolution of metallothioneins (MTs) in Gastropoda (snails, whelks, limpets and slugs), an important class of molluscs with over 90,000 known species. Particular attention will be paid to the evolution of snail MTs in relation to the role of some metallic trace elements (cadmium, zinc and copper) and their interaction with MTs, also compared to MTs from other animal phyla. The article also highlights the important distinction, yet close relationship, between the structural and metal-selective binding properties of gastropod MTs and their physiological functionality in the living organism. It appears that in the course of the evolution of Gastropoda, the trace metal cadmium (Cd) must have played an essential role in the development of Cd-selective MT variants. It is shown how the structures and Cd-selective binding properties in the basal gastropod clades have evolved by testing and optimizing different combinations of ancestral and novel MT domains, and how some of these domains have become established in modern and recent gastropod clades. In this context, the question of how adaptation to new habitats and lifestyles has affected the original MT traits in different gastropod lineages will also be addressed. The 3D structures and their metal binding preferences will be highlighted exemplarily in MTs of modern littorinid and helicid snails. Finally, the importance of the different metal requirements and pathways in snail tissues and cells for the shaping and functionality of the respective MT isoforms will be shown.
Collapse
|
2
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
3
|
Karczewska A, Gruss I, Szopka K, Dradrach A, Twardowski J, Twardowska K. Arsenic toxicity to earthworms in soils of historical As mining sites: an assessment based on various endpoints and chemical extractions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6713-6726. [PMID: 37368174 PMCID: PMC10403387 DOI: 10.1007/s10653-023-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Eisenia fetida is an earthworm species often used to assess the toxicity of contaminants in soils. Several studies indicated that its response can be unpredictable because it depends both on total concentrations of contaminants and also on their forms that differ in susceptibility to be released from soil solid phase. The issue is complex because two various uptake routes are concurrently involved, dermal and ingestion in guts, where the bioavailability of contaminants can considerably change. The aim of this study was to analyze the toxicity of arsenic (As) in various strongly contaminated meadow and forest soils, representative for former As mining and processing area, to earthworms E. fetida and its accumulation in their bodies. An attempt was made to find relationships between the response of earthworms and chemical extractability of As. In the bioassay, carried out according to the standard ISO protocol, different endpoints were applied: earthworm survival, fecundity measured by the numbers of juveniles and cocoons, earthworm weight and As accumulation in the bodies. The results proved that E. fetida can tolerate extremely high total As concentrations in soils, such as 8000 mg/kg, however, the individual endpoints were not correlated and showed different patterns. The most sensitive one was the number of juveniles. No particular soil factor was identified that would indicate an exceptionally high As susceptibility to the release from one of soils, however, we have demonstrated that the sum of non-specifically and specifically bound As (i.e. fractions F1 + F2 in sequential extraction according to Wenzel) could be a good chemical indicator of arsenic toxicity to soil invertebrates.
Collapse
Affiliation(s)
- Anna Karczewska
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Iwona Gruss
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Katarzyna Szopka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357, Wrocław, Poland
| | - Agnieszka Dradrach
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Jacek Twardowski
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Kamila Twardowska
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| |
Collapse
|
4
|
Hillyer KE, Raes E, Karsh K, Holmes B, Bissett A, Beale DJ. Metabolomics as a tool for in situ study of chronic metal exposure in estuarine invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118408. [PMID: 34718088 DOI: 10.1016/j.envpol.2021.118408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Estuaries are subject to intense human use globally, with impacts from multiple stressors, such as metal contaminants. A key challenge is extending beyond traditional monitoring approaches to understand effects to biota and system function. To explore the metabolic effects of complex metal contaminants to sediment dwelling (benthic) fauna, we apply a multiple-lines-of-evidence approach, coupling environmental monitoring, benthic sampling, total metals analysis and targeted metabolomics. We characterise metabolic signatures of metal exposure in three benthic invertebrate taxa, which differed in distribution across sites and severity of metal exposure: sipunculid (very high), amphipod (high), maldanid polychaete (moderate). We observed sediment and tissue metal loads far exceeding sediment guidelines where toxicity-related adverse effects may be expected, for metals including, As, Cd, Pb, Zn and Hg. Change in site- and taxa-specific metabolite profiles was highly correlated with natural environmental drivers (sediment total organic carbon and water temperature). At the most metal influenced sites, metabolite variation was also correlated with sediment metal loads. Using supervised multivariate regression, taxa-specific metabolic signatures of increased exposure and possibility of toxic effects were characterised against multiple reference sites. Metabolic signatures varied according to each taxon and degree of metal exposure, but primarily indicated altered cysteine and methionine metabolism, metal-binding and elimination (lysosomal) activity, coupled to change in complex biosynthesis pathways, responses to oxidative stress, and cellular damage. This novel multiple-lines-of-evidence approach combining metabolomics with traditional environmental monitoring, enabled detection and characterisation of chronic metal exposure effects in situ in multiple invertebrate taxa. With capacity for application to rapid and effective monitoring of non-model species in complex environments, these approaches are critical for improved assessment and management of systems that are increasingly subject to anthropogenic drivers of change.
Collapse
Affiliation(s)
- Katie E Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Brisbane, QLD, Australia.
| | - Eric Raes
- Oceans and Atmosphere, CSIRO, Battery Point, Hobart, TAS, Australia; The Minderoo foundation, Flourishing Oceans, Broadway Nedlands, WA, Australia
| | - Kristen Karsh
- Oceans and Atmosphere, CSIRO, Battery Point, Hobart, TAS, Australia
| | - Bronwyn Holmes
- Oceans and Atmosphere, CSIRO, Battery Point, Hobart, TAS, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, CSIRO, Battery Point, Hobart, TAS, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Chai L, Yang Y, Yang H, Zhao Y, Wang H. Transcriptome analysis of genes expressed in the earthworm Eisenia fetida in response to cadmium exposure. CHEMOSPHERE 2020; 240:124902. [PMID: 31563721 DOI: 10.1016/j.chemosphere.2019.124902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Eisenia fetida earthworm is an ecotoxicologically important test species to monitor various pollutants. However, there is a little knowledge about the effects of cadmium (Cd) on earthworms at the transcriptional level. Firstly, we exposed E. fetida to soils supplemented with different concentrations (10, 30, 60 mg/kg soil) of Cd. Moreover, we depicted the characterization of gene expressions with E. fetida using high-throughput profiling of gene expression. In addition, a comparison of the gene expression profiles between each Cd treatment group and the control group suggested that differential expressional genes (DEGs) mainly enriched in enzyme activity, metabolism, oxidative stress, regeneration and apoptosis pathways. 8 DEGs from these pathways had been selected randomly to confirm the data of RNA-seq. Among these DEGs, six genes (metallothionein-2, phytochelatin synthase 1a, CuZn superoxide dismutase, sex determining region Y-box 2, sex determining region Y-box 4b, TP53-regulated inhibitor of apoptosis 1-like) up-regulated and 2 genes (beta-1,4-endoglucanase, apoptosis-stimulating of p53 protein 2-like) down-regulated in response to Cd exposure. The alteration of them indicated that earthworms could reduce the toxicity and bioavailability of Cd in polluted soil ecosystems through different pathways. This work lays an important foundation for linking earthworm transcriptional level with the ecological risk of Cd in soil ecosystem.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710054, China.
| | - Yijie Yang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongyu Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710054, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
6
|
Fajana HO, Gainer A, Jegede OO, Awuah KF, Princz JI, Owojori OJ, Siciliano SD. Oppia nitens C.L. Koch, 1836 (Acari: Oribatida): Current Status of Its Bionomics and Relevance as a Model Invertebrate in Soil Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2593-2613. [PMID: 31433516 DOI: 10.1002/etc.4574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The oribatid soil mite Oppia nitens C.L. Koch, 1836, is a model microarthropod in soil ecotoxicity testing. This species has a significant role in supporting soil functions and as a suitable indicator of soil contamination. Despite its significance to the environment and to ecotoxicology, however, very little is known of its biology, ecology, and suborganismal responses to contaminants in the soil. In the present review, we present detailed and critical insights into the biology and ecology of O. nitens in relation to traits that are crucial to its adaptive responses to contaminants in soil. We used a species sensitivity distribution model to rank the species sensitivity to heavy metals (cadmium and zinc) and neonicotinoids (imidacloprid and thiacloprid) compared with other standardized soil invertebrates. Although the International Organization for Standardization and Environment and Climate Change Canada are currently standardizing a protocol for the use of O. nitens in soil toxicity testing, we believe that O. nitens is limited as a model soil invertebrate until the molecular pathways associated with its response to contaminants are better understood. These pathways can only be elucidated with information from the mites' genome or transcriptome, which is currently lacking. Despite this limitation, we propose a possible molecular pathway to metal tolerance and a putative adverse outcome pathway to heavy metal toxicity in O. nitens. Environ Toxicol Chem 2019;38:2593-2613. © 2019 SETAC.
Collapse
Affiliation(s)
- Hamzat O Fajana
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amy Gainer
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olukayode O Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kobby F Awuah
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Juliska I Princz
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Majumdar A, Barla A, Upadhyay MK, Ghosh D, Chaudhuri P, Srivastava S, Bose S. Vermiremediation of metal(loid)s via Eichornia crassipes phytomass extraction: A sustainable technique for plant amelioration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:118-125. [PMID: 29775821 DOI: 10.1016/j.jenvman.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Eichhornia crassipes (water hyacinth), imparts deficiency of soluble arsenic and other toxic metal (loid)s through rhizofiltration and phytoaccumulation. Without proper management strategy, this phytoremediation of metal (loid)s might fail and get reverted back to the environment, contaminating the nearby water bodies. This study, focused on bio-conversion of phytoremediating hyacinths, spiked with 100 times and greater arsenic, lead and cadmium concentrations than the average water contamination, ranging in 58.81 ± 0.394, 16.74 ± 0.367, 12.18 ± 0.153 mg Kg-1arsenic, 18.95 ± 0.212, 9.53 ± 0.054, 6.83 ± 0.306 mg kg-1 lead and 2.79 ± 0.033, 1.39 ± 0.025, 0.92 ± 0.045 mg kg-1 cadmium, respectively in root, shoot and leaves, proving it's phytoaccumulation capacity. Next, these hyacinths has been used as a source of organic supplement for preparing vermicompost using Eisenia fetida following analysis of total metal content and sequential extraction. Control soil was having 134.69 ± 2.47 mg kg-1 arsenic in compare to 44.6 ± 0.91 mg kg-1 at premature stage of compost to 23.9 ± 1.55 mg kg-1 at mature compost indicating sustainable fate of phytoremediated vermicompost. This vermiremediation of arsenic and other toxic elements, restricted the bioavailability of soil pollutants. Furthermore, processed compost amended as organic fertilizer, growing chickpea, coriander, tomato and chilli plant, resulted in negligible metal(loid)s in treated samples, enhancing also plant's growth and production.
Collapse
Affiliation(s)
- Arnab Majumdar
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Anil Barla
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Munish Kumar Upadhyay
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Dibyarpita Ghosh
- Department of Environmental Science, University of Calcutta, Ballygunge Circular Road, Kolkata 700019, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Ballygunge Circular Road, Kolkata 700019, India
| | - Sudhakar Srivastava
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Sutapa Bose
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
8
|
Marchand L, Brunel-Muguet S, Lamy I, Mench M, Pelosi C. Modulation of trace element bioavailability for two earthworm species after biochar amendment into a contaminated technosol. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1378-1391. [PMID: 29022159 DOI: 10.1007/s10646-017-1862-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Biochars are used as amendments to improve soil quality, but their effects on edaphic organisms such as earthworms remain controversial. This study aimed to assess the effects of adding a poultry manure-derived biochar into a contaminated technosol on trace element (TE) (i.e. As, Cd, Cu, Pb, and Zn) bioavailability for two earthworm species, Aporrectodea icterica and Aporrectodea longa. Three components of the bioavailability concept were determined using a pot experiment: (1) total soil TE (potentially reactive) and TE concentrations in the soil pore water (environmental availability), (2) TE concentrations in depurated whole earthworm bodies (environmental bioavailability) and (3) ecophysiological and biochemical effects on earthworms (toxicological bioavailability). Biochar addition increased TE concentrations in the soil pore water respectively from 1.8, 2.7, 9.4, 0.7 and 959 to 6, 6.2, 19.3, 6.9, and 3003 µg L-1 for As, Cd, Cu, Pb and Zn. Biochar addition did not influence TE environmental bioavailability for earthworms, except a decreased As concentration (32.5 to 15.2 µg g-1) in A. icterica. This suggests an inter-specific variability in As homeostasis in the Aporrectodea genus. In line with this internal As decrease, the Glutathione-S-transferase (GST) activity decreased by 42% and protein and lipid contents slightly increased (14 and 25%, respectively) in A. icterica tissues. The body weight of both earthworm species decreased for the biochar-amended soil. Environmental TE availability depended on both the biochar addition and the earthworm activity in the contaminated soil, while environmental and toxicological bioavailabilities resulted from the earthworm species, the targeted TE and biochar supply to the soil.
Collapse
Affiliation(s)
| | | | - Isabelle Lamy
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Versailles, 78026, France
| | - Michel Mench
- BIOGECO, INRA, Univ. Bordeaux, Pessac, 33615, France
| | - Celine Pelosi
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Versailles, 78026, France
| |
Collapse
|
9
|
Anderson C, Cunha L, Sechi P, Kille P, Spurgeon D. Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites. BMC Genet 2017; 18:97. [PMID: 29149838 PMCID: PMC5693503 DOI: 10.1186/s12863-017-0557-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Populations of the earthworm, Lumbricus rubellus, are commonly found across highly contaminated former mine sites and are considered to have under-gone selection for mitigating metal toxicity. Comparison of adapted populations with those found on less contaminated soils can provide insights into ecological processes that demonstrate the long-term effects of soil contamination. Contemporary sequencing methods allow for portrayal of demographic inferences and highlight genetic variation indicative of selection at specific genes. Furthermore, the occurrence of L. rubellus lineages across the UK allows for inferences of mechanisms associated with drivers of speciation and local adaptation. RESULTS Using RADseq, we were able to define population structure between the two lineages through the use of draft genomes for each, demonstrating an absence of admixture between lineages and that populations over extensive geographic distances form discrete populations. Between the two British lineages, we were able to provide evidence for selection near to genes associated with epigenetic and morphological functions, as well as near a gene encoding a pheromone. Earthworms inhabiting highly contaminated soils bare close genomic resemblance to those from proximal control soils. We were able to define a number of SNPs that largely segregate populations and are indicative of genes that are likely under selection for managing metal toxicity. This includes calcium and phosphate-handling mechanisms linked to lead and arsenic contaminants, respectively, while we also observed evidence for glutathione-related mechanisms, including metallothionein, across multiple populations. Population genomic end points demonstrate no consistent reduction in nucleotide diversity, or increase in inbreeding coefficient, relative to history of exposure. CONCLUSIONS Though we can clearly define lineage membership using genomic markers, as well as population structure between geographic localities, it is difficult to resolve markers that segregate entirely between populations in response to soil metal concentrations. This may represent a highly variable series of traits in response to the heterogenous nature of the soil environment, but ultimately demonstrates the maintenance of lineage-specific genetic variation among local populations. L. rubellus appears to provide an exemplary system for exploring drivers for speciation, with a continuum of lineages coexisting across continental Europe, while distinct lineages exist in isolation throughout the UK.
Collapse
Affiliation(s)
- Craig Anderson
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, OX10 8BB UK
- School of Biosciences, University of Cardiff, Main Building, Museum Avenue, Cardiff, CF10 3AT UK
| | - Luis Cunha
- School of Biosciences, University of Cardiff, Main Building, Museum Avenue, Cardiff, CF10 3AT UK
- Embrapa Florestas, Estrada da Ribeira km. 111, Colombo, PR 83411-000 Brazil
| | - Pierfrancesco Sechi
- School of Biosciences, University of Cardiff, Main Building, Museum Avenue, Cardiff, CF10 3AT UK
| | - Peter Kille
- School of Biosciences, University of Cardiff, Main Building, Museum Avenue, Cardiff, CF10 3AT UK
| | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, OX10 8BB UK
| |
Collapse
|
10
|
Singh R, Bhunia P, Dash RR. A mechanistic review on vermifiltration of wastewater: Design, operation and performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:656-672. [PMID: 28433682 DOI: 10.1016/j.jenvman.2017.04.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
With global population explosion, the available water resources are slowly being polluted due to the excessive human interference. To encounter this, it is the need of this hour to find out sustainable pollution remediating technologies to meet the stringent discharge standards for domestic as well as industrial wastewaters. In addition, those techniques should have the capabilities for effective implementation even in developing countries. Based on the available literatures, one such technique, named vermifilter, has been identified which takes care of almost all the sustainable and economical criteria for its effective implementation even in developing countries. The aim of this meta-analysis is to provide a comprehensive review on assessment mechanisms involved, factors affecting the process and performance of vermifiltration under different scenarios. The present review envisages the current state of the knowledge regarding physical, chemical and biological aspects related to the treatment mechanisms and effective functioning of earthworms. This review has also proposed several suggestive plans on its application at any proposed site.
Collapse
Affiliation(s)
- Rajneesh Singh
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Puspendu Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha, India.
| | - Rajesh R Dash
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Šrut M, Drechsel V, Höckner M. Low levels of Cd induce persisting epigenetic modifications and acclimation mechanisms in the earthworm Lumbricus terrestris. PLoS One 2017; 12:e0176047. [PMID: 28426746 PMCID: PMC5398608 DOI: 10.1371/journal.pone.0176047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Toxic effects of cadmium (Cd), a common soil pollutant, are still not very well understood, particularly in regard to its epigenetic impact. Therefore, the aim of this study was to assess DNA methylation changes and their persistence in the earthworm Lumbricus terrestris upon chronic low dose Cd exposure using methylation sensitive amplification polymorphism (MSAP). Moreover, the biomarker response and fitness of the earthworms, as well as the expression of detoxification-related genes (metallothionein (MT) and phytochelatin synthase (PCS)) was evaluated. Low levels of Cd caused an increase in genome-wide DNA methylation, which remained partly modified, even after several months of recovery in unpolluted soil. Increased cellular stress seemed to decrease after two weeks of exposure whereas fitness parameters remained unaffected by Cd, probably as a result from the activation of detoxification mechanisms like the expression of MTs. Interestingly, even though the level of Cd exposure was very low, MT expression levels indicate the development of acclimation mechanisms. Taken together, this study demonstrates that acclimation, as well as epigenetic modifications can occur already in moderately polluted environments. In addition, these effects can have long-lasting impacts on key species of soil invertebrates and might persist long after the actual heavy metal challenge has passed.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Victoria Drechsel
- Department of Ecophysiology, Institute of Zoology, University of Innsbruck, Center for Molecular Biosciences, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Martina Höckner
- Department of Ecophysiology, Institute of Zoology, University of Innsbruck, Center for Molecular Biosciences, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
12
|
Sf G, Sk D, Bennett M, Raab A, Feldmann J, Kille P, Loureiro S, Dj S, Jg B. Sub-lethal cadmium exposure increases phytochelatin concentrations in the aquatic snail Lymnaea stagnalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1054-1058. [PMID: 27358197 DOI: 10.1016/j.scitotenv.2016.06.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/19/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
Phytochelatins are metal-binding metabolites found in almost all plant species and some animal groups, including nematodes and annelids, where they can play an important role in detoxifying metals such as cadmium. Species from several other taxa contain a phytochelatin synthase (PCS) gene orthologue, including molluscs, indicating they may have the potential to synthesize phytochelatins. However, the presence of a gene alone does not demonstrate that it plays a functional role in metal detoxification. In the present study, we show that the aquatic snail Lymnaea stagnalis produced both penta- and heptapeptide phytochelatins (i.e. phytochelatin-2 and phytochelatin-3), and their levels increased in response to sub-lethal levels of cadmium.
Collapse
Affiliation(s)
- Gonçalves Sf
- Department of Biology & CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Davies Sk
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - M Bennett
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - A Raab
- TESLA, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
| | - J Feldmann
- TESLA, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
| | - P Kille
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - S Loureiro
- Department of Biology & CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Spurgeon Dj
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, UK
| | - Bundy Jg
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| |
Collapse
|
13
|
Goswami L, Pratihar S, Dasgupta S, Bhattacharyya P, Mudoi P, Bora J, Bhattacharya SS, Kim KH. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci Rep 2016; 6:30402. [PMID: 27456167 PMCID: PMC4960643 DOI: 10.1038/srep30402] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/01/2016] [Indexed: 12/15/2022] Open
Abstract
Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.
Collapse
Affiliation(s)
- Linee Goswami
- Department of Environmental Science, Tezpur University, Assam 784028, India
| | - Sanjay Pratihar
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India
| | - Pronab Mudoi
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Jayanta Bora
- Department of Environmental Science, Tezpur University, Assam 784028, India
| | | | - Ki Hyun Kim
- Department of Civil &Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea
| |
Collapse
|
14
|
Sandbichler AM, Höckner M. Cadmium Protection Strategies--A Hidden Trade-Off? Int J Mol Sci 2016; 17:ijms17010139. [PMID: 26805823 PMCID: PMC4730378 DOI: 10.3390/ijms17010139] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a non-essential transition metal which is introduced into the biosphere by various anthropogenic activities. Environmental pollution with Cd poses a major health risk and Cd toxicity has been extensively researched over the past decades. This review aims at changing the perspective by discussing protection mechanisms available to counteract a Cd insult. Antioxidants, induction of antioxidant enzymes, and complexation of Cd to glutathione (GSH) and metallothionein (MT) are the most potent protective measures to cope with Cd-induced oxidative stress. Furthermore, protection mechanisms include prevention of endoplasmic reticulum (ER) stress, mitophagy and metabolic stress, as well as expression of chaperones. Pre-exposure to Cd itself, or co-exposure to other metals or trace elements can improve viability under Cd exposure and cells have means to reduce Cd uptake and improve Cd removal. Finally, environmental factors have negative or positive effects on Cd toxicity. Most protection mechanisms aim at preventing cellular damage. However, this might not be possible without trade-offs like an increased risk of carcinogenesis.
Collapse
Affiliation(s)
| | - Martina Höckner
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Heger Z, Michalek P, Guran R, Havelkova B, Kominkova M, Cernei N, Richtera L, Beklova M, Adam V, Kizek R. Exposure to 17β-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida. PLoS One 2015; 10:e0145426. [PMID: 26695684 PMCID: PMC4690593 DOI: 10.1371/journal.pone.0145426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/03/2015] [Indexed: 02/03/2023] Open
Abstract
Background The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs) present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17β-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida. Methodology/Principal Findings Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 μg/kg of E2). We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17β-oestradiol (E2), significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS) and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio) but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI)-imaging revealed the subcuticular bioaccumulation of oestradiol-3,4-quinone, altering the levels of local antioxidants in a time-dependent manner. Conclusions/Significance The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic, European Union
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Barbora Havelkova
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic, European Union
| | - Marketa Kominkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Miroslava Beklova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
- * E-mail:
| |
Collapse
|
16
|
Martínez-González JJ, Guevara-Flores A, Rendón JL, Arenal IPD. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci. Mol Biochem Parasitol 2015; 201:16-25. [PMID: 26024834 DOI: 10.1016/j.molbiopara.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/28/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2022]
Abstract
Previously, we have studied the effect of the gold-compound auranofin (AF) on both thioredoxin-glutathione reductasa (TGR) activity and viability of Taenia crassiceps cysticerci. It was demonstrated that micromolar concentrations of AF were high enough to fully inhibit TGR and kill the parasites. In this work, the dynamics of changes in the glutathione pool of T. crassiceps cysticerci following the addition of AF, was analyzed. A dose-dependent decrease in the internal glutathione concentration, concomitant with an increase in ROS production was observed. These changes were simultaneous with the formation of glutathione-protein complexes and the export of glutathione disulfide (GSSG) to the culture medium. Incubation of cysticerci in the presence of both AF and N-acetyl cysteine (NAC) prevents all the above changes, maintaining cysticerci viability. By contrast, the presence of both AF and buthionine sulfoximine (BSO) resulted in a potentiation of the effects of the gold compound, jeopardizing cysticerci viability. These results suggest the lethal effect of AF on T. crassiceps cysticerci, observed at micromolar concentrations, can be explained as a consequence of major changes in the glutathione status, which results in a significant increase in the oxidative stress of the parasites.
Collapse
Affiliation(s)
- J J Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 Mexico, DF, Mexico
| | - A Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 Mexico, DF, Mexico
| | - J L Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 Mexico, DF, Mexico
| | - I P Del Arenal
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510 Mexico, DF, Mexico.
| |
Collapse
|
17
|
Bundy JG, Kille P. Metabolites and metals in Metazoa--what role do phytochelatins play in animals? Metallomics 2015; 6:1576-82. [PMID: 24926533 DOI: 10.1039/c4mt00078a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochelatins are sulfur-rich metal-binding peptides, and phytochelatin synthesis is one of the key mechanisms by which plants protect themselves against toxic soft metal ions such as cadmium. It has been known for a while now that some invertebrates also possess functional phytochelatin synthase (PCS) enzymes, and that at least one species, the nematode Caenorhabditis elegans, produces phytochelatins to help detoxify cadmium, and probably also other metal and metalloid ions including arsenic, zinc, selenium, silver, and copper. Here, we review recent studies on the occurrence, utilization, and regulation of phytochelatin synthesis in invertebrates. The phytochelatin synthase gene has a wide phylogenetic distribution, and can be found in species that cover almost all of the animal tree of life. The evidence to date, though, suggests that the occurrence is patchy, and even though some members of particular taxonomic groups may contain PCS genes, there are also many species without these genes. For animal species that do possess PCS genes, some of them (e.g. earthworms) do synthesize phytochelatins in response to potentially toxic elements, whereas others (e.g. Schistosoma mansoni, a parasitic helminth) do not appear to do so. Just how (and if) phytochelatins in invertebrates complement the function of metallothioneins remains to be elucidated, and the temporal, spatial, and metal specificity of the two systems is still unknown.
Collapse
Affiliation(s)
- J G Bundy
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | | |
Collapse
|
18
|
Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:273-303. [PMID: 24951273 DOI: 10.1016/j.ecoenv.2014.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates involved in oxidative stress and in metal detoxification in E. fetida, T. repens and B. oleracea.
Collapse
Affiliation(s)
- F Bernard
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - F Brulle
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Dumez
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Lemiere
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France
| | - A Platel
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - F Nesslany
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - D Cuny
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - A Deram
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France; Faculté de Management de la Santé (ILIS) - Université de Lille 2, EA4483, F-59120 Loos, France
| | - F Vandenbulcke
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
19
|
Scudiero R, Cretì P, Trinchella F, Grazia Esposito M. Evaluation of cadmium, lead and metallothionein contents in the tissues of mussels (Mytilus galloprovincialis) from the Campania coast (Italy): levels and seasonal trends. C R Biol 2014; 337:451-8. [PMID: 25103830 DOI: 10.1016/j.crvi.2014.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/31/2014] [Accepted: 05/05/2014] [Indexed: 12/15/2022]
Abstract
The biological effect of seasonality on cadmium, lead and metallothionein contents was assessed in mussels Mytilus galloprovincialis from natural banks located along the coastline of the Gulf of Naples (Campania, Italy). Heavy metals and metallothionein concentrations were measured in digestive and reproductive glands. The results showed a clear correlation between metallothionein content and the reproductive gland status determined during the seasons; on the contrary, no correlation was found between metallothionein and metal contents. Data allow us to hypothesize that metallothionein functions go beyond metal detoxification, thus opening new scenarios for these proteins in invertebrates. The effect of seasons on metals concentration in mussel tissues showed similar seasonal patterns between the sites, regardless of their anthropogenic impacts. Cadmium content was not strictly related to seasonal periods, whereas lead content was significantly lower in summer. The results also indicate that the metal contents in mussels from the Gulf of Naples do not represent a risk to human health, even in the period of their maximum accumulation, and that the relaying of mussels before marketing could improve the animal stress conditions, but having a slight effect on metal excretion.
Collapse
Affiliation(s)
- Rosaria Scudiero
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy.
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov. Lecce-Monteroni, 73100 Lecce, Italy
| | - Francesca Trinchella
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| | - Maria Grazia Esposito
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
20
|
Bundy JG, Kille P, Liebeke M, Spurgeon DJ. Metallothioneins may not be enough--the role of phytochelatins in invertebrate metal detoxification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:885-886. [PMID: 24369954 DOI: 10.1021/es4054779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Jacob G Bundy
- Department of Surgery and Cancer, Imperial College London , London SW7 2AZ, U.K
| | | | | | | |
Collapse
|