1
|
Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med 2024; 16:eadk0642. [PMID: 39292804 PMCID: PMC11522033 DOI: 10.1126/scitranslmed.adk0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Jessica M. Vera
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Sage Bionetworks, 2901 Third Ave. Suite 330, Seattle, WA 98121, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas C. Havighurst
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ishan Chakravarthy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raad H. Allawi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - KyungMann Kim
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A. Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
- Oregon Clinic, Portland, OR 97232, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
| | - Jessica R. Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M. Ong
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
2
|
Potez M, Rome C, Lemasson B, Heemeryck P, Laissue JA, Stupar V, Mathieu H, Collomb N, Barbier EL, Djonov V, Bouchet A. Microbeam Radiation Therapy Opens a Several Days' Vessel Permeability Window for Small Molecules in Brain Tumor Vessels. Int J Radiat Oncol Biol Phys 2024; 119:1506-1516. [PMID: 38373658 DOI: 10.1016/j.ijrobp.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT), based on an inhomogeneous geometric and microscopic irradiation pattern of the tissues with high-dose and high-dose-rate x-rays, enhances the permeability of brain tumor vessels. This study attempted to determine the time and size range of the permeability window induced by MRT in the blood-brain (tumor) barrier. METHODS AND MATERIALS Rats-bearing 9L gliomas were exposed to MRT, either unidirectional (tumor dose, 406 Gy) or bidirectional (crossfired) (2 × 203 Gy). We measured vessel permeability to molecules of 3 sizes (Gd-DOTA, Dotarem, 0.56 kDa; gadolinium-labeled albumin, ∼74 kDa; and gadolinium-labeled IgG, 160 kDa) by daily in vivo magnetic resonance imaging, from 1 day before to 10 days after irradiation. RESULTS An equivalent tumor dose of bidirectional MRT delivered from 2 orthogonal directions increased tumor vessel permeability for the smallest molecule tested more effectively than unidirectional MRT. Bidirectional MRT also affected the permeability of normal contralateral vessels to a different extent than unidirectional MRT. Conversely, bidirectional MRT did not modify the permeability of normal or tumor vessels for both larger molecules (74 and 160 kDa). CONCLUSIONS High-dose bidirectional (cross-fired) MRT induced a significant increase in tumor vessel permeability for small molecules between the first and the seventh day after irradiation, whereas permeability of vessels in normal brain tissue remained stable. Such a permeability window could facilitate an efficient and safe delivery of intravenous small molecules (≤0.56 kDa) to tumoral tissues. A permeability window was not achieved by molecules larger than gado-grafted albumin (74 kDa). Vascular permeability for molecules between these 2 sizes has not been determined.
Collapse
Affiliation(s)
- Marine Potez
- Institute of Anatomy, Group Topographic and Clinical Anatomy, University of Bern, Bern, Switzerland
| | - Claire Rome
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France
| | - Benjamin Lemasson
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France
| | - Pierre Heemeryck
- Inserm U1296 "Radiation: Defense, Health, Environment," Lyon, France
| | | | - Vasile Stupar
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France; University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Hervé Mathieu
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France; University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Nora Collomb
- University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Emmanuel L Barbier
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France; University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France.
| | - Valentin Djonov
- Institute of Anatomy, Group Topographic and Clinical Anatomy, University of Bern, Bern, Switzerland
| | - Audrey Bouchet
- Institute of Anatomy, Group Topographic and Clinical Anatomy, University of Bern, Bern, Switzerland; Inserm U1296 "Radiation: Defense, Health, Environment," Lyon, France.
| |
Collapse
|
3
|
Kundapur V, Torlakovic E, Auer RN. The Story Behind the First Mini-BEAM Photon Radiation Treatment: What is the Mini-Beam and Why is it Such an Advance? Semin Radiat Oncol 2024; 34:337-343. [PMID: 38880542 DOI: 10.1016/j.semradonc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Radiation treatment has been the cornerstone in cancer management. However, long term treatment-related morbidity always accompanies tumor control which has significant impact on quality of life of the patient who has survived the cancer. Spatially fractionated radiation has the potential to achieve both cure and to avoid dreaded long term sequelae. The first ever randomized study of mini-beam radiation treatment (MBRT) of canine brain tumor has clearly shown the ability to achieve this goal. Dogs have gyrencephalic brains functionally akin to human brain. We here report long term follow-up and final outcome of the dogs, revealing both tumor control and side effects on normal brain. The results augur potential for conducting human studies with MBRT.
Collapse
Affiliation(s)
- Vijayananda Kundapur
- Saskatoon Cancer Centre, Clinical Professor, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada.
| | - Emina Torlakovic
- Department of Pathology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK S7N 0W8 Canada
| | - Roland N Auer
- Department of Pathology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK S7N 0W8 Canada
| |
Collapse
|
4
|
Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol 2024; 69:10TR02. [PMID: 38648789 DOI: 10.1088/1361-6560/ad4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, E-15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology, F-75005, Paris and Orsay Protontherapy Center, F-91400, Orsay, France
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Auto`noma de Barcelona, E-08193, Cerdanyola del Valle`s (Barcelona), Spain
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - Joao Seco
- Division of Biomedical physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sha Chang
- Dept of Radiation Oncology and Department of Biomedical Engineering, University of North Carolina School of Medicine, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolin State University, United States of America
| |
Collapse
|
5
|
Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol 2024; 44:100691. [PMID: 38033759 PMCID: PMC10684810 DOI: 10.1016/j.ctro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Spatially Fractionated Radiation Therapy (SFRT) is a form of radiotherapy that delivers a single large dose of radiation within the target volume in a heterogeneous pattern with regions of peak dosage and regions of under dosage. SFRT types can be defined by how the heterogeneous pattern of radiation is obtained. Immune checkpoint inhibitors (ICIs) have been approved for various malignant tumors and are widely used to treat patients with metastatic cancer. The efficacy of ICI monotherapy is limited due to the "cold" tumor microenvironment. Fractionated radiotherapy can achieve higher doses per fraction to the target tumor, and induce immune activation (immodulate tumor immunogenicity and microenvironment). Therefore, coupling ICI therapy and fractionated radiation therapy could significantly improve the outcome of metastatic cancer. This review focuses on both preclinical and clinical studies that use a combination of radiotherapy and ICI therapy in cancer.
Collapse
Affiliation(s)
- Qiuxia Lu
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| | - Weisi Yan
- Baptist Health System, Lexington, KY, United States
- Junxin Precision Oncology Group, P.R. China
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Slavisa Tubin
- Albert Einstein Collage of Medicine New York, Center for Ion Therapy, Medaustron, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine Markey Cancer Center, University of Kentucky - College of Medicine, United States
| | - Jun Yang
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| |
Collapse
|
6
|
Masilela TAM, Prezado Y. Monte Carlo study of the free radical yields in minibeam radiation therapy. Med Phys 2023; 50:5115-5134. [PMID: 37211907 DOI: 10.1002/mp.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Minibeam radiation therapy (MBRT) is a novel technique which has been shown to widen the therapeutic window through significant normal tissue sparing. Despite the heterogeneous dose distributions, tumor control is still ensured. Nevertheless the exact radiobiological mechanisms responsible for MBRT efficacy are not fully understood. PURPOSE Reactive oxygen species (ROS) resulting from water radiolysis were investigated given their implications not only on targeted DNA damage, but also for their role in the immune response and non-targeted cell signalling effects: two potential drivers of MBRT efficacy. METHODS Monte Carlo simulations were performed using TOPAS-nBio to carry out the irradiation of a water phantom with beams of protons (pMBRT), photons (xMBRT), 4 He ions (HeMBRT), and 12 C ions (CMBRT). Primary yields at the end of the chemical stage were calculated in spheres of 20 μm diameter, located in the peaks and valleys at various depths up to the Bragg peak. The chemical stage was limited to 1 ns to approximate biological scavenging, and the yield of · OH, H2 O2 , ande aq - ${\rm e}^{-}_{\rm aq}$ was recorded. RESULTS Beyond 10 mm, there were no substantial differences in the primary yields between peaks and valleys of the pMBRT and HeMBRT modalities. For xMBRT, there was a lower primary yield of the radical species · OH ande aq - ${\rm e}^{-}_{\rm aq}$ at all depths in the valleys compared to the peaks, and a higher primary yield of H2 O2 . Compared to the peaks, the valleys of the CMBRT modality were subject to a higher · OH ande aq - ${\rm e}^{-}_{\rm aq}$ yield, and lower H2 O2 yield. This difference between peaks and valleys became more severe in depth. Near the Bragg peak, the increase in the primary yield of the valleys over the peaks was 6% and 4% for · OH ande aq - ${\rm e}^{-}_{\rm aq}$ respectively, while there was a decrease in the yield of H2 O2 by 16%. Given the similar ROS primary yields in the peaks and valleys of pMBRT and HeMBRT, the level of indirect DNA damage is expected to be directly proportional to the peak to valley dose ratio (PVDR). The difference in the primary yields implicates a lower level of indirect DNA damage in the valleys compared to the peaks than what would be suggested by the PVDR for xMBRT, and a higher level for CMBRT. CONCLUSIONS These results highlight the notion that depending on the particle chosen, one can expect different levels of ROS in the peaks and valley that goes beyond what would be expected by the macroscopic PVDR. The combination of MBRT with heavier ions is shown to be particularly interesting as the primary yield in the valleys progressively diverges from the level observed in the peaks as the LET increases. While differences in the reported · OH yields of this work implicated the indirect DNA damage, H2 O2 yields particularly implicate non-targeted cell signalling effects, and therefore this work provides a point of reference for future simulations in which the distribution of this species at more biologically relevant timescales could be investigated.
Collapse
Affiliation(s)
- Thongchai A M Masilela
- Signalisation radiobiologie et cancer, Institut Curie, Université PSL, Orsay, France
- Signalisation radiobiologie et cancer, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Orsay, France
| | - Yolanda Prezado
- Signalisation radiobiologie et cancer, Institut Curie, Université PSL, Orsay, France
- Signalisation radiobiologie et cancer, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Orsay, France
| |
Collapse
|
7
|
Serduc R, Bouchet A. MRT-boost as the last fraction may be the most efficient irradiation schedule for increased survival times in a rat glioma model. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:591-595. [PMID: 37067258 PMCID: PMC10161883 DOI: 10.1107/s1600577523002606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/19/2023] [Indexed: 05/06/2023]
Abstract
Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident synchrotron beam into arrays of parallel microbeams, typically a few tens of micrometres wide and depositing several hundred Gray. This high dose, high dose rate, spatially fractionated radiotherapy has a high therapeutic impact on tumors, especially in intracranial locations. MRT leads to better control of incurable high-grade glioma than from homogeneous radiotherapy. The schedule of MRT within a conventional irradiation protocol (three fractions of 11 Gy) of brain tumors was evaluated on the 9L glioma model in rats. MRT delivered as a first fraction increased the median survival time of the animals by four days compared with conventional radiotherapy, while the last MRT fraction improved the lifespan by 148% (+15.5 days compared with conventional radiotherapy, p < 0.0001). The most efficient radiation regimen was obtained when the MRT-boost was applied as the last fraction, following two conventional clinical exposures.
Collapse
Affiliation(s)
- Raphael Serduc
- Univ. Grenoble Alpes, INSERM UA7 STROBE, Rue de la Piscine, 38400 Saint-Martin d’Hères, France
- Centre Hospitalier Universitaire Grenoble-Alpes, Maquis du Grésivaudan, 38700 La Tronche, France
| | - Audrey Bouchet
- INSERM U1296, Radiation: Defense, Health, Environment, 28 Rue Laennec, 69008 Lyon, France
| |
Collapse
|
8
|
Bertho A, Iturri L, Brisebard E, Juchaux M, Gilbert C, Ortiz R, Sebrie C, Jourdain L, Lamirault C, Ramasamy G, Pouzoulet F, Prezado Y. Evaluation of the Role of the Immune System Response After Minibeam Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 115:426-439. [PMID: 35985455 DOI: 10.1016/j.ijrobp.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is an innovative technique that uses a spatial dose modulation. The dose distribution consists of high doses (peaks) in the path of the minibeam and low doses (valleys). The underlying biological mechanism associated with MBRT efficacy remains currently unclear and thus we investigated the potential role of the immune system after treatment with MBRT. METHODS AND MATERIALS Rats bearing an orthotopic glioblastoma cell line were treated with 1 fraction of high dose conventional radiation therapy (30 Gy) or 1 fraction of the same mean dose in MBRT. Both immunocompetent (F344) and immunodeficient (Nude) rats were analyzed in survival studies. Systemic and intratumoral immune cell population changes were studied with flow cytometry and immunohistochemistry (IHC) 2 and 7 days after the irradiation. RESULTS The absence of response of Nude rats after MBRT suggested that T cells were key in the mode of action of MBRT. An inflammatory phenotype was observed in the blood 1 week after irradiation compared with conventional irradiation. Tumor immune cell analysis by flow cytometry showed a substantial infiltration of lymphocytes, specifically of CD8 T cells and B cells in both conventional and MBRT-treated animals. IHC revealed that MBRT induced a faster recruitment of CD8 and CD4 T cells. Animals that were cured by radiation therapy did not suffer tumor growth after reimplantation of tumoral cells, proving the long-term immunity response generated after a high dose of radiation. CONCLUSIONS Our findings show that MBRT can elicit a robust antitumor immune response in glioblastoma while avoiding the high toxicity of a high dose of conventional radiation therapy.
Collapse
Affiliation(s)
- Annaig Bertho
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France.
| | - Lorea Iturri
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | | | - Marjorie Juchaux
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Cristèle Gilbert
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Ramon Ortiz
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Catherine Sebrie
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurene Jourdain
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Charlotte Lamirault
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Gabriel Ramasamy
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Frédéric Pouzoulet
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France; Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie, Institut Curie, PSL University, Université Paris-Saclay, Orsay, France
| | - Yolanda Prezado
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| |
Collapse
|
9
|
Schültke E, Jaekel F, Bartzsch S, Bräuer-Krisch E, Requardt H, Laissue JA, Blattmann H, Hildebrandt G. Good Timing Matters: The Spatially Fractionated High Dose Rate Boost Should Come First. Cancers (Basel) 2022; 14:cancers14235964. [PMID: 36497446 PMCID: PMC9738329 DOI: 10.3390/cancers14235964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Monoplanar microbeam irradiation (MBI) and pencilbeam irradiation (PBI) are two new concepts of high dose rate radiotherapy, combined with spatial dose fractionation at the micrometre range. In a small animal model, we have explored the concept of integrating MBI or PBI as a simultaneously integrated boost (SIB), either at the beginning or at the end of a conventional, low-dose rate schedule of 5x4 Gy broad beam (BB) whole brain radiotherapy (WBRT). MBI was administered as array of 50 µm wide, quasi-parallel microbeams. For PBI, the target was covered with an array of 50 µm × 50 µm pencilbeams. In both techniques, the centre-to-centre distance was 400 µm. To assure that the entire brain received a dose of at least 4 Gy in all irradiated animals, the peak doses were calculated based on the daily BB fraction to approximate the valley dose. The results of our study have shown that the sequence of the BB irradiation fractions and the microbeam SIB is important to limit the risk of acute adverse effects, including epileptic seizures and death. The microbeam SIB should be integrated early rather than late in the irradiation schedule.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
- Correspondence:
| | - Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Stefan Bartzsch
- Department of Radiooncology, Technical University of Munich, 81675 Munich, Germany
- Institute for Radiation Medicine, Helmholtz Center Munich, 85764 Munich, Germany
| | - Elke Bräuer-Krisch
- Biomedical Beamline ID 17, European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | - Herwig Requardt
- Biomedical Beamline ID 17, European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | | | - Hans Blattmann
- Independent Researcher, 5417 Untersiggenthal, Switzerland
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| |
Collapse
|
10
|
Baiocco G, Bartzsch S, Conte V, Friedrich T, Jakob B, Tartas A, Villagrasa C, Prise KM. A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:545-559. [PMID: 36220965 PMCID: PMC9630194 DOI: 10.1007/s00411-022-00989-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/03/2022] [Indexed: 05/10/2023]
Abstract
The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.
Collapse
Affiliation(s)
- Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| | - Stefan Bartzsch
- Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Valeria Conte
- Istituto Nazionale Di Fisica Nucleare INFN, Laboratori Nazionali Di Legnaro, Legnaro, Italy
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Adrianna Tartas
- Biomedical Physics Division, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Carmen Villagrasa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
11
|
Ortiz R, De Marzi L, Prezado Y. Preclinical dosimetry in proton minibeam radiation therapy: robustness analysis and guidelines. Med Phys 2022; 49:5551-5561. [PMID: 35621386 PMCID: PMC9544651 DOI: 10.1002/mp.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/03/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Proton minibeam radiation therapy (pMBRT) is a new radiotherapy approach that has shown a significant increase in the therapeutic window in glioma‐bearing rats compared to conventional proton therapy. The dosimetry of pMBRT is challenging and error prone due to the submillimetric beamlet sizes used. The aim of this study was to perform a robustness analysis on the setup parameters utilized in current preclinical trials and provide guidelines for reproducible dosimetry. The results of this work are intended to guide upcoming implementations of pMBRT worldwide, as well as pave the way for future clinical implementations. Methods Monte Carlo simulations and experimental data were used to evaluate the impact of variations in setup parameters and uncertainties in collimator specifications on lateral pMBRT dose distributions. The value of each parameter was modified individually to evaluate their effect on dose distributions. Experimental dosimetry was performed by means of high‐resolution detectors, that is, radiochromic films, the IBA Razor and the Microdiamond detector. New guidelines were proposed to optimize the experimental setup in pMBRT studies and perform reproducible dosimetry. Results The sensitivity of dose distributions to uncertainties and variations in setup parameters was quantified. Quantities that define pMBRT lateral profiles (i.e., the peak‐to‐valley dose ratio [PVDR], peak and valley doses, and peak width) are significantly influenced by small‐scale fluctuations in several of those parameters. The setup implemented at the Orsay proton therapy center for pMBRT irradiation was optimized to increase PVDRs and peak symmetry. In addition, we proposed guidelines to perform accurate and reproducible dosimetry in preclinical studies. Conclusions This study revealed the importance of adopting guidelines and protocols tailored to the distinct dose delivery method and dose distributions in pMBRT. This new methodology leads to reproducible dosimetry, which is imperative in preclinical trials. The results and guidelines presented in this manuscript can ease the initiation of pMBRT investigations in other centers.
Collapse
Affiliation(s)
- Ramon Ortiz
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, 91400, France.,Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, 91400, France
| | - Ludovic De Marzi
- Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, Orsay, 91898, France.,Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO, Orsay, 91898, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, 91400, France.,Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, 91400, France
| |
Collapse
|
12
|
Kundapur V, Mayer M, Auer RN, Alexander A, Weibe S, Pushie MJ, Cranmer-Sargison G. Is Mini Beam Ready for Human Trials? Results of Randomized Study of Treating De-Novo Brain Tumors in Canines Using Linear Accelerator Generated Mini Beams. Radiat Res 2022; 198:162-171. [PMID: 35536992 DOI: 10.1667/rade-21-00093.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
The main challenge in treating malignant brain neoplasms lies in eradicating the tumor while minimizing treatment-related damage. Conventional radiation treatments are associated with considerable side effects. Synchrotron generated micro-beam radiation (SMBRT) has shown to preserve brain architecture while killing tumor cells, however physical characteristics and limited facility access restrict its use. We have created a new clinical device which produces mini beams on a linear accelerator, to provide a new type of treatment called mini-beam radiation therapy (MBRT). The objective of this study is to compare the treatment outcomes of linear accelerator based MBRT versus standard radiation treatment (SRT), to evaluate the tumor response and the treatment-related changes in the normal brain with respect to each treatment type. Pet dogs with de-novo brain tumors were accrued for treatment. Dogs were randomized between standard fractionated stereotactic (9 Gy in 3 fractions) radiation treatment vs. a single fraction of MBRT (26 Gy mean dose). Dogs were monitored after treatment for clinical assessment and imaging. When the dogs were euthanized, a veterinary pathologist assessed the radiation changes and tumor response. We accrued 16 dogs, 8 dogs in each treatment arm. In the MBRT arm, 71% dogs achieved complete pathological remission. The radiation-related changes were all confined to the target region. Structural damage was not observed in the beam path outside of the target region. In contrast, none of the dogs in control group achieved remission and the treatment related damage was more extensive. Therapeutic superiority was observed with MBRT, including both tumor control and the normal structural preservation. The MBRT findings are suggestive of an immune related mechanism which is absent in standard treatment. These findings together with the widespread availability of clinical linear accelerators make MBRT a promising research topic to explore further treatment and clinical trial opportunities.
Collapse
Affiliation(s)
- V Kundapur
- Radiation Oncology, Saskatchewan Cancer Agency, Saskatoon Cancer Centre, Saskatoon, SK Canada S7N4H4
| | - M Mayer
- Veterinary Radiation Oncology, Department of Small Animal clinical Sciences, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - R N Auer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - A Alexander
- Radiation Physics, Saskatchewan Cancer Agency, Saskatoon Cancer Centre, Saskatoon, SK Canada S7N4H4
| | - S Weibe
- Department of Clinical Imaging, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - M J Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - G Cranmer-Sargison
- Radiation Physics, Saskatchewan Cancer Agency, Saskatoon Cancer Centre, Saskatoon, SK Canada S7N4H4
| |
Collapse
|
13
|
Moghaddasi L, Reid P, Bezak E, Marcu LG. Radiobiological and Treatment-Related Aspects of Spatially Fractionated Radiotherapy. Int J Mol Sci 2022; 23:3366. [PMID: 35328787 PMCID: PMC8954016 DOI: 10.3390/ijms23063366] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The continuously evolving field of radiotherapy aims to devise and implement techniques that allow for greater tumour control and better sparing of critical organs. Investigations into the complexity of tumour radiobiology confirmed the high heterogeneity of tumours as being responsible for the often poor treatment outcome. Hypoxic subvolumes, a subpopulation of cancer stem cells, as well as the inherent or acquired radioresistance define tumour aggressiveness and metastatic potential, which remain a therapeutic challenge. Non-conventional irradiation techniques, such as spatially fractionated radiotherapy, have been developed to tackle some of these challenges and to offer a high therapeutic index when treating radioresistant tumours. The goal of this article was to highlight the current knowledge on the molecular and radiobiological mechanisms behind spatially fractionated radiotherapy and to present the up-to-date preclinical and clinical evidence towards the therapeutic potential of this technique involving both photon and proton beams.
Collapse
Affiliation(s)
- Leyla Moghaddasi
- Department of Medical Physics, Austin Health, Ballarat, VIC 3350, Australia;
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
| | - Paul Reid
- Radiation Health, Environment Protection Authority, Adelaide, SA 5000, Australia;
| | - Eva Bezak
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Loredana G. Marcu
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
| |
Collapse
|
14
|
Bouchet A, Le Clec'h C, Rogalev L, Le Duc G, Pelletier L. Meloxicam can Potentiate the Therapeutic Effects of Synchrotron Microbeam Radiation Therapy on High-Grade Glioma Bearing Rats. Radiat Res 2022; 197:655-661. [PMID: 35245385 DOI: 10.1667/rade-21-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
The microbeam radiation therapy (MRT), a spatially micro-fractionated synchrotron radiotherapy, leads to better control of incurable high-grade glioma than that obtained upon homogeneous radiotherapy. We evaluated the effect of meloxicam, a non-steroidal anti-inflammatory drug (NSAID), to increase the MRT response. Survival of rats bearing intracranial 9L gliosarcoma treated with meloxicam and/or MRT (400 Gy, 50 μm-wide microbeams, 200 μm spacing) was monitored. Tumor growth was assessed on histological tissue sections and COX-2 transcriptomic expression was studied 1 to 25 days after radiotherapy. Meloxicam significantly extended the median survival of microbeam-irradiated rats (from +10.5 to +20 days). Dual treatment led to last survivors until D90 (D39 for the MRT group) and to tumor 9.5 times smaller than MRT alone. No significant modification of COX-2 expression was induced by MRT in normal and tumor tissues. The meloxicam reinforced the anti-tumor effect of MRT for glioma treatment. Although the mechanisms of interaction between meloxicam and MRT remain to be elucidated, the addition of this NSAID, easily implemented as a supplement to water for example, is a very favorable therapeutic regimen since it doubled the survival benefit compared to MRT alone.
Collapse
Affiliation(s)
- Audrey Bouchet
- INSERM U1296 "Radiation: Defense, Health Environment", Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France.,Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Céline Le Clec'h
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Léonid Rogalev
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Géraldine Le Duc
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Laurent Pelletier
- Grenoble University Hospital, BP217, F-38043 Grenoble cedex.,INSERM U836, Team Nanomedicine and brain, 6 Rue Fortuné Ferrini, F38706 La Tronche
| |
Collapse
|
15
|
Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol 2022; 67:10.1088/1361-6560/ac508c. [PMID: 35100573 PMCID: PMC9167045 DOI: 10.1088/1361-6560/ac508c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Objective. To develop and characterize novel methods of extreme spatially fractionated kV radiation therapy (including mini-GRID therapy) and to evaluate efficacy in the context of a pre-clinical mouse study.Approach. Spatially fractionated GRIDs were precision-milled from 3 mm thick lead sheets compatible with mounting on a 225 kVp small animal irradiator (X-Rad). Three pencil-beam GRIDs created arrays of 1 mm diameter beams, and three 'bar' GRIDs created 1 × 20 mm rectangular fields. GRIDs projected 20 × 20 mm2fields at isocenter, and beamlets were spaced at 1, 1.25, and 1.5 mm, respectively. Peak-to-valley ratios and dose distributions were evaluated with Gafchromic film. Syngeneic transplant tumors were induced by intramuscular injection of a soft tissue sarcoma cell line into the gastrocnemius muscle of C57BL/6 mice. Tumor-bearing mice were randomized to four groups: unirradiated control, conventional irradiation of entire tumor, GRID therapy, and hemi-irradiation (half-beam block, 50% tumor volume treated). All irradiated mice received a single fraction of 15 Gy.Results. High peak-to-valley ratios were achieved (bar GRIDs: 11.9 ± 0.9, 13.6 ± 0.4, 13.8 ± 0.5; pencil-beam GRIDs: 18.7 ± 0.6, 26.3 ± 1.5, 31.0 ± 3.3). Pencil-beam GRIDs could theoretically spare more intra-tumor immune cells than bar GRIDs, but they treat less tumor tissue (3%-4% versus 19%-23% area receiving 90% prescription, respectively). Bar GRID and hemi-irradiation treatments significantly delayed tumor growth (P < 0.05), but not as much as a conventional treatment (P < 0.001). No significant difference was found in tumor growth delay between GRID and hemi-irradiation.Significance. High peak-to-valley ratios were achieved with kV grids: two-to-five times higher than values reported in literature for MV grids. GRID irradiation and hemi-irradiation delayed tumor growth, but neither was as effective as conventional whole tumor uniform dose treatment. Single fraction GRID therapy could not initiate an anti-cancer immune response strong enough to match conventional RT outcomes, but follow-up studies will evaluate the combination of mini-GRID with immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy R Johnson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Alex M Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Simon Brundage
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
16
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
17
|
Schültke E. Flying rats and microbeam paths crossing: the beauty of international interdisciplinary science. Int J Radiat Biol 2022; 98:466-473. [PMID: 34995153 DOI: 10.1080/09553002.2021.2024293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Microbeam radiotherapy (MRT) is a still experimental radiotherapy approach. Two combined parameters contribute to an excellent normal tissue protection and an improved control of malignant tumors in small animal models, compared to conventional radiotherapy: dose deposition at a high dose rate and spatial fractionation at the micrometre level. The international microbeam research community expects to see clinical MRT trials within the next ten years.Physics-associated research is still widely regarded as a male domain. Thus, the question was asked whether this is reflected in the scientific contributions to the field of microbeam radiotherapy. METHOD A literature search was conducted using Pubmed, Semantic Scholar and other sources to look specifically for female contributors to the field of microbeam radiotherapy development. CONCLUSION The original idea for MRT was patented in 1994 by an all-male research team. In approximately 50% of all publications related to microbeam radiotherapy, however, either the first or the senior author is a woman. The contribution of those women who have been driving the development of both technical and biomedical aspects of MRT in the last two decades is highlighted.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Gomes ER, Franco MS. Combining Nanocarrier-Assisted Delivery of Molecules and Radiotherapy. Pharmaceutics 2022; 14:pharmaceutics14010105. [PMID: 35057001 PMCID: PMC8781448 DOI: 10.3390/pharmaceutics14010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is responsible for a significant proportion of death all over the world. Therefore, strategies to improve its treatment are highly desired. The use of nanocarriers to deliver anticancer treatments has been extensively investigated and improved since the approval of the first liposomal formulation for cancer treatment in 1995. Radiotherapy (RT) is present in the disease management strategy of around 50% of cancer patients. In the present review, we bring the state-of-the-art information on the combination of nanocarrier-assisted delivery of molecules and RT. We start with formulations designed to encapsulate single or multiple molecules that, once delivered to the tumor site, act directly on the cells to improve the effects of RT. Then, we describe formulations designed to modulate the tumor microenvironment by delivering oxygen or to boost the abscopal effect. Finally, we present how RT can be employed to trigger molecule delivery from nanocarriers or to modulate the EPR effect.
Collapse
Affiliation(s)
- Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Marina Santiago Franco
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), 85764 München, Germany
- Correspondence: ; Tel.: +49-89-3187-48767
| |
Collapse
|
19
|
Bertho A, Iturri L, Prezado Y. Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 376:37-68. [PMID: 36997269 DOI: 10.1016/bs.ircmb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The last several years have revealed increasing evidence of the immunomodulatory role of radiation therapy. Radiotherapy reshapes the tumoral microenvironment can shift the balance toward a more immunostimulatory or immunosuppressive microenvironment. The immune response to radiation therapy appears to depend on the irradiation configuration (dose, particle, fractionation) and delivery modes (dose rate, spatial distributions). Although an optimal irradiation configuration (dose, temporal fractionation, spatial dose distribution, etc.) has not yet been determined, temporal schemes employing high doses per fraction appear to favor radiation-induced immune response through immunogenic cell death. Through the release of damage-associated molecular patterns and the sensing of double-stranded DNA and RNA breaks, immunogenic cell death activates the innate and adaptive immune response, leading to tumor infiltration by effector T cells and the abscopal effect. Novel radiotherapy approaches such as FLASH and spatially fractionated radiotherapies (SFRT) strongly modulate the dose delivery method. FLASH-RT and SFRT have the potential to trigger the immune system effectively while preserving healthy surrounding tissues. This manuscript reviews the current state of knowledge on the immunomodulation effects of these two new radiotherapy techniques in the tumor, healthy immune cells and non-targeted regions, as well as their therapeutic potential in combination with immunotherapy.
Collapse
|
20
|
Bazyar S, O’Brien ET, Benefield T, Roberts VR, Kumar RJ, Gupta GP, Zhou O, Lee YZ. Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator. Cancers (Basel) 2021; 14:155. [PMID: 35008319 PMCID: PMC8750301 DOI: 10.3390/cancers14010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag-/- and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Radiation Oncology, University of Maryland, Maryland, MD 21201, USA;
| | - Edward Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | - Thad Benefield
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | | | - Rashmi J. Kumar
- Medical Scientist Training Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gaorav P. Gupta
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Yueh Z. Lee
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
21
|
Smyth LML, Crosbie JC, Sloggett C, Rogers PAW, Donoghue JF. Spatially Fractionated X-Ray Microbeams Elicit a More Sustained Immune and Inflammatory Response in the Brainstem than Homogenous Irradiation. Radiat Res 2021; 196:355-365. [PMID: 34270776 DOI: 10.1667/rade-20-00082.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2021] [Indexed: 11/03/2022]
Abstract
Synchrotron microbeam radiation therapy (MRT) is a preclinical irradiation technique which could be used to treat intracranial malignancies. The goal of this work was to discern differences in gene expression and the predicted regulation of molecular pathways in the brainstem after MRT versus synchrotron broad-beam radiation therapy (SBBR). Healthy C57BL/6 mice received whole-head irradiation with median acute toxic doses of MRT (241 Gy peak dose) or SBBR (13 Gy). Brains were harvested 4 and 48 h postirradiation and RNA was extracted from the brainstem. RNA-sequencing was performed to identify differentially expressed genes (false discovery rate < 0.01) relative to nonirradiated controls and significantly regulated molecular pathways and biological functions were identified (Benjamini-Hochberg corrected P < 0.05). Differentially expressed genes and regulated pathways largely reflected a pro-inflammatory response 4 h after both MRT and SBBR which was sustained at 48 h postirradiation for MRT. Pathways relating to radiation-induced viral mimicry, including HMGB1, NF-κB and interferon signaling cascades, were predicted to be uniquely activated by MRT. Local microglia, as well as circulating leukocytes, including T cells, were predicted to be activated by MRT. Our findings affirm that the transcriptomic signature of MRT is distinct from broad-beam radiotherapy, with a sustained inflammatory and immune response up to 48 h postirradiation.
Collapse
Affiliation(s)
- Lloyd M L Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| | | | - Clare Sloggett
- Melbourne Bioinformatics, University of Melbourne, Parkville, Australia
| | - Peter A W Rogers
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| |
Collapse
|
22
|
A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy. Clin Oncol (R Coll Radiol) 2021; 33:705-712. [PMID: 34454806 DOI: 10.1016/j.clon.2021.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022]
Abstract
Microbeam radiotherapy (MRT) is the delivery of spatially fractionated beams that have the potential to offer significant improvements in the therapeutic ratio due to the delivery of micron-sized high dose and dose rate beams. They build on longstanding clinical experience of GRID radiotherapy and more recently lattice-based approaches. Here we briefly overview the preclinical evidence for MRT efficacy and highlight the challenges for bringing this to clinical utility. The biological mechanisms underpinning MRT efficacy are still unclear, but involve vascular, bystander, stem cell and potentially immune responses. There is probably significant overlap in the mechanisms underpinning MRT responses and FLASH radiotherapy that needs to be further defined.
Collapse
|
23
|
Trappetti V, Fazzari JM, Fernandez-Palomo C, Scheidegger M, Volarevic V, Martin OA, Djonov VG. Microbeam Radiotherapy-A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. Int J Mol Sci 2021; 22:7755. [PMID: 34299373 PMCID: PMC8303317 DOI: 10.3390/ijms22147755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Jennifer M. Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Maximilian Scheidegger
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Vladislav Volarevic
- Department of Genetics, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
- Peter MacCallum Cancer Centre, Division of Radiation Oncology, Melbourne, VIC 3000, Australia
- University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| |
Collapse
|
24
|
Steel H, Brüningk SC, Box C, Oelfke U, Bartzsch SH. Quantification of Differential Response of Tumour and Normal Cells to Microbeam Radiation in the Absence of FLASH Effects. Cancers (Basel) 2021; 13:3238. [PMID: 34209502 PMCID: PMC8268803 DOI: 10.3390/cancers13133238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Microbeam radiotherapy (MRT) is a preclinical method of delivering spatially-fractionated radiotherapy aiming to improve the therapeutic window between normal tissue complication and tumour control. Previously, MRT was limited to ultra-high dose rate synchrotron facilities. The aim of this study was to investigate in vitro effects of MRT on tumour and normal cells at conventional dose rates produced by a bench-top X-ray source. Two normal and two tumour cell lines were exposed to homogeneous broad beam (BB) radiation, MRT, or were separately irradiated with peak or valley doses before being mixed. Clonogenic survival was assessed and compared to BB-estimated surviving fractions calculated by the linear-quadratic (LQ)-model. All cell lines showed similar BB sensitivity. BB LQ-model predictions exceeded the survival of cell lines following MRT or mixed beam irradiation. This effect was stronger in tumour compared to normal cell lines. Dose mixing experiments could reproduce MRT survival. We observed a differential response of tumour and normal cells to spatially fractionated irradiations in vitro, indicating increased tumour cell sensitivity. Importantly, this was observed at dose rates precluding the presence of FLASH effects. The LQ-model did not predict cell survival when the cell population received split irradiation doses, indicating that factors other than local dose influenced survival after irradiation.
Collapse
Affiliation(s)
- Harriet Steel
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Sarah C. Brüningk
- Machine Learning & Computational Biology, Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
- Swiss Institute for Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Carol Box
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Uwe Oelfke
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Stefan H. Bartzsch
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany;
- Helmholtz Centre Munich, Institute for Radiation Medicine, Ingolstädter Landstraße 1, 85764 Munich, Germany
| |
Collapse
|
25
|
Lamirault C, Brisebard E, Patriarca A, Juchaux M, Crepin D, Labiod D, Pouzoulet F, Sebrie C, Jourdain L, Le Dudal M, Hardy D, De Marzi L, Dendale R, Jouvion G, Prezado Y. Spatially Modulated Proton Minibeams Results in the Same Increase of Lifespan as a Uniform Target Dose Coverage in F98-Glioma-Bearing Rats. Radiat Res 2021; 194:715-723. [PMID: 32991712 DOI: 10.1667/rade-19-00013.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/14/2020] [Indexed: 11/03/2022]
Abstract
Proton minibeam radiation therapy (pMBRT) is a new approach in proton radiotherapy, by which a significant increase in the therapeutic index has already been demonstrated in RG2 glioma-bearing rats. In the current study we investigated the response of other types of glioma (F98) and performed a comparative evaluation of tumor control effectiveness by pMBRT (with different levels of dose heterogeneity) versus conventional proton therapy. The results of our study showed an equivalent increase in the lifespan for all evaluated groups (conventional proton irradiation and pMBRT) and no significant differences in the histopathological analysis of the tumors or remaining brain tissue. The reduced long-term toxicity observed with pMBRT in previous evaluations at the same dose suggests a possible use of pMBRT to treat glioma with less side effects while ensuring the same tumor control achieved with standard proton therapy.
Collapse
Affiliation(s)
- Charlotte Lamirault
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Elise Brisebard
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Laboratoire d'Histopathologie, VetAgro-Sup, Université de Lyon, Marcy l'Etoile, Lyon, France
| | - Annalisa Patriarca
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France
| | - Marjorie Juchaux
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Delphine Crepin
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Dalila Labiod
- Experimental Radiotherapy Platform Institut Curie, University Paris Saclay, Orsay, France
| | - Frederic Pouzoulet
- Experimental Radiotherapy Platform Institut Curie, University Paris Saclay, Orsay, France
| | - Catherine Sebrie
- BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm,Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Laurene Jourdain
- BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm,Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Marine Le Dudal
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Histologie, Embryologie et Anatomie Pathologique, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - David Hardy
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France
| | - Ludovic De Marzi
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France.,Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| | - Remi Dendale
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France
| | - Gregory Jouvion
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Sorbonne Université, INSERM, Pathophysiology of Pediatric Genetic Diseases, Assistance Publique - Hôpitaux de Paris, Hôpital Armand-Trousseau, UF Génétique Moléculaire, Paris, France
| | - Yolanda Prezado
- Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| |
Collapse
|
26
|
Unexpected Benefits of Multiport Synchrotron Microbeam Radiation Therapy for Brain Tumors. Cancers (Basel) 2021; 13:cancers13050936. [PMID: 33668110 PMCID: PMC7956531 DOI: 10.3390/cancers13050936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary We unveiled the potential of an innovative irradiation technique that ablates brain cancer while sparing normal tissues. Spatially fractionating the incident beam into arrays of micrometer-wide beamlets of X-rays (MRT for Microbeam Radiation Therapy) has led to significantly increased survival and tumor control in preclinical studies. Multiport MRT versus conventional irradiations, for the same background continuous dose, resulted in unexpectedly high equivalent biological effects in rats that have not been achieved with any other radiotherapeutic method. These hallmarks of multiport MRT, i.e., minimal impact on normal tissues and exceptional tumor control, may promote this method towards clinical applications, possibly increasing survival and improving long-term outcomes in neuro-oncology patients. Abstract Delivery of high-radiation doses to brain tumors via multiple arrays of synchrotron X-ray microbeams permits huge therapeutic advantages. Brain tumor (9LGS)-bearing and normal rats were irradiated using a conventional, homogeneous Broad Beam (BB), or Microbeam Radiation Therapy (MRT), then studied by behavioral tests, MRI, and histopathology. A valley dose of 10 Gy deposited between microbeams, delivered by a single port, improved tumor control and median survival time of tumor-bearing rats better than a BB isodose. An increased number of ports and an accumulated valley dose maintained at 10 Gy delayed tumor growth and improved survival. Histopathologically, cell death, vascular damage, and inflammatory response increased in tumors. At identical valley isodose, each additional MRT port extended survival, resulting in an exponential correlation between port numbers and animal lifespan (r2 = 0.9928). A 10 Gy valley dose, in MRT mode, delivered through 5 ports, achieved the same survival as a 25 Gy BB irradiation because of tumor dose hot spots created by intersecting microbeams. Conversely, normal tissue damage remained minimal in all the single converging extratumoral arrays. Multiport MRT reached exceptional ~2.5-fold biological equivalent tumor doses. The unique normal tissue sparing and therapeutic index are eminent prerequisites for clinical translation.
Collapse
|
27
|
Treibel F, Nguyen M, Ahmed M, Dombrowsky A, Wilkens JJ, Combs SE, Schmid TE, Bartzsch S. Establishment of Microbeam Radiation Therapy at a Small-Animal Irradiator. Int J Radiat Oncol Biol Phys 2021; 109:626-636. [PMID: 33038461 DOI: 10.1016/j.ijrobp.2020.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Microbeam radiation therapy is a preclinical concept in radiation oncology. It spares normal tissue more effectively than conventional radiation therapy at equal tumor control. The radiation field consists of peak regions with doses of several hundred gray, whereas doses between the peaks (valleys) are below the tissue tolerance level. Widths and distances of the beams are in the submillimeter range for microbeam radiation therapy. A similar alternative concept with beam widths and distances in the millimeter range is presented by minibeam radiation therapy. Although both methods were developed at large synchrotron facilities, compact alternative sources have been proposed recently. METHODS AND MATERIALS A small-animal irradiator was fitted with a special 3-layered collimator that is used for preclinical research and produces microbeams of flexible width of up to 100 μm. Film dosimetry provided measurements of the dose distributions and was compared with Monte Carlo dose predictions. Moreover, the micronucleus assay in Chinese hamster CHO-K1 cells was used as a biological dosimeter. The focal spot size and beam emission angle of the x-ray tube were modified to optimize peak dose rate, peak-to-valley dose ratio (PVDR), beam shape, and field homogeneity. An equivalent collimator with slit widths of up to 500 μm produced minibeams and allowed for comparison of microbeam and minibeam field characteristics. RESULTS The setup achieved peak entrance dose rates of 8 Gy/min and PVDRs >30 for microbeams. Agreement between Monte Carlo simulations and film dosimetry is generally better for larger beam widths; qualitative measurements validated Monte Carlo predicted results. A smaller focal spot enhances PVDRs and reduces beam penumbras but substantially reduces the dose rate. A reduction of the beam emission angle improves the PVDR, beam penumbras, and dose rate without impairing field homogeneity. Minibeams showed similar field characteristics compared with microbeams at the same ratio of beam width and distance but had better agreement with simulations. CONCLUSION The developed setup is already in use for in vitro experiments and soon for in vivo irradiations. Deviations between Monte Carlo simulations and film dosimetry are attributed to scattering at the collimator surface and manufacturing inaccuracies and are a matter of ongoing research.
Collapse
Affiliation(s)
- Franziska Treibel
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Mai Nguyen
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Mabroor Ahmed
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Annique Dombrowsky
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Jan J Wilkens
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Stephanie E Combs
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Thomas E Schmid
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Stefan Bartzsch
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany.
| |
Collapse
|
28
|
Mazal A, Vera Sanchez JA, Sanchez-Parcerisa D, Udias JM, España S, Sanchez-Tembleque V, Fraile LM, Bragado P, Gutierrez-Uzquiza A, Gordillo N, Garcia G, Castro Novais J, Perez Moreno JM, Mayorga Ortiz L, Ilundain Idoate A, Cremades Sendino M, Ares C, Miralbell R, Schreuder N. Biological and Mechanical Synergies to Deal With Proton Therapy Pitfalls: Minibeams, FLASH, Arcs, and Gantryless Rooms. Front Oncol 2021; 10:613669. [PMID: 33585238 PMCID: PMC7874206 DOI: 10.3389/fonc.2020.613669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
Proton therapy has advantages and pitfalls comparing with photon therapy in radiation therapy. Among the limitations of protons in clinical practice we can selectively mention: uncertainties in range, lateral penumbra, deposition of higher LET outside the target, entrance dose, dose in the beam path, dose constraints in critical organs close to the target volume, organ movements and cost. In this review, we combine proposals under study to mitigate those pitfalls by using individually or in combination: (a) biological approaches of beam management in time (very high dose rate “FLASH” irradiations in the order of 100 Gy/s) and (b) modulation in space (a combination of mini-beams of millimetric extent), together with mechanical approaches such as (c) rotational techniques (optimized in partial arcs) and, in an effort to reduce cost, (d) gantry-less delivery systems. In some cases, these proposals are synergic (e.g., FLASH and minibeams), in others they are hardly compatible (mini-beam and rotation). Fixed lines have been used in pioneer centers, or for specific indications (ophthalmic, radiosurgery,…), they logically evolved to isocentric gantries. The present proposals to produce fixed lines are somewhat controversial. Rotational techniques, minibeams and FLASH in proton therapy are making their way, with an increasing degree of complexity in these three approaches, but with a high interest in the basic science and clinical communities. All of them must be proven in clinical applications.
Collapse
Affiliation(s)
| | | | - Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Sedecal Molecular Imaging, Madrid, Spain
| | - Jose Manuel Udias
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Samuel España
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Victor Sanchez-Tembleque
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paloma Bragado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Nuria Gordillo
- Department of Applied Physics, U. Autonoma de Madrid, Madrid, Spain.,Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | - Gaston Garcia
- Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | | | | | | | | | | | - Carme Ares
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | | | | |
Collapse
|
29
|
Zabihzadeh M, Rabiei A, Shahbazian H, Razmjoo S. Investigating the Dosimetric Characteristics of Microbeam Radiation Treatment. JOURNAL OF MEDICAL SIGNALS & SENSORS 2021; 11:45-51. [PMID: 34026590 PMCID: PMC8043115 DOI: 10.4103/jmss.jmss_12_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND High-radiation therapeutic gain could be achieved by the modern technique of microbeam radiation treatment (MRT). The aim of this study was to investigate the dosimetric properties of MRT. METHODS The EGSnrc Monte Carlo (MC) code system was used to transport photons and electrons in MRT. The mono-energetic beams (1 cm × 1 cm array) of 50, 100, and 150 keV and the spectrum photon beam (European Synchrotron Radiation Facility [ESRF]) were modeled to transport through multislit collimators with the aperture's widths of 25 and 50 μm and the center-to-center (c-t-c) distance between two adjacent microbeams (MBs) of 200 μm. The calculated phase spaces at the upper surface of water phantom (1 cm × 1 cm) were implemented in DOSXYZnrc code to calculate the percentage depth dose (PDD), the dose profile curves (in depths of 0-1, 1-2, and 3-4 cm), and the peak-to-valley dose ratios (PVDRs). RESULTS The PDD, dose profile curves, and PVDRs were calculated for different effective parameters. The more flatness of lateral dose profile was obtained for the ESRF spectrum MB. With constant c-t-c distance, an increase in the MB size increased the peak and valley dose; simultaneously, the PVDR was larger for the 25 μm MB (33.5) compared to 50 μm MB (21.9) beam, due to the decreased scattering photons followed to the lower overlapping of the adjacent MBs. An increase in the depth decreased the PVDRs (i.e., 54.9 in depth of 0-1 cm). CONCLUSION Our MC model of MRT successfully calculated the effect of dosimetric parameters including photon's energy, beam width, and depth to estimate the dose distribution.
Collapse
Affiliation(s)
- Mansour Zabihzadeh
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Rabiei
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hojattollah Shahbazian
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sasan Razmjoo
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Conventional dose rate spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric parameters-A preclinical study in a Fischer 344 rat model. PLoS One 2020; 15:e0229053. [PMID: 32569277 PMCID: PMC7307781 DOI: 10.1371/journal.pone.0229053] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To identify key dosimetric parameters that have close associations with tumor treatment response and body weight change in SFRT treatments with a large range of spatial-fractionation scale at dose rates of several Gy/min. Methods Six study arms using uniform tumor radiation, half-tumor radiation, 2mm beam array radiation, 0.3mm minibeam radiation, and an untreated arm were used. All treatments were delivered on a 320kV x-ray irradiator. Forty-two female Fischer 344 rats with fibrosarcoma tumor allografts were used. Dosimetric parameters studied are peak dose and width, valley dose and width, peak-to-valley-dose-ratio (PVDR), volumetric average dose, percentage volume directly irradiated, and tumor- and normal-tissue EUD. Animal survival, tumor volume change, and body weight change (indicative of treatment toxicity) are tested for association with the dosimetric parameters using linear regression and Cox Proportional Hazards models. Results The dosimetric parameters most closely associated with tumor response are tumor EUD (R2 = 0.7923, F-stat = 15.26*; z-test = -4.07***), valley (minimum) dose (R2 = 0.7636, F-stat = 12.92*; z-test = -4.338***), and percentage tumor directly irradiated (R2 = 0.7153, F-stat = 10.05*; z-test = -3.837***) per the linear regression and Cox Proportional Hazards models, respectively. Tumor response is linearly proportional to valley (minimum) doses and tumor EUD. Average dose (R2 = 0.2745, F-stat = 1.514 (no sig.); z-test = -2.811**) and peak dose (R2 = 0.04472, F-stat = 0.6874 (not sig.); z-test = -0.786 (not sig.)) show the weakest associations to tumor response. Only the uniform radiation arm did not gain body weight post-radiation, indicative of treatment toxicity; however, body weight change in general shows weak association with all dosimetric parameters except for valley (minimum) dose (R2 = 0.3814, F-stat = 13.56**), valley width (R2 = 0.2853, F-stat = 8.783**), and peak width (R2 = 0.2759, F-stat = 8.382**). Conclusions For a single-fraction SFRT at conventional dose rates, valley, not peak, dose is closely associated with tumor treatment response and thus should be used for treatment prescription. Tumor EUD, valley (minimum) dose, and percentage tumor directly irradiated are the top three dosimetric parameters that exhibited close associations with tumor response.
Collapse
|
31
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
32
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
33
|
Fernandez-Palomo C, Fazzari J, Trappetti V, Smyth L, Janka H, Laissue J, Djonov V. Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers (Basel) 2020; 12:cancers12030527. [PMID: 32106397 PMCID: PMC7139755 DOI: 10.3390/cancers12030527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. OBJECTIVE This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. METHODS We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. RESULTS After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles. Here we present the animal models and pre-clinical radiation parameters employed in the existing MRT literature according to their use in cancer treatment, non-neoplastic diseases, or normal tissue studies. CONCLUSIONS The study of MRT is concentrated in brain-related diseases performed mostly in rat models. An appropriate comparison between MRT and conventional radiotherapy (instead of synchrotron broad beam) is needed. Recommendations are provided for future studies involving MRT.
Collapse
Affiliation(s)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Lloyd Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, 3057 Parkville, Australia;
| | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, 3012 Bern, Switzerland;
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
- Correspondence: ; Tel.: +41-31-631-8432
| |
Collapse
|
34
|
Potez M, Bouchet A, Flaender M, Rome C, Collomb N, Grotzer M, Krisch M, Djonov V, Balosso J, Brun E, Laissue JA, Serduc R. Synchrotron X-Ray Boost Delivered by Microbeam Radiation Therapy After Conventional X-Ray Therapy Fractionated in Time Improves F98 Glioma Control. Int J Radiat Oncol Biol Phys 2020; 107:360-369. [PMID: 32088292 DOI: 10.1016/j.ijrobp.2020.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly collimated synchrotron beam into arrays of parallel microbeams depositing several hundred grays. It appears relevant to combine MRT with a conventional treatment course, preparing a treatment scheme for future patients in clinical trials. The efficiency of MRT delivered after several broad-beam (BB) fractions to palliate F98 brain tumors in rats in comparison with BB fractions alone was evaluated in this study. METHODS AND MATERIALS Rats bearing 106 F98 cells implanted in the caudate nucleus were irradiated by 5 fractions in BB mode (3 × 6 Gy + 2 × 8 Gy BB) or by 2 boost fractions in MRT mode to a total of 5 fractions (3 × 6 Gy BB + MRT 2 × 8 Gy valley dose; peak dose 181 Gy [50/200 μm]). Tumor growth was evaluated in vivo by magnetic resonance imaging follow-up at T-1, T7, T12, T15, T20, and T25 days after radiation therapy and by histology and flow cytometry. RESULTS MRT-boosted tumors displayed lower cell density and cell proliferation compared with BB-irradiated tumors. The MRT boost completely stopped tumor growth during ∼4 weeks and led to a significant increase in median survival time, whereas tumors treated with BB alone recurred within a few days after the last radiation fraction. CONCLUSIONS The first evidence is presented that MRT, delivered as a boost of conventionally fractionated irradiation by orthovoltage broad x-ray beams, is feasible and more efficient than conventional radiation therapy alone.
Collapse
Affiliation(s)
- Marine Potez
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | - Audrey Bouchet
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France; Institute of Anatomy, Group Tomographic and Clinical Anatomy, University of Bern, Bern, Switzerland.
| | - Mélanie Flaender
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | - Claire Rome
- Team Functional NeuroImaging and Brain Perfusion, Inserm, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | - Nora Collomb
- Team Functional NeuroImaging and Brain Perfusion, Inserm, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | - Michael Grotzer
- Department of Oncology, University Children's Hospital of Zurich, Switzerland
| | - Michael Krisch
- European Synchrotron Radiation Facility, Grenoble, France
| | - Valentin Djonov
- Institute of Anatomy, Group Tomographic and Clinical Anatomy, University of Bern, Bern, Switzerland
| | - Jacques Balosso
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | - Emmanuel Brun
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | | | - Raphaël Serduc
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
35
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
De Marzi L, Nauraye C, Lansonneur P, Pouzoulet F, Patriarca A, Schneider T, Guardiola C, Mammar H, Dendale R, Prezado Y. Spatial fractionation of the dose in proton therapy: Proton minibeam radiation therapy. Cancer Radiother 2019; 23:677-681. [DOI: 10.1016/j.canrad.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
|
37
|
Eling L, Bouchet A, Nemoz C, Djonov V, Balosso J, Laissue J, Bräuer-Krisch E, Adam JF, Serduc R. Ultra high dose rate Synchrotron Microbeam Radiation Therapy. Preclinical evidence in view of a clinical transfer. Radiother Oncol 2019; 139:56-61. [PMID: 31307824 DOI: 10.1016/j.radonc.2019.06.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
This paper reviews the current state of the art of an emerging form of radiosurgery dedicated to brain tumour treatment and which operates at very high dose rate (kGy·s-1). Microbeam Radiation Therapy uses synchrotron-generated X-rays which triggered normal tissue sparing partially mediated by FLASH effect.
Collapse
Affiliation(s)
- Laura Eling
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | - Audrey Bouchet
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | | | | | | | | | | | - Jean Francois Adam
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | - Raphael Serduc
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France.
| |
Collapse
|
38
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
39
|
Synchrotron microbeam radiotherapy evokes a different early tumor immunomodulatory response to conventional radiotherapy in EMT6.5 mammary tumors. Radiother Oncol 2019; 133:93-99. [PMID: 30935588 DOI: 10.1016/j.radonc.2019.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Synchrotron microbeam radiation therapy (MRT) is a new, evolving form of radiotherapy that has potential for clinical application. Several studies have shown in preclinical models that synchrotron MRT achieves equivalent tumor control to conventional radiotherapy (CRT) but with significantly reduced normal tissue damage. METHODS To explore differences between these two modalities, we assessed the immune cell infiltrate into EMT6.5 mammary tumors after CRT and MRT. RESULTS CRT induced marked increases in tumor-associated macrophages and neutrophils while there were no increases in these populations following MRT. In contrast, there were higher numbers of T cells in the MRT treated tumors. There were also increased levels of CCL2 by immunohistochemistry in tumors subjected to CRT, but not to MRT. Conversely, we found that MRT induced higher levels of pro-inflammatory genes in tumors than CRT. CONCLUSION Our data are the first to demonstrate substantial differences in macrophage, neutrophil and T cell numbers in tumors following MRT versus CRT, providing support for the concept that MRT evokes a different immunomodulatory response in tumors compared to CRT.
Collapse
|
40
|
Prezado Y, Jouvion G, Patriarca A, Nauraye C, Guardiola C, Juchaux M, Lamirault C, Labiod D, Jourdain L, Sebrie C, Dendale R, Gonzalez W, Pouzoulet F. Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas. Sci Rep 2018; 8:16479. [PMID: 30405188 PMCID: PMC6220274 DOI: 10.1038/s41598-018-34796-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel strategy which has already shown a remarkable reduction in neurotoxicity as to compared with standard proton therapy. Here we report on the first evaluation of tumor control effectiveness in glioma bearing rats with highly spatially modulated proton beams. Whole brains (excluding the olfactory bulb) of Fischer 344 rats were irradiated. Four groups of animals were considered: a control group (RG2 tumor bearing rats), a second group of RG2 tumor-bearing rats and a third group of normal rats that received pMBRT (70 Gy peak dose in one fraction) with very heterogeneous dose distributions, and a control group of normal rats. The tumor-bearing and normal animals were followed-up for 6 months and one year, respectively. pMBRT leads to a significant tumor control and tumor eradication in 22% of the cases. No substantial brain damage which confirms the widening of the therapeutic window for high-grade gliomas offered by pMBRT. Additionally, the fact that large areas of the brain can be irradiated with pMBRT without significant side effects, would allow facing the infiltrative nature of gliomas.
Collapse
Affiliation(s)
- Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - Gregory Jouvion
- Institut Pasteur, Neuropathologie Expérimentale, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Consuelo Guardiola
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Marjorie Juchaux
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Charlotte Lamirault
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Dalila Labiod
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - Laurene Jourdain
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Catherine Sebrie
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Remi Dendale
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Wilfredo Gonzalez
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Frederic Pouzoulet
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| |
Collapse
|
41
|
Ghita M, Fernandez-Palomo C, Fukunaga H, Fredericia PM, Schettino G, Bräuer-Krisch E, Butterworth KT, McMahon SJ, Prise KM. Microbeam evolution: from single cell irradiation to pre-clinical studies. Int J Radiat Biol 2018; 94:708-718. [PMID: 29309203 DOI: 10.1080/09553002.2018.1425807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on pre-clinical modalities and translation towards clinical application. CONCLUSIONS The development of radiation microbeams has been a valuable tool for the exploration of fundamental radiobiological response mechanisms. The strength of micro-irradiation techniques lies in their ability to deliver precise doses of radiation to selected individual cells in vitro or even to target subcellular organelles. These abilities have led to the development of a range of microbeam facilities around the world allowing the delivery of precisely defined beams of charged particles, X-rays, or electrons. In addition, microbeams have acted as mechanistic probes to dissect the underlying molecular events of the DNA damage response following highly localized dose deposition. Further advances in very precise beam delivery have also enabled the transition towards new and exciting therapeutic modalities developed at synchrotrons to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT).
Collapse
Affiliation(s)
- Mihaela Ghita
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | | | - Hisanori Fukunaga
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Pil M Fredericia
- c Centre for Nuclear Technologies , Technical University of Denmark , Roskilde , Denmark
| | | | | | - Karl T Butterworth
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Stephen J McMahon
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Kevin M Prise
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| |
Collapse
|
42
|
Increased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source. PLoS One 2017; 12:e0186005. [PMID: 29049300 PMCID: PMC5648152 DOI: 10.1371/journal.pone.0186005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the translation of this promising radiotherapy technique to a machine of future clinical relevance. We performed in vitro colony-forming assays and chromosome aberration tests in normal tissue cells after microbeam irradiation compared to homogeneous irradiation at the same mean dose using 25 keV X-rays. The microplanar pattern was achieved with a tungsten slit array of 50 μm slit size and a spacing of 350 μm. Applying microbeams significantly increased cell survival for a mean dose above 2 Gy, which indicates fewer normal tissue complications. The observation of significantly less chromosome aberrations suggests a lower risk of second cancer development. Our findings provide valuable insight into the mechanisms of microbeam radiotherapy and prove its applicability at a compact synchrotron, which contributes to its future clinical translation.
Collapse
|
43
|
Brönnimann D, Bouchet A, Schneider C, Potez M, Serduc R, Bräuer-Krisch E, Graber W, von Gunten S, Laissue JA, Djonov V. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Sci Rep 2016; 6:33601. [PMID: 27640676 PMCID: PMC5027521 DOI: 10.1038/srep33601] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25–100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a+ thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.
Collapse
Affiliation(s)
- Daniel Brönnimann
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Audrey Bouchet
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Christoph Schneider
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Marine Potez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Raphaël Serduc
- Université Grenoble Alpes, EA-Rayonnement Synchrotron et Recherche Medicale, ESRF, ID17 F-38043 Grenoble, France
| | - Elke Bräuer-Krisch
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble, France
| | - Werner Graber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Jean Albert Laissue
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| |
Collapse
|
44
|
Fernandez-Palomo C, Schültke E, Bräuer-Krisch E, Laissue JA, Blattmann H, Seymour C, Mothersill C. Investigation of Abscopal and Bystander Effects in Immunocompromised Mice After Exposure to Pencilbeam and Microbeam Synchrotron Radiation. HEALTH PHYSICS 2016; 111:149-159. [PMID: 27356059 DOI: 10.1097/hp.0000000000000525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Out-of-field effects are of considerable interest in radiotherapy. The mechanisms are poorly understood but are thought to involve signaling processes, which induce responses in non-targeted cells and tissues. The immune response is thought to play a role. The goal of this research was to study the induction of abscopal effects in the bladders of NU-Foxn1 mice after irradiating their brains using Pencil Beam (PB) or microbeam (MRT) irradiation at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Athymic nude mice injected with F98 glioma cells into their right cerebral hemisphere 7 d earlier were treated with either MRT or PB. After recovery times of 2, 12, and 48 h, the urinary bladders were extracted and cultured as tissue explants for 24 h. The growth medium containing the potential signaling factors was harvested, filtered, and transferred to HaCaT reporter cells to assess their clonogenic survival and calcium signaling potential. The results show that in the tumor-free mice, both treatment modalities produce strong bystander/abscopal signals using the clonogenic reporter assay; however, the calcium data do not support a calcium channel mediated mechanism. The presence of a tumor reduces or reverses the effect. PB produced significantly stronger effects in the bladders of tumor-bearing animals. The authors conclude that immunocompromised mice produce signals, which can alter the response of unirradiated reporter cells; however, a novel mechanism appears to be involved.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- *Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; †Department of Radiotherapy, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany; ‡European Synchrotron Radiation Facility, BP 220 6, rue Jules Horowitz, 38043 Grenoble, France, §University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland; ** Niederwiesstrasse 13C, Untersiggenthal, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Bouchet A, Bräuer-Krisch E, Prezado Y, El Atifi M, Rogalev L, Le Clec'h C, Laissue JA, Pelletier L, Le Duc G. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma. Int J Radiat Oncol Biol Phys 2016; 95:1485-1494. [DOI: 10.1016/j.ijrobp.2016.03.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 11/29/2022]
|
46
|
Smyth LML, Senthi S, Crosbie JC, Rogers PAW. The normal tissue effects of microbeam radiotherapy: What do we know, and what do we need to know to plan a human clinical trial? Int J Radiat Biol 2016; 92:302-11. [DOI: 10.3109/09553002.2016.1154217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lloyd M. L. Smyth
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
- Epworth Radiation Oncology, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Sashendra Senthi
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
| | - Jeffrey C. Crosbie
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter A. W. Rogers
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Ibahim MJ, Yang Y, Crosbie JC, Stevenson A, Cann L, Paiva P, Rogers PA. Eosinophil-Associated Gene Pathways but not Eosinophil Numbers are Differentially Regulated between Synchrotron Microbeam Radiation Treatment and Synchrotron Broad-Beam Treatment by 48 Hours Postirradiation. Radiat Res 2015; 185:60-8. [PMID: 26720800 DOI: 10.1667/rr14115.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synchrotron microbeam radiation treatment (MRT) is a preclinical radiotherapy technique with considerable clinical promise, although some of the underlying radiobiology of MRT is still not well understood. In recently reported studies, it has been suggested that MRT elicits a different tumor immune profile compared to broad-beam treatment (BB). The aim of this study was to investigate the effects of synchrotron MRT and BB on eosinophil-associated gene pathways and eosinophil numbers within and around the tumor in the acute stage, 48 h postirradiation. Balb/C mice were inoculated with EMT6.5 mouse mammary tumors and irradiated with microbeam radiation (112 and 560 Gy) and broad-beam radiation (5 and 9 Gy) at equivalent doses determined from a previous in vitro study. After tumors were collected 24 and 48 h postirradiation, RNA was extracted and quantitative PCR performed to assess eosinophil-associated gene expression. Immunohistochemistry was performed to detect two known markers of eosinophils: eosinophil-associated ribonucleases (EARs) and eosinophil major basic protein (MBP). We identified five genes associated with eosinophil function and recruitment (Ear11, Ccl24, Ccl6, Ccl9 and Ccl11) and all of them, except Ccl11, were differentially regulated in synchrotron microbeam-irradiated tumors compared to broad-beam-irradiated tumors. However, immunohistochemical localization demonstrated no significant differences in the number of EAR- and MBP-positive eosinophils infiltrating the primary tumor after MRT compared to BB. In conclusion, our work demonstrates that the effects of MRT on eosinophil-related gene pathways are different from broad-beam radiation treatment at doses previously demonstrated to be equivalent in an in vitro study. However, a comparison of the microenvironments of tumors, which received MRT and BB, 48 h after exposure showed no difference between them with respect to eosinophil accumulation. These findings contribute to our understanding of the role of differential effects of MRT on the tumor immune response.
Collapse
Affiliation(s)
- M J Ibahim
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia;,b Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
| | - Y Yang
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - J C Crosbie
- c School of Applied Sciences, RMIT University, Melbourne, Victoria 3001, Australia;,d William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - A Stevenson
- e The Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia; and.,f CSIRO Materials Science and Engineering, Clayton, Victoria 3168, Australia
| | - L Cann
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - P Paiva
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - P A Rogers
- a Department of Obstetrics and Gynaecology, The University of Melbourne, Level 7, The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
48
|
Georgakilas AG, Pavlopoulou A, Louka M, Nikitaki Z, Vorgias CE, Bagos PG, Michalopoulos I. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 2015; 368:164-72. [DOI: 10.1016/j.canlet.2015.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022]
|
49
|
Bouchet A, Serduc R, Laissue JA, Djonov V. Effects of microbeam radiation therapy on normal and tumoral blood vessels. Phys Med 2015; 31:634-41. [DOI: 10.1016/j.ejmp.2015.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022] Open
|
50
|
Bouchet A, Sakakini N, Atifi ME, Le Clec'h C, Bräuer-Krisch E, Rogalev L, Laissue JA, Rihet P, Le Duc G, Pelletier L. Identification of AREG and PLK1 pathway modulation as a potential key of the response of intracranial 9L tumor to microbeam radiation therapy. Int J Cancer 2015; 136:2705-16. [PMID: 25382544 DOI: 10.1002/ijc.29318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/12/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023]
Abstract
Synchrotron microbeam radiation therapy (MRT) relies on the spatial fractionation of a synchrotron beam into parallel micron-wide beams allowing deposition of hectogray doses. MRT controls the intracranial tumor growth in rodent models while sparing normal brain tissues. Our aim was to identify the early biological processes underlying the differential effect of MRT on tumor and normal brain tissues. The expression of 28,000 transcripts was tested by microarray 6 hr after unidirectional MRT (400 Gy, 50 µm-wide microbeams, 200 µm spacing). The specific response of tumor tissues to MRT consisted in the significant transcriptomic modulation of 431 probesets (316 genes). Among them, 30 were not detected in normal brain tissues, neither before nor after MRT. Areg, Trib3 and Nppb were down-regulated, whereas all others were up-regulated. Twenty-two had similar expression profiles during the 2 weeks observed after MRT, including Ccnb1, Cdc20, Pttg1 and Plk1 related to the mitotic role of the Polo-like kinase (Plk) pathway. The up-regulation of Areg expression may indicate the emergence of survival processes in tumor cells triggered by the irradiation; while the modulation of the "mitotic role of Plk1" pathway, which relates to cytokinetic features of the tumor observed histologically after MRT, may partially explain the control of tumor growth by MRT. The identification of these tumor-specific responses permit to consider new strategies that might potentiate the antitumoral effect of MRT.
Collapse
Affiliation(s)
- Audrey Bouchet
- INSERM U836, Team Nanomedicine and brain, 6 Rue Fortuné Ferrini, F38706, La Tronche, France; Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043, Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|