1
|
Berteloot OH, Peusens G, Beliën T, De Clercq P, Van Leeuwen T. Unveiling the diet of two generalist stink bugs, Halyomorpha halys and Pentatoma rufipes (Hemiptera: Pentatomidae), through metabarcoding of the ITS2 region from gut content. PEST MANAGEMENT SCIENCE 2024; 80:5694-5705. [PMID: 39011841 DOI: 10.1002/ps.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The use of DNA metabarcoding has become an increasingly popular technique to infer feeding relationships in polyphagous herbivores and predators. Understanding host plant preference of native and invasive herbivore insects can be helpful in establishing effective integrated pest management (IPM) strategies. The invasive Halyomorpha halys and native Pentatoma rufipes are piercing-sucking stink bug pests that are known to cause economic damage in commercial fruit orchards. RESULTS In this study, we performed molecular gut content analysis (MGCA) on field-collected specimens of these two herbivorous pentatomids using next-generation amplicon sequencing (NGAS) of the internal transcribed spacer 2 (ITS2) barcode region. Additionally, a laboratory experiment was set up where H. halys was switched from a mixed diet to a monotypic diet, allowing us to determine the detectability of the initial diet in a time series of ≤3 days after the diet switch. We detected 68 unique plant species from 54 genera in the diet of two stink bug species, with fewer genera found per sample and a smaller diet breadth for P. rufipes than for H. halys. Both stink bug species generally prefer deciduous trees over gymnosperms and herbaceous plants. Landscape type significantly impacted the observed genera in the diet of both stink bug species, whereas season only had a significant effect on the diet of H. halys. CONCLUSION This study provides further insights into the dietary composition of two polyphagous pentatomid pests and illustrates that metabarcoding can deliver a relevant species-level resolution of host plant preference. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olivier Hendrik Berteloot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Ghent, Belgium
| | - Gertie Peusens
- Zoology Department, Research Centre for Fruit Cultivation (PCFruit), Sint-Truiden, Belgium
| | - Tim Beliën
- Zoology Department, Research Centre for Fruit Cultivation (PCFruit), Sint-Truiden, Belgium
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Ghent, Belgium
| |
Collapse
|
2
|
Storm MB, Arfaoui EMR, Simelane P, Denlinger J, Dias CA, da Conceição AG, Monadjem A, Bohmann K, Poulsen M, Bodawatta KH. Diet components associated with specific bacterial taxa shape overall gut community compositions in omnivorous African viverrids. Ecol Evol 2024; 14:e11486. [PMID: 39005885 PMCID: PMC11239323 DOI: 10.1002/ece3.11486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Gut bacterial communities provide flexibility to hosts during dietary changes. Despite the increasing number of studies exploring the associations between broader dietary guilds of mammalian hosts and their gut bacteria, it is generally unclear how diversity and variability in consumed diets link to gut bacterial taxa in wild non-primate mammals, particularly in omnivores. Here, we contribute to filling this gap by exploring consumed diets and gut bacterial community compositions with metabarcoding of faecal samples for two African mammals, Civettictis civetta and Genetta spp., from the family Viverridae. For each individual sample, we characterised bacterial communities and identified dietary taxa by sequencing vertebrate, invertebrate and plant markers. This led us to establish diet compositions that diverged from what has previously been found from visual identification methods. Specifically, while the two genera have been categorised into the same dietary guild, we detected more animal dietary items than plant items in C. civetta, while in Genetta spp., we observed the opposite. We further found that individuals with similar diets have similar gut bacterial communities within both genera. This association tended to be driven by specific links between dietary items and gut bacterial genera, rather than communities as a whole, implying diet-driven selection for specific gut microbes in individual wild hosts. Our findings underline the importance of molecular tools for improving characterisations of omnivorous mammalian diets and highlight the opportunities for simultaneously disentangling links between diets and gut symbionts. Such insights can inform robustness and flexibility in host-microbe symbioses to dietary change associated with seasonal and habitat changes.
Collapse
Affiliation(s)
- Malou B. Storm
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Emilia M. R. Arfaoui
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Phumlile Simelane
- Department of Biological SciencesUniversity of EswatiniKwaluseniEswatini
| | | | | | | | - Ara Monadjem
- Department of Biological SciencesUniversity of EswatiniKwaluseniEswatini
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaHatfield, PretoriaSouth Africa
| | - Kristine Bohmann
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kasun H. Bodawatta
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Meira A, Byers JE, Sousa R. A global synthesis of predation on bivalves. Biol Rev Camb Philos Soc 2024; 99:1015-1057. [PMID: 38294132 DOI: 10.1111/brv.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Predation is a dominant structuring force in ecological communities. In aquatic environments, predation on bivalves has long been an important focal interaction for ecological study because bivalves have central roles as ecosystem engineers, basal components of food webs, and commercial commodities. Studies of bivalves are common, not only because of bivalves' central roles, but also due to the relative ease of studying predatory effects on this taxonomic group. To understand patterns in the interactions of bivalves and their predators we synthesised data from 52 years of peer-reviewed studies on bivalve predation. Using a systematic search, we compiled 1334 studies from 75 countries, comprising 61 bivalve families (N = 2259), dominated by Mytilidae (29% of bivalves), Veneridae (14%), Ostreidae (8%), Unionidae (7%), and Dreissenidae and Tellinidae (6% each). A total of 2036 predators were studied, with crustaceans the most studied predator group (34% of predators), followed by fishes (24%), molluscs (17%), echinoderms (10%) and birds (6%). The majority of studies (86%) were conducted in marine systems, in part driven by the high commercial value of marine bivalves. Studies in freshwater ecosystems were dominated by non-native bivalves and non-native predator species, which probably reflects the important role of biological invasions affecting freshwater biodiversity. In fact, while 81% of the studied marine bivalve species were native, only 50% of the freshwater species were native to the system. In terms of approach, most studies used predation trials, visual analysis of digested contents and exclusion experiments to assess the effects of predation. These studies reflect that many factors influence bivalve predation depending on the species studied, including (i) species traits (e.g. behaviour, morphology, defence mechanisms), (ii) other biotic interactions (e.g. presence of competitors, parasites or diseases), and (iii) environmental context (e.g. temperature, current velocity, beach exposure, habitat complexity). There is a lack of research on the effects of bivalve predation at the population and community and ecosystem levels (only 7% and 0.5% of studies respectively examined impacts at these levels). At the population level, the available studies demonstrate that predation can decrease bivalve density through consumption or the reduction of recruitment. At the community and ecosystem level, predation can trigger effects that cascade through trophic levels or effects that alter the ecological functions bivalves perform. Given the conservation and commercial importance of many bivalve species, studies of predation should be pursued in the context of global change, particularly climate change, acidification and biological invasions.
Collapse
Affiliation(s)
- Alexandra Meira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
4
|
Major HL, Rivers JE, Carvey QB, Diamond AW. The incredible shrinking puffin: Decreasing size and increasing proportional bill size of Atlantic puffins nesting at Machias Seal Island. PLoS One 2024; 19:e0295946. [PMID: 38232078 DOI: 10.1371/journal.pone.0295946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Climate change imposes physiological constraints on organisms particularly through changing thermoregulatory requirements. Bergmann's and Allen's rules suggest that body size and the size of thermoregulatory structures differ between warm and cold locations, where body size decreases with temperature and thermoregulatory structures increase. However, phenotypic plastic responses to malnutrition during development can result in the same patterns while lacking fitness benefits. The Gulf of Maine (GOM), located at the southern end of the Labrador current, is warming faster than most of the world's oceans, and many of the marine species that occupy these waters exist at the southern edge of their distributions including Atlantic puffins (Fratercula arctica; hereafter "puffin"). Monitoring of puffins in the GOM, at Machias Seal Island (MSI), has continued annually since 1995. We asked whether changes in adult puffin body size and the proportional size of bill to body have changed with observed rapid ocean warming. We found that the size of fledgling puffins is negatively related to sea surface temperature anomalies (warm conditions = small fledgers), adult puffin size is related to fledgling size (small fledgers = small adults), and adult puffins have decreased in size in recent years in response to malnutrition during development. We found an increase in the proportional size of bill to wing chord, likely in response to some mix of malnutrition during development and increasing air temperatures. Although studies have assessed clinal variation in seabird morphology with temperature, this is the first study addressing changes in seabird morphology in relation to ocean warming. Our results suggest that puffins nesting in the GOM have morphological plasticity that may help them acclimate to ocean warming.
Collapse
Affiliation(s)
- Heather L Major
- Department of Biological Sciences, Atlantic Laboratory for Avian Research, University of New Brunswick, Saint John NB, Canada
| | - Joy E Rivers
- Department of Biological Sciences, Atlantic Laboratory for Avian Research, University of New Brunswick, Saint John NB, Canada
| | - Quinn B Carvey
- Department of Biological Sciences, Atlantic Laboratory for Avian Research, University of New Brunswick, Saint John NB, Canada
| | - Antony W Diamond
- Atlantic Laboratory for Avian Research, University of New Brunswick, Fredericton NB, Canada
| |
Collapse
|
5
|
DiBattista JD, Liu SYV, De Brauwer M, Wilkinson SP, West K, Koziol A, Bunce M. Gut content metabarcoding of specialized feeders is not a replacement for environmental DNA assays of seawater in reef environments. PeerJ 2023; 11:e16075. [PMID: 37790632 PMCID: PMC10542274 DOI: 10.7717/peerj.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/20/2023] [Indexed: 10/05/2023] Open
Abstract
In tropical marine ecosystems, the coral-based diet of benthic-feeding reef fishes provides a window into the composition and health of coral reefs. In this study, for the first time, we compare multi-assay metabarcoding sequences of environmental DNA (eDNA) isolated from seawater and partially digested gut items from an obligate corallivore butterflyfish (Chaetodon lunulatus) resident to coral reef sites in the South China Sea. We specifically tested the proportional and statistical overlap of the different approaches (seawater vs gut content metabarcoding) in characterizing eukaryotic community composition on coral reefs. Based on 18S and ITS2 sequence data, which differed in their taxonomic sensitivity, we found that gut content detections were only partially representative of the eukaryotic communities detected in the seawater based on low levels of taxonomic overlap (3 to 21%) and significant differences between the sampling approaches. Overall, our results indicate that dietary metabarcoding of specialized feeders can be complimentary to, but is no replacement for, more comprehensive environmental DNA assays of reef environments that might include the processing of different substrates (seawater, sediment, plankton) or traditional observational surveys. These molecular assays, in tandem, might be best suited to highly productive but cryptic oceanic environments (kelp forests, seagrass meadows) that contain an abundance of organisms that are often small, epiphytic, symbiotic, or cryptic.
Collapse
Affiliation(s)
- Joseph D. DiBattista
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Shang Yin Vanson Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | - Shaun P. Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Katrina West
- CSIRO Australian National Fish Collection, CSIRO, Hobart, TAS, Australia
| | - Adam Koziol
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Michael Bunce
- Institute of Environmental Science and Research, Kenepuru, Porirua, New Zealand
| |
Collapse
|
6
|
Schumm YR, Masello JF, Vreugdenhil-Rowlands J, Fischer D, Hillerich K, Quillfeldt P. Diet composition of wild columbiform birds: next-generation sequencing of plant and metazoan DNA in faecal samples. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:38. [PMID: 37480393 PMCID: PMC10363069 DOI: 10.1007/s00114-023-01863-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/24/2023]
Abstract
Accurate knowledge of a species' diets is fundamental to understand their ecological requirements. Next-generation sequencing technology has become a powerful and non-invasive tool for diet reconstruction through DNA metabarcoding. Here, we applied those methods on faecal samples of Common Woodpigeons Columba palumbus, European Turtle Doves Streptopelia turtur, and Stock Doves C. oenas to investigate their dietary composition. By applying primer pairs targeting both the ITS2 region of plant nuclear DNA and the mitochondrial COI region of metazoan DNA, we provide a complete picture of the food ingested and estimate the dietary overlap between the columbiform species during the breeding season. Animal DNA was present very rarely, and a diverse range of plants from the class Spermatopsida dominated the diet, with Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, and Poaceae as the most frequently represented families. Generally, we detected a variability between species but also amongst individual samples. Plant species already known from previous studies, mainly visual analyses, could be confirmed for our individuals sampled in Germany and the Netherlands. Our molecular approach revealed new plant taxa, e.g. plants of the families Malvaceae for Woodpigeons, Lythraceae for Turtle Doves, and Pinaceae for Stock Doves, not found in previous studies using visual analyses. Although most of the plant species observed were of wild origin, the majority of cultivated plants found were present in higher frequencies of occurrence, suggesting that cultivated food items likely constitute an important part of the diet of the studied species. For Turtle Doves, a comparison with previous studies suggested regional differences, and that food items (historically) considered as important part of their diet, such as Fumitory Fumaria sp. and Chickweed Stellaria media, were missing in our samples. This indicates that regional variations as well as historic and current data on diet should be considered to plan tailored seed mixtures, which are currently proposed as an important management measure for conservation of the rapidly declining Turtle Dove.
Collapse
Affiliation(s)
- Yvonne R Schumm
- Department of Animal Ecology & Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Juan F Masello
- Department of Animal Ecology & Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | - Dominik Fischer
- Clinic for Birds, Reptiles, Amphibians and Fish, Veterinary Faculty, Justus Liebig University, Frankfurter Strasse 114, 35392, Giessen, Germany
- Zoo Wuppertal, Hubertusallee 30, 42117, Wuppertal, Germany
| | | | - Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
7
|
Drake LE, Cuff JP, Bedmar S, McDonald R, Symondson WOC, Chadwick EA. Otterly delicious: Spatiotemporal variation in the diet of a recovering population of Eurasian otters ( Lutra lutra) revealed through DNA metabarcoding and morphological analysis of prey remains. Ecol Evol 2023; 13:e10038. [PMID: 37181211 PMCID: PMC10170393 DOI: 10.1002/ece3.10038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Eurasian otters are apex predators of freshwater ecosystems and a recovering species across much of their European range; investigating the dietary variation of this predator over time and space, therefore, provides opportunities to identify changes in freshwater trophic interactions and factors influencing the conservation of otter populations. Here we sampled feces from 300 dead otters across England and Wales between 2007 and 2016, conducting both morphological analyses of prey remains and dietary DNA metabarcoding. Comparison of these methods showed that greater taxonomic resolution and breadth could be achieved using DNA metabarcoding but combining data from both methodologies gave the most comprehensive dietary description. All otter demographics exploited a broad range of taxa and variation likely reflected changes in prey distributions and availability across the landscape. This study provides novel insights into the trophic generalism and adaptability of otters across Britain, which is likely to have aided their recent population recovery, and may increase their resilience to future environmental changes.
Collapse
Affiliation(s)
| | - Jordan P. Cuff
- School of BiosciencesCardiff UniversityCardiffUK
- School of Natural and Environmental SciencesNewcastle UniversityNewcastleUK
- Rothamsted Insect Survey, Rothamsted ResearchHarpendenUK
| | - Sergio Bedmar
- School of BiosciencesCardiff UniversityCardiffUK
- Department of Conservation BiologyDoñana Biological Station (EBD‐CSIC)SevillaSpain
| | - Robbie McDonald
- Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | | | | |
Collapse
|
8
|
Masello JF, Schumm YR, Griep S, Quillfeldt P. Using Next-Generation Sequencing to Disentangle the Diet and Incidence of Intestinal Parasites of Falkland Flightless Steamer Duck Tachyeres brachypterus and Patagonian Crested Duck Lophonetta specularioides Sharing a South Atlantic Island. Genes (Basel) 2023; 14:genes14030731. [PMID: 36981002 PMCID: PMC10048246 DOI: 10.3390/genes14030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Species overlapping in habitat use can cohabit depending on how they exploit resources. To understand segregation in resource use, an exhaustive knowledge of the diet is required. We aimed to disentangle the diet composition of the Falkland Flightless Steamer Duck Tachyeres brachypterus and the Patagonian Crested Duck Lophonetta specularioides sharing a coastal environment. Using DNA extracted from scats and Illumina sequencing, we generated a list of molecular operational taxonomic units. Both ducks consumed a variety of invertebrates, frequently overlapping in the taxa consumed. However, only the Falkland Flightless Steamer Ducks consumed fish, which might be indicative of dietary specialization and inter-specific segregation in the restricted space that these birds share. Moreover, the female and male Falkland Flightless Steamer Ducks consumed different fish prey, with almost one-third of the fish taxa being consumed by females only and another similar number consumed by males only. This result might suggest a case of intra-specific competition, triggering sexual segregation. Additionally, we detected parasitic Platyelminthes (Cestoda and Trematoda), with different frequencies of occurrence, probably related to the different diet compositions of the ducks. This study provides the necessary baseline for future investigations of the ecological segregation of these ducks.
Collapse
Affiliation(s)
- Juan F. Masello
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
- Correspondence:
| | - Yvonne R. Schumm
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Sven Griep
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| |
Collapse
|
9
|
Teixeira MAL, Bakken T, Vieira PE, Langeneck J, Sampieri BR, Kasapidis P, Ravara A, Nygren A, Costa FO. The curious and intricate case of the European Hediste diversicolor (Annelida, Nereididae) species complex, with description of two new species. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Marcos A. L. Teixeira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Torkild Bakken
- Norwegian University of Science and Technology, NTNU University Museum, Trondheim, NO-7491, Norway
| | - Pedro E. Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Joachim Langeneck
- Dipartimento di Biologia, Università di Pisa, via Derna 1, Pisa, I-56126, Italy
| | - Bruno R. Sampieri
- Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas – IB/UNICAMP, Rua Charles Darwin, Bloco N, Cidade Universitária, Campinas, SP, Brasil
| | - Panagiotis Kasapidis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Anávyssos, Greece
| | - AscensÃO Ravara
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - Arne Nygren
- Institutionen for marina vetenskaper, Göteborgs Universitet, Tjärnö, Strömstad, Sweden
| | - Filipe O. Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
10
|
Zhu D, Wu F, Li H, Wang T, Bao L, Ge J, Wang H. Diet preferences based on sequence read count: the role of species interaction in tissue bias correction. Mol Ecol Resour 2022; 23:159-173. [PMID: 35980601 DOI: 10.1111/1755-0998.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
High-throughput sequencing and metabarcoding techniques provide a unique opportunity to study predator-prey relationships. However, in animal dietary preference studies, how to properly correct tissue bias within the sequence read count and the role of interactions between co-occurring species in metabarcoding mixtures remain largely unknown. In this study, we proposed two categories of tissue bias correction indices: sequence read count number per unit tissue (SCN) and its ratio form (SCN ratio). By constructing plant mock communities with different numbers of co-occurring species in metabarcoding mixtures and conducting feeding trails on captive sika deer (Cervus nippon), we demonstrated the features of the SCN and SCN ratio, evaluated their correction effects, and assessed the role of species interactions during tissue bias correction. Tissue differences between species are defined as the differential ability in generating sequence counts. Our study suggests that pure tissue differences among species without species interaction is not an optimal correction index for many biomes with limited tissue differences among species. Species interactions in mixtures may amplify tissue differences, which is beneficial for tissue bias correction. However, caution must be taken because varied species interaction among communities may increase the risk of worse correction. Correction effects based on the SCN and SCN ratio are comparable, while the SCN is less influenced by control species than the SCN ratio. According to our study, several suggestions were provided for future animal diet studies or other high-throughput sequencing studies containing tissue bias.
Collapse
Affiliation(s)
- Di Zhu
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station.,College of Life Sciences, Beijing Normal University, Beijing
| | - Feng Wu
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station.,College of Life Sciences, Beijing Normal University, Beijing
| | - Hailong Li
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing.,College of Agriculture and Life Sciences, Seoul National University, Seoul.,College of Geography and Ocean Science, YanBian University, Hunchun
| | - Tianming Wang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station.,College of Life Sciences, Beijing Normal University, Beijing
| | - Lei Bao
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station.,College of Life Sciences, Beijing Normal University, Beijing
| | - Jianping Ge
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station.,College of Life Sciences, Beijing Normal University, Beijing
| | - Hongfang Wang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing.,Northeast Tiger and Leopard Biodiversity National Observation and Research Station.,College of Life Sciences, Beijing Normal University, Beijing
| |
Collapse
|
11
|
Digging in a 120 years-old lunch: What can we learn from collection specimens of extinct species? PLoS One 2022; 17:e0270032. [PMID: 35793291 PMCID: PMC9258829 DOI: 10.1371/journal.pone.0270032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Studying collection specimens is often the only way to unravel information about recent extinctions. These can reveal knowledge on threats and life traits related to extinction, and contribute, by extrapolation, to the conservation of extant species. However, high-throughput sequencing methods have rarely been applied to extinct species to reveal information on their ecology. Insular species are especially prone to extinction. We studied the gut contents of three specimens of the extinct giant skink Chioninia coctei of the Cabo Verde Islands using microscopy and DNA-metabarcoding. The presence of Tachygonetria adult nematodes suggests plants as important diet items. Our metabarcoding approach also identified plants and, additionally, invertebrates, supporting the hypothesis of C. coctei’s generalist diet. The absence of vertebrates in the digestive contents may reflect the decline of seabirds on the Desertas Islands that could have contributed to the debilitation of the giant skink, already depleted by persecution and severe droughts. Even with a small sample size, this study contributes to shedding light on the trophic roles of this enigmatic extinct species and emphasizes the need to develop holistic conservation plans for island threatened taxa. Additionally, it illustrates the potential of integrating up-to-date molecular methods with traditional approaches to studying collection specimens to help to solve ecological puzzles in other ecosystems.
Collapse
|
12
|
Urban P, Praebel K, Bhat S, Dierking J, Wangensteen OS. DNA-metabarcoding reveals the importance of gelatinous zooplankton in the diet of Pandalus borealis, a keystone species in the Arctic. Mol Ecol 2021; 31:1562-1576. [PMID: 34936153 DOI: 10.1111/mec.16332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Information about the dietary composition of a species is crucial to understanding their position and role in the food web. Increasingly molecular approaches such as DNA-metabarcoding are used in studying trophic relations, not least because they may alleviate problems such as low taxonomic resolution or underestimation of digestible taxa in the diet. Here, we used DNA-metabarcoding with universal primers for cytochrome c oxidase I (COI), to study the diet composition of the Northern shrimp (Pandalus borealis), an Arctic keystone species with large socio-economic importance. Across locations, jellyfish and chaetognaths were the most important components in the diet of P. borealis, jointly accounting for 40-60% of the total read abundance. This dietary importance of gelatinous zooplankton contrasts sharply with published results based on SCA. At the same time, diet composition differed between fjord and shelf locations, pointing to different food webs supporting P. borealis in these two systems. Our study underscores the potential of molecular approaches to provide new insights into the diet of marine invertebrates that are difficult to obtain with traditional methods, and calls for a revision of the role of gelatinous zooplankton in the diet of the key Arctic species P. borealis, and in extension, Arctic food webs.
Collapse
Affiliation(s)
- Paulina Urban
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway.,GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Kim Praebel
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Elverum, Norway
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Owen S Wangensteen
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Drake LE, Cuff JP, Young RE, Marchbank A, Chadwick EA, Symondson WOC. An assessment of minimum sequence copy thresholds for identifying and reducing the prevalence of artefacts in dietary metabarcoding data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Jordan P. Cuff
- School of Biosciences Cardiff University Cardiff UK
- Rothamsted Insect Survey, Rothamsted Research West Common Harpenden UK
| | | | | | | | | |
Collapse
|
14
|
Liu G, Zhang S, Zhao X, Li C, Gong M. Advances and Limitations of Next Generation Sequencing in Animal Diet Analysis. Genes (Basel) 2021; 12:genes12121854. [PMID: 34946803 PMCID: PMC8701983 DOI: 10.3390/genes12121854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Diet analysis is a critical content of animal ecology and the diet analysis methods have been constantly improving and updating. Contrary to traditional methods of high labor intensity and low resolution, the next generation sequencing (NGS) approach has been suggested as a promising tool for dietary studies, which greatly improves the efficiency and broadens the application range. Here we present a framework of adopting NGS and DNA metabarcoding into diet analysis, and discuss the application in aspects of prey taxa composition and structure, intra-specific and inter-specific trophic links, and the effects of animal feeding on environmental changes. Yet, the generation of NGS-based diet data and subsequent analyses and interpretations are still challenging with several factors, making it possible still not as widely used as might be expected. We suggest that NGS-based diet methods must be furthered, analytical pipelines should be developed. More application perspectives, including nutrient geometry, metagenomics and nutrigenomics, need to be incorporated to encourage more ecologists to infer novel insights on they work.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
| | - Shumiao Zhang
- Beijing Milu Ecological Research Center, Beijing 100076, China;
| | - Xinsheng Zhao
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
| | - Chao Li
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
| | - Minghao Gong
- Key Laboratory of Wetland Ecological Function and Restoration in Beijing City, Wetland Research Institute of Chinese Academy of Forestry Sciences, Beijing 100091, China; (G.L.); (X.Z.); (C.L.)
- Correspondence: ; Tel.: +86-010-62884159
| |
Collapse
|
15
|
Dudenhoeffer M, Roth JD, Johnson LK, Petersen SD. Arctic fox winter dietary response to damped lemming cycles estimated from fecal DNA. J Mammal 2021. [DOI: 10.1093/jmammal/gyab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Climate-caused changes in prey abundance may alter predator–prey dynamics in the Arctic food web. Lemmings (Dicrostonyx spp.) are important prey for Arctic foxes (Vulpes lagopus) and their annual population fluctuations drive fox reproduction, creating strongly linked predator–prey population cycles. Winter diet directly impacts Arctic fox reproductive success, but winter prey diversity on the tundra is low. Strategies such as using the marine environment to scavenge seals have allowed Arctic foxes to persist during years of low lemming abundance. However, warming winters have decreased snowpack quality, preventing lemmings from reaching their previous high abundances, which may reduce their impact on predator dynamics. We investigated Arctic fox dietary response to lemming abundance by reconstructing Arctic fox winter diet in the low Arctic. Next-generation sequencing of fecal DNA, from samples (n = 627) collected at dens in winters of 2011–2018, identified prey both from terrestrial and marine environments. Despite lemming cycle damping, Arctic foxes still increased lemming consumption during years of higher lemming abundance. Alternative prey such as marine resources were consumed more during years of low lemming abundance, with up to 45% of samples containing marine resources in low lemming years. In addition, Arctic foxes consumed high proportions of meadow voles (Microtus pennsylvanicus), which may represent a new alternative prey, suggesting climate change may be creating new foraging opportunities. Changes in prey abundance illustrate how climate-caused disturbances are altering Arctic food-web dynamics. Dietary flexibility and availability of alternative prey may become increasingly important for Arctic predators as the Arctic continues to change.
Collapse
Affiliation(s)
- Megan Dudenhoeffer
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - James D Roth
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Lucy K Johnson
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
| | - Stephen D Petersen
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
- Conservation and Research Department, Assiniboine Park Zoo, 2595 Roblin Boulevard, Winnipeg, Manitoba R3R 2N7, Canada
| |
Collapse
|
16
|
Mansor MS, Rozali FZ, Davies S, Nor SM, Ramli R. High-throughput sequencing reveals dietary segregation in Malaysian babblers. Curr Zool 2021; 68:381-389. [PMID: 36090137 PMCID: PMC9450176 DOI: 10.1093/cz/zoab074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/28/2021] [Indexed: 11/24/2022] Open
Abstract
The coexistence of numerous species within a community results from how those species use available resources. Babblers are one of the major groups of Malaysian insectivorous birds, which frequently forage in dense vegetation cover and have a high level of sympatry. Therefore, examining the diet, prey selection, and niche segregation of babblers can be challenging. In this study, we used high-throughput sequencing to investigate potential dietary overlap or segregation among 10 babbler species of the 4 genera of the family Pellorneidae and Timaliidae: Pellorneum, Malacopteron, Stachyris, and Cyanoderma in central peninsular Malaysia. We tested the hypothesis that trophically similar species may differ in resource use to avoid competitive exclusion. We identified 81 distinct arthropod taxa from fecal samples, belonging to 71 families representing 13 orders, which were predominantly from 16 dipteran, 13 lepidopteran, and 10 coleopteran families. Of all the prey taxa consumed, 45% were found to be distinct across the 10 babbler species, and ˂35% were shared simultaneously by ≥3 babbler species, indicating minimal dietary overlap. The black-throated babbler Stachyris nigricollis and moustached babbler Malacopteron magnirostre had the most generalist tendencies because they consumed a greater variety of prey taxa. Small dietary overlap values (Ojk) and a relatively wide range of food resources suggest that dietary segregation occurred among the studied babblers. The great diversity of prey consumed revealed the presence of dietary flexibility among the sympatric insectivorous birds, thus reducing any active dietary competition and facilitating the coexistence through niche partitioning.
Collapse
Affiliation(s)
- Mohammad Saiful Mansor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | | | - Sian Davies
- Micropathology Ltd, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Shukor Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Ramli
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Fayet AL, Clucas GV, Anker-Nilssen T, Syposz M, Hansen ES. Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin. J Anim Ecol 2021; 90:1152-1164. [PMID: 33748966 DOI: 10.1111/1365-2656.13442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023]
Abstract
As more and more species face anthropogenic threats, understanding the causes of population declines in vulnerable taxa is essential. However, long-term datasets, ideal to identify lasting or indirect effects on fitness measures such as those caused by environmental factors, are not always available. Here we use a single year but multi-population approach on populations with contrasting demographic trends to identify possible drivers and mechanisms of seabird population changes in the north-east Atlantic, using the Atlantic puffin, a declining species, as a model system. We combine miniature GPS trackers with camera traps and DNA metabarcoding techniques on four populations across the puffins' main breeding range to provide the most comprehensive study of the species' foraging ecology to date. We find that puffins use a dual foraging tactic combining short and long foraging trips in all four populations, but declining populations in southern Iceland and north-west Norway have much greater foraging ranges, which require more (costly) flight, as well as lower chick-provisioning frequencies, and a more diverse but likely less energy-dense diet, than stable populations in northern Iceland and Wales. Together, our findings suggest that the poor productivity of declining puffin populations in the north-east Atlantic is driven by breeding adults being forced to forage far from the colony, presumably because of low prey availability near colonies, possibly amplified by intraspecific competition. Our results provide valuable information for the conservation of this and other important North-Atlantic species and highlight the potential of multi-population approaches to answer important questions about the ecological drivers of population trends.
Collapse
Affiliation(s)
| | | | | | | | - Erpur S Hansen
- South Iceland Nature Research Centre, Vestmannaeyjar, Iceland
| |
Collapse
|
18
|
Traugott M, Thalinger B, Wallinger C, Sint D. Fish as predators and prey: DNA-based assessment of their role in food webs. JOURNAL OF FISH BIOLOGY 2021; 98:367-382. [PMID: 32441321 PMCID: PMC7891366 DOI: 10.1111/jfb.14400] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 05/04/2023]
Abstract
Fish are both consumers and prey, and as such part of a dynamic trophic network. Measuring how they are trophically linked, both directly and indirectly, to other species is vital to comprehend the mechanisms driving alterations in fish communities in space and time. Moreover, this knowledge also helps to understand how fish communities respond to environmental change and delivers important information for implementing management of fish stocks. DNA-based methods have significantly widened our ability to assess trophic interactions in both marine and freshwater systems and they possess a range of advantages over other approaches in diet analysis. In this review we provide an overview of different DNA-based methods that have been used to assess trophic interactions of fish as consumers and prey. We consider the practicalities and limitations, and emphasize critical aspects when analysing molecular derived trophic data. We exemplify how molecular techniques have been employed to unravel food web interactions involving fish as consumers and prey. In addition to the exciting opportunities DNA-based approaches offer, we identify current challenges and future prospects for assessing fish food webs where DNA-based approaches will play an important role.
Collapse
Affiliation(s)
- Michael Traugott
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
| | - Bettina Thalinger
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
- Centre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Corinna Wallinger
- Institute of Interdisciplinary Mountain Research, Austrian Academy of ScienceInnsbruckAustria
| | - Daniela Sint
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
19
|
Pringle RM, Hutchinson MC. Resolving Food-Web Structure. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024908] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Food webs are a major focus and organizing theme of ecology, but the data used to assemble them are deficient. Early debates over food-web data focused on taxonomic resolution and completeness, lack of which had produced spurious inferences. Recent data are widely believed to be much better and are used extensively in theoretical and meta-analytic research on network ecology. Confidence in these data rests on the assumptions ( a) that empiricists correctly identified consumers and their foods and ( b) that sampling methods were adequate to detect a near-comprehensive fraction of the trophic interactions between species. Abundant evidence indicates that these assumptions are often invalid, suggesting that most topological food-web data may remain unreliable for inferences about network structure and underlying ecological and evolutionary processes. Morphologically cryptic species are ubiquitous across taxa and regions, and many trophic interactions routinely evade detection by conventional methods. Molecular methods have diagnosed the severity of these problems and are a necessary part of the cure.
Collapse
Affiliation(s)
- Robert M. Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Pitchford SC, Smith BE, McBride RS. A real-time PCR assay to detect predation by spiny dogfish on Atlantic cod in the western North Atlantic Ocean. Ecol Evol 2020; 10:11022-11030. [PMID: 33144945 PMCID: PMC7593176 DOI: 10.1002/ece3.6694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Conventional observations show spiny dogfish (Squalus acanthius Linnaeus) rarely eat Atlantic cod (Gadus morhua Linnaeus; 0.02% of stomachs) in the northwestern Atlantic Ocean. Critics express concern that digestion may limit species-level prey identification, and with recovery from overfishing, dogfish populations may be suppressing cod by competition or predation. This study applied a real-time PCR TaqMan assay to identify cod in dogfish stomachs collected by cooperating fishing boats during normal trawling operations (May 2014-May 2015; Gulf of Maine, Georges Bank). Conventional methods observed 51 different prey taxa and nearly 1,600 individual prey items, but no cod were observed. Cod DNA was detected in 31 (10.5%) of the dogfish stomachs, with a higher percentage of these from the homogenate of amorphous, well-digested prey and stomach fluids (20 stomachs or 65%) than from discrete animal tissues (11 stomachs or 35%). Re-examination of photographs of these 11 tissue samples revealed one whole, partially digested fish that could be recognized in hindsight as cod. Cod DNA was observed in dogfish stomachs year round: in January (1 of 1 trip), February (1 of 1), May (1 of 3), June (0 of 1), July (3 of 4), August (1 of 2), and October (3 of 3). Although these data suggest higher interaction rates between dogfish and cod than previously observed, addressing the population consequences of this predator-prey relationship requires a robust sampling design, estimates of digestion rates by dogfish to account for complete degradation of DNA sequences, and consideration for dogfish scavenging during fishing operations.
Collapse
Affiliation(s)
| | - Brian E. Smith
- Northeast Fisheries Science CenterNOAA FisheriesWoods HoleMassachusettsUSA
| | - Richard S. McBride
- Northeast Fisheries Science CenterNOAA FisheriesWoods HoleMassachusettsUSA
| |
Collapse
|
21
|
Zamora-Terol S, Novotny A, Winder M. Reconstructing marine plankton food web interactions using DNA metabarcoding. Mol Ecol 2020; 29:3380-3395. [PMID: 32681684 DOI: 10.1111/mec.15555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Abstract
Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA-metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts. During the spring phytoplankton bloom, we found a dominance of diatom and dinoflagellate trophic links to copepods. During the summer period, zooplankton including cladocerans showed a more diverse diet dominated by cyanobacteria and heterotrophic prey. Our study suggests that copepods present trophic plasticity, changing their natural diet over seasons, and adapting their feeding strategies to the available prey spectrum, with some species being more selective. We did not find a large overlap of prey consumed by copepods and cladocerans, based on prey diversity found in their guts, suggesting that they occupy different roles in the trophic web. This study represents the first molecular approach to investigate several zooplankton-prey associations under seasonal variation, and highlights how, unlike other techniques, the diversity coverage is high when using DNA, allowing the possibility to detect a wide range of trophic interactions in plankton communities.
Collapse
Affiliation(s)
- Sara Zamora-Terol
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Andreas Novotny
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Cavallo C, Chiaradia A, Deagle BE, Hays GC, Jarman S, McInnes JC, Ropert‐Coudert Y, Sánchez S, Reina RD. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Catherine Cavallo
- School of Biological Sciences Monash University Clayton VIC Australia
| | - André Chiaradia
- School of Biological Sciences Monash University Clayton VIC Australia
- Conservation Department Phillip Island Nature Parks Cowes VIC Australia
| | - Bruce E. Deagle
- Australian Antarctic Division Kingston TAS Australia
- CSIRO National Research Collections‐Australian National Fish Collection Hobart TAS Australia
| | - Graeme C. Hays
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| | - Simon Jarman
- School of Biological Sciences University of Western Australia Perth WA Australia
| | - Julie C. McInnes
- Australian Antarctic Division Kingston TAS Australia
- Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS Australia
| | - Yan Ropert‐Coudert
- Centre d'Etudes Biologiques de Chizé UMR7372 CNRSLa Rochelle Université Villiers‐en‐Bois France
| | - Sonia Sánchez
- School of Biological Sciences Monash University Clayton VIC Australia
| | - Richard D. Reina
- School of Biological Sciences Monash University Clayton VIC Australia
| |
Collapse
|
23
|
Larsen T, Hansen T, Dierking J. Characterizing niche differentiation among marine consumers with amino acid δ 13C fingerprinting. Ecol Evol 2020; 10:7768-7782. [PMID: 32760563 PMCID: PMC7391304 DOI: 10.1002/ece3.6502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
Marine food webs are highly compartmentalized, and characterizing the trophic niches among consumers is important for predicting how impact from human activities affects the structuring and functioning of marine food webs. Biomarkers such as bulk stable isotopes have proven to be powerful tools to elucidate trophic niches, but they may lack in resolution, particularly when spatiotemporal variability in a system is high. To close this gap, we investigated whether carbon isotope (δ13C) patterns of essential amino acids (EAAs), also termed δ13CAA fingerprints, can characterize niche differentiation in a highly dynamic marine system. Specifically, we tested the ability of δ13CAA fingerprints to differentiate trophic niches among six functional groups and ten individual species in the Baltic Sea. We also tested whether fingerprints of the common zooplanktivorous fishes, herring and sprat, differ among four Baltic Sea regions with different biochemical conditions and phytoplankton assemblages. Additionally, we investigated how these results compared to bulk C and N isotope data for the same sample set. We found significantly different δ13CAA fingerprints among all six functional groups. Species differentiation was in comparison less distinct, due to partial convergence of the species' fingerprints within functional groups. Herring and sprat displayed region-specific δ13CAA fingerprints indicating that this approach could be used as a migratory marker. Niche metrics analyses showed that bulk isotope data had a lower power to differentiate between trophic niches than δ13CAA fingerprinting. We conclude that δ13CAA fingerprinting has a strong potential to advance our understanding of ecological niches, and trophic linkages from producers to higher trophic levels in dynamic marine systems. Given how management practices of marine resources and habitats are reshaping the structure and function of marine food webs, implementing new and powerful tracer methods are urgently needed to improve the knowledge base for policy makers.
Collapse
Affiliation(s)
- Thomas Larsen
- Max Planck Institute for the Science of Human HistoryJenaGermany
| | - Thomas Hansen
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| |
Collapse
|
24
|
Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 2020; 193:377-388. [PMID: 32533359 PMCID: PMC7320956 DOI: 10.1007/s00442-020-04678-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/30/2020] [Indexed: 11/13/2022]
Abstract
Rapidly increasing urbanisation requires mitigation against associated losses of biodiversity and species abundance. In urban-breeding birds, altered food availability for nestlings is thought to reduce reproductive success compared to forest populations. To compensate for shortages of preferred foods, urban parents could increase their search effort for optimal diets or provision other foods. Here, we used telemetry and faecal metabarcoding on blue tits from one urban and one forest populations to compare parental effort and comprehensively describe nestling diet. Urban parents travelled on average 30% further than those in the forest, likely to offset limited availability of high-quality nestling food (i.e. caterpillars) in cities. Metabarcoding, based on a mean number of 30 identified taxa per faeces, revealed that the diets of urban chicks were nonetheless substantially shifted to include alternative foods. While in the forest caterpillars comprised 82 ± 11% of taxa provisioned to nestlings, in the city they constituted just 44 ± 10%. Pre-fledging chick mass as well as offspring numbers were lower in urban than in forest-reared broods. Thus, at least in our comparison of two sites, the hard labour of urban parents did not fully pay off, suggesting that improved habitat management is required to support urban-breeding birds.
Collapse
|
25
|
Hancock TL, Poulakis GR, Scharer RM, Tolley SG, Urakawa H. High-resolution molecular identification of smalltooth sawfish prey. Sci Rep 2019; 9:18307. [PMID: 31797939 PMCID: PMC6892823 DOI: 10.1038/s41598-019-53931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
The foundation of food web analysis is a solid understanding of predator-prey associations. Traditional dietary studies of fishes have been by stomach content analysis. However, these methods are not applicable to Critically Endangered species such as the smalltooth sawfish (Pristis pectinata). Previous research using the combination of stable isotope signatures from fin clips and 18S rRNA gene sequencing of fecal samples identified the smalltooth sawfish as piscivorous at low taxonomic resolution. Here, we present a high taxonomic resolution molecular technique for identification of prey using opportunistically acquired fecal samples. To assess potential biases, primer sets of two mitochondrial genes, 12S and 16S rRNA, were used alongside 18S rRNA, which targets a wider spectrum of taxa. In total, 19 fish taxa from 7 orders and 11 families native to the Gulf of Mexico were successfully identified. The sawfish prey comprised diverse taxa, indicating that this species is a generalist piscivore. These findings and the molecular approach used will aid recovery planning for the smalltooth sawfish and have the potential to reveal previously unknown predator-prey associations from a wide range of taxa, especially rare and hard to sample species.
Collapse
Affiliation(s)
- Taylor L Hancock
- Department of Ecology and Environmental Studies, The Water School, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| | - Gregg R Poulakis
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Charlotte Harbor Field Laboratory, Port Charlotte, Florida, 33954, USA
| | - Rachel M Scharer
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Charlotte Harbor Field Laboratory, Port Charlotte, Florida, 33954, USA
| | - S Gregory Tolley
- Department of Marine and Earth Sciences, The Water School, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA
| | - Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, The Water School, Florida Gulf Coast University, Fort Myers, Florida, 33965, USA.
| |
Collapse
|
26
|
Metabarcoding-based dietary analysis of hen harrier (Circus cyaneus) in Great Britain using buccal swabs from chicks. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
da Silva LP, Mata VA, Lopes PB, Pereira P, Jarman SN, Lopes RJ, Beja P. Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Mol Ecol Resour 2019; 19:1420-1432. [PMID: 31332947 PMCID: PMC6899665 DOI: 10.1111/1755-0998.13060] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
The application of DNA metabarcoding to dietary analysis of trophic generalists requires using multiple markers in order to overcome problems of primer specificity and bias. However, limited attention has been given to the integration of information from multiple markers, particularly when they partly overlap in the taxa amplified, and vary in taxonomic resolution and biases. Here, we test the use of a mix of universal and specific markers, provide criteria to integrate multi‐marker metabarcoding data and a python script to implement such criteria and produce a single list of taxa ingested per sample. We then compare the results of dietary analysis based on morphological methods, single markers, and the proposed combination of multiple markers. The study was based on the analysis of 115 faeces from a small passerine, the Black Wheatears (Oenanthe leucura). Morphological analysis detected far fewer plant taxa (12) than either a universal 18S marker (57) or the plant trnL marker (124). This may partly reflect the detection of secondary ingestion by molecular methods. Morphological identification also detected far fewer taxa (23) than when using 18S (91) or the arthropod markers IN16STK (244) and ZBJ (231), though each method missed or underestimated some prey items. Integration of multi‐marker data provided far more detailed dietary information than any single marker and estimated higher frequencies of occurrence of all taxa. Overall, our results show the value of integrating data from multiple, taxonomically overlapping markers in an example dietary data set.
Collapse
Affiliation(s)
- Luís P da Silva
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.,CEF, Center for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vanessa A Mata
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Paulo Pereira
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Simon N Jarman
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.,School of Biological Sciences, University of Western Australia, Perth, WA, Australia.,Environomics Future Science Platform, CSIRO National Collections and Marine Infrastructure, Crawley, WA, Australia
| | - Ricardo J Lopes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Pedro Beja
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
28
|
What Is the Giant Wall Gecko Having for Dinner? Conservation Genetics for Guiding Reserve Management in Cabo Verde. Genes (Basel) 2018; 9:genes9120599. [PMID: 30513942 PMCID: PMC6315674 DOI: 10.3390/genes9120599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/17/2018] [Indexed: 11/16/2022] Open
Abstract
Knowledge on diet composition of a species is an important step to unveil its ecology and guide conservation actions. This is especially important for species that inhabit remote areas within biodiversity hotspots, with little information about their ecological roles. The emblematic giant wall gecko of Cabo Verde, Tarentola gigas, is restricted to the uninhabited Branco and Raso islets, and presents two subspecies. It is classified as Endangered, and locally Extinct on Santa Luzia Island; however, little information is known about its diet and behaviour. In this study, we identified the main plant, arthropods, and vertebrates consumed by both gecko subspecies using next generation sequencing (NGS) (metabarcoding of faecal pellets), and compared them with the species known to occur on Santa Luzia. Results showed that plants have a significant role as diet items and identified vertebrate and invertebrate taxa with higher taxonomic resolution than traditional methods. With this study, we now have data on the diet of both subspecies for evaluating the reintroduction of this threatened gecko on Santa Luzia as potentially successful, considering the generalist character of both populations. The information revealed by these ecological networks is important for the development of conservation plans by governmental authorities, and reinforces the essential and commonly neglected role of reptiles on island systems.
Collapse
|
29
|
Xavier JC, Cherel Y, Medeiros R, Velez N, Dewar M, Ratcliffe N, Carreiro AR, Trathan PN. Conventional and molecular analysis of the diet of gentoo penguins: contributions to assess scats for non-invasive penguin diet monitoring. Polar Biol 2018. [DOI: 10.1007/s00300-018-2364-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Deagle BE, Thomas AC, McInnes JC, Clarke LJ, Vesterinen EJ, Clare EL, Kartzinel TR, Eveson JP. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Mol Ecol 2018; 28:391-406. [PMID: 29858539 PMCID: PMC6905394 DOI: 10.1111/mec.14734] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi-quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population-level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research.
Collapse
Affiliation(s)
- Bruce E Deagle
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia
| | | | - Julie C McInnes
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia
| | - Laurence J Clarke
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia.,Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
| | - Eero J Vesterinen
- Biodiversity Unit and Department of Biology, University of Turku, Turku, Finland.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tyler R Kartzinel
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | | |
Collapse
|
31
|
Trevelline BK, Nuttle T, Hoenig BD, Brouwer NL, Porter BA, Latta SC. DNA metabarcoding of nestling feces reveals provisioning of aquatic prey and resource partitioning among Neotropical migratory songbirds in a riparian habitat. Oecologia 2018; 187:85-98. [DOI: 10.1007/s00442-018-4136-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/27/2018] [Indexed: 11/29/2022]
|
32
|
King SRB, Schoenecker KA, Fike JA, Oyler‐McCance SJ. Long-term persistence of horse fecal DNA in the environment makes equids particularly good candidates for noninvasive sampling. Ecol Evol 2018; 8:4053-4064. [PMID: 29721279 PMCID: PMC5916305 DOI: 10.1002/ece3.3956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
Fecal DNA collected noninvasively can provide valuable information about genetic and ecological characteristics. This approach has rarely been used for equids, despite the need for conservation of endangered species and management of abundant feral populations. We examined factors affecting the efficacy of using equid fecal samples for conservation genetics. First, we evaluated two fecal collection methods (paper bag vs. ethanol). Then, we investigated how time since deposition and month of collection impacted microsatellite amplification success and genotyping errors. Between May and November 2014, we collected feral horse fecal samples of known age each month in a feral horse Herd Management Area in western Colorado and documented deterioration in the field with photographs. Samples collected and dried in paper bags had significantly higher amplification rates than those collected and stored in ethanol. There was little difference in the number of loci that amplified per sample between fresh fecal piles and those that had been exposed to the environment for up to 2 months (in samples collected in paper bags). After 2 months of exposure, amplification success declined. When comparing fresh (0–2 months) and old (3–6 months) fecal piles, samples from fresh piles had more matching genotypes across samples, better amplification success and less allelic dropout. Samples defecated during the summer and collected within 2 months of deposition had highest number of genotypes matching among samples, and lowest rates of amplification failure and allelic dropout. Due to the digestive system and amount of fecal material produced by equids, as well as their occurrence in arid ecosystems, we suggest that they are particularly good candidates for noninvasive sampling using fecal DNA.
Collapse
Affiliation(s)
- Sarah R. B. King
- Natural Resource Ecology LaboratoryDepartment of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsCOUSA
| | | | - Jennifer A. Fike
- United States Geological SurveyFort Collins Science CenterFort CollinsCOUSA
| | | |
Collapse
|
33
|
Turpin JM, White NE, Dunlop JA, Bamford MJ. New populations of the black-flanked rock-wallaby (Petrogale lateralis) from the Little Sandy Desert and Murchison, Western Australia. AUSTRALIAN MAMMALOGY 2018. [DOI: 10.1071/am14043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During two independent fauna surveys, rock-wallaby (Petrogale) scats were recorded from caves located outside the current known Petrogale distribution. Scats collected from Desert Queen Baths (Little Sandy Desert, Western Australia, 2012), and the Barr Smith Range (Murchison, Western Australia, 2015) were genetically analysed and a follow-up motion camera survey confirmed an extant rock-wallaby population at Desert Queen Baths. The combination of sampling techniques overcame the detection difficulties associated with rare and cryptic taxa, and together were important in establishing the presence of Petrogale lateralis from regions where the species has been poorly documented. At both locations, P. lateralis scats were recorded from deep caves situated close to permanent water, reflecting the species’ physiological constraints in the arid zone. These records represent significant range extensions of a highly threatened macropod.
Collapse
|
34
|
Lamb PD, Hunter E, Pinnegar JK, Creer S, Davies RG, Taylor MI. Jellyfish on the menu: mtDNA assay reveals scyphozoan predation in the Irish Sea. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171421. [PMID: 29291125 PMCID: PMC5717700 DOI: 10.1098/rsos.171421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/26/2017] [Indexed: 05/21/2023]
Abstract
Localized outbreaks of jellyfish, known as blooms, cause a variety of adverse ecological and economic effects. However, fundamental aspects of their ecology remain unknown. Notably, there is scant information on the role jellyfish occupy in food webs: in many ecosystems, few or no predators are known. To identify jellyfish consumers in the Irish Sea, we conducted a molecular gut content assessment of 50 potential predators using cnidarian-specific mtDNA primers and sequencing. We show that jellyfish predation may be more common than previously acknowledged: uncovering many previously unknown jellyfish predators. A substantial proportion of herring and whiting were found to have consumed jellyfish. Rare ingestion was also detected in a variety of other species. Given the phenology of jellyfish in the region, we suggest that the predation was probably targeting juvenile stages of the jellyfish life cycle.
Collapse
Affiliation(s)
- Philip D. Lamb
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
- Author for correspondence: Philip D. Lamb e-mail:
| | - Ewan Hunter
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
- Cefas, Lowestoft, Suffolk NR33 0HT, UK
| | - John K. Pinnegar
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
- Cefas, Lowestoft, Suffolk NR33 0HT, UK
| | - Simon Creer
- School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Richard G. Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Martin I. Taylor
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
35
|
DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS One 2017; 12:e0186929. [PMID: 29059215 PMCID: PMC5653352 DOI: 10.1371/journal.pone.0186929] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/10/2017] [Indexed: 11/27/2022] Open
Abstract
The three-spined stickleback (Gasterosteus aculeatus L., hereafter ‘stickleback’) is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fish species both in terms of biomass and effects on lower trophic levels. Still, relatively little is known about its diet—knowledge which is essential to understand the increasing role sticklebacks play in the ecosystem. Fish diet analyses typically rely on visual identification of stomach contents, a labour-intensive method that is made difficult by prey digestion and requires expert taxonomic knowledge. However, advances in DNA-based metabarcoding methods promise a simultaneous identification of most prey items, even from semi-digested tissue. Here, we studied the diet of stickleback from the western Baltic Sea coast using both DNA metabarcoding and visual analysis of stomach contents. Using the cytochrome oxidase (CO1) marker we identified 120 prey taxa in the diet, belonging to 15 phyla, 83 genera and 84 species. Compared to previous studies, this is an unusually high prey diversity. Chironomids, cladocerans and harpacticoids were dominating prey items. Large sticklebacks were found to feed more on benthic prey, such as amphipods, gastropods and isopods. DNA metabarcoding gave much higher taxonomic resolution (median rank genus) than visual analysis (median rank order), and many taxa identified using barcoding could not have been identified visually. However, a few taxa identified by visual inspection were not revealed by barcoding. In summary, our results suggest that the three-spined stickleback feeds on a wide variety of both pelagic and benthic organisms, indicating that the strong increase in stickleback populations may affect many parts of the Baltic Sea coastal ecosystem.
Collapse
|
36
|
Nielsen JM, Clare EL, Hayden B, Brett MT, Kratina P. Diet tracing in ecology: Method comparison and selection. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12869] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jens M. Nielsen
- School of Biological and Chemical SciencesQueen Mary University of London London UK
| | - Elizabeth L. Clare
- School of Biological and Chemical SciencesQueen Mary University of London London UK
| | - Brian Hayden
- Canadian Rivers InstituteBiology DepartmentUniversity of New Brunswick Fredericton NB Canada
| | - Michael T. Brett
- Department of Civil and Environmental EngineeringUniversity of Washington Seattle WA USA
| | - Pavel Kratina
- School of Biological and Chemical SciencesQueen Mary University of London London UK
| |
Collapse
|
37
|
The diet of a nocturnal pelagic predator, the Bulwer's petrel, across the lunar cycle. Sci Rep 2017; 7:1384. [PMID: 28469170 PMCID: PMC5431196 DOI: 10.1038/s41598-017-01312-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/29/2017] [Indexed: 11/13/2022] Open
Abstract
The lunar cycle is believed to strongly influence the vertical distribution of many oceanic taxa, with implications for the foraging behaviour of nocturnal marine predators. Most studies to date testing lunar effects on foraging have focused on predator activity at-sea, with some birds and marine mammals demonstrating contrasting behavioural patterns, depending on the lunar-phase. However, to date no study has focused on how the lunar cycle might actually affect predator-prey interactions in the upper layers of the ocean. Here, we tested whether the diet of the predominantly nocturnal pelagic predator, the Bulwer’s petrel (Bulweria bulwerii) would change throughout the lunar cycle, using molecular analysis to augment detection and taxonomic resolution of prey collected from stomach-contents. We found no evidence of dietary shifts in species composition or diversity, with Bulwer’s petrel always consuming a wide range of mesopelagic species. Other co-variables potentially affecting light availability at-sea, such as percentage of cloud cover, did not confound our results. Moreover, many of the species found are thought not to reach the sea-surface. Our findings reveal that nocturnal predators are probably more specialized than previously assumed, irrespective of ambient-light, but also reveal deficiencies in our current understanding of species vertical distribution and predation-dynamics at-sea.
Collapse
|
38
|
Kress SW, Shannon P, O’Neal C. Recent changes in the diet and survival of Atlantic puffin chicks in the face of climate change and commercial fishing in midcoast Maine, USA. Facets (Ott) 2017. [DOI: 10.1139/facets-2015-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the diet of Atlantic puffin ( Fratercula arctica) chicks at three midcoast Maine, USA, colonies during the years 2005–2014 and found that the puffins at each island have a distinct diet that has changed in recent years. White hake ( Urophycis tenuis) is by far the most frequently delivered prey at each island. Atlantic herring ( Clupea harengus) is the second most frequently delivered food, but has declined in recent years on two islands. In contrast, butterfish ( Poronotus triacanthus), haddock ( Melanogrammus aeglefinus), and redfish ( Sebastes spp.) have increased in the puffin diet on all islands. Chick condition declined significantly from 1993 to 2009. We demonstrate that puffin chicks with greater body weight experience a higher chance of postfledging survival as compared to chicks with lower body weight. The years 2012–2013 were a period of extreme sea surface warming, in which puffin hatching success and productivity sharply declined. This study provides new insight into changes in marine communities, examining changes in chick diet. We discuss our findings in relation to warming sea surface temperatures, recent climate-related decline in puffin productivity in the Gulf of Maine, and the impact of commercial fisheries on forage fish.
Collapse
Affiliation(s)
- Stephen W. Kress
- National Audubon Society Seabird Restoration Program, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Paula Shannon
- National Audubon Society Seabird Restoration Program, 12 Audubon Road, Bremen, Maine 04551
| | | |
Collapse
|
39
|
Oehm J, Thalinger B, Eisenkölbl S, Traugott M. Diet analysis in piscivorous birds: What can the addition of molecular tools offer? Ecol Evol 2017; 7:1984-1995. [PMID: 28331605 PMCID: PMC5355203 DOI: 10.1002/ece3.2790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 11/21/2022] Open
Abstract
In trophic studies on piscivorous birds, it is vital to know which kind of dietary sample provides the information of interest and how the prey can be identified reliably and efficiently. Often, noninvasively obtained dietary samples such as regurgitated pellets, feces, and regurgitated fish samples are the preferred source of information. Fish prey has usually been identified via morphological analysis of undigested hard parts, but molecular approaches are being increasingly used for this purpose. What remains unknown, however, is which dietary sample type is best suited for molecular diet analysis and how the molecular results compare to those obtained by morphological analysis. Pellets, feces, and regurgitated fish samples of Great Cormorants (Phalacrocorax carbo sinensis) were examined for prey using both morphological hard part analysis and molecular prey identification. The sample types and methods were compared regarding number of species detected (overall and per sample) as well as the prey species composition and its variability among individual samples. Via molecular analysis, significantly higher numbers of prey species were detected in pellets, feces, and fish samples. Of the three sample types, pellets contained the most comprehensive trophic information and could be obtained with the lowest sampling effort. Contrastingly, dietary information obtained from feces was least informative and most variable. For all sample types, the molecular approach outperformed morphological hard part identification regarding the detectable prey spectrum and prey species composition. We recommend the use of pellets in combination with molecular prey identification to study the diet of piscivorous birds.
Collapse
Affiliation(s)
- Johannes Oehm
- Institute of Ecology University of Innsbruck Innsbruck Austria
| | | | | | | |
Collapse
|
40
|
Khanam S, Howitt R, Mushtaq M, Russell JC. Diet analysis of small mammal pests: A comparison of molecular and microhistological methods. Integr Zool 2016; 11:98-110. [PMID: 27001489 DOI: 10.1111/1749-4877.12172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Knowledge of what pest species are eating is important to determine their impact on stored food products and to plan management strategies accordingly. In this study, we investigated the food habits of 2 rodents, Rattus rattus (ship rat) and Mus musculus castaneus (house mouse) as well as an insectivore, Suncus murinus (shrew), present in human dwellings. Both a microhistological approach and a DNA barcoding approach were used in the present study. Following DNA extraction, amplification was performed using group-specific primers targeting birds, plants and invertebrates. Resulting polymerase chain reaction products were sequenced and analyzed to identify the different prey species present in the gut contents. The findings from the application of both techniques were in agreement, but the detection of prey type with each technique was different. The DNA barcoding approach gave greater species-level identification when compared to the microhistological method, especially for the invertebrate and avian prey. Overall, with both techniques, 23 prey taxa were identified in the gut contents of the 3 species, including 15 plants, 7 insects and a single bird species. We conclude that with a selection of suitable "barcode genes" and optimization of polymerase chain reaction protocols, DNA barcoding can provide more accurate and faster results. Prey detection from either technique alone can bias the dietary information. Hence, combining prey information of both microhistological analysis and DNA barcoding is recommended to study pest diet, especially if the pest is an omnivore or insectivore species.
Collapse
Affiliation(s)
- Surrya Khanam
- Department of Zoology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Robyn Howitt
- EcoGene®, Landcare Research, Auckland, New Zealand
| | - Muhammad Mushtaq
- Department of Zoology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - James C Russell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Statistics, University of Auckland, Auckland, New Zealand.,Allan Wilson Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
McInnes JC, Alderman R, Deagle BE, Lea M, Raymond B, Jarman SN. Optimised scat collection protocols for dietary
DNA
metabarcoding in vertebrates. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12677] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie C. McInnes
- Institute for Marine and Antarctic Studies University of Tasmania Private Bag 129 Hobart TAS 7001 Australia
- Australian Antarctic Division 203 Channel Highway Kingston TAS 7050 Australia
| | - Rachael Alderman
- Department of Primary Industries, Parks, Water and Environment 134 Macquarie Street Hobart TAS 7000 Australia
| | - Bruce E. Deagle
- Australian Antarctic Division 203 Channel Highway Kingston TAS 7050 Australia
| | - Mary‐Anne Lea
- Institute for Marine and Antarctic Studies University of Tasmania Private Bag 129 Hobart TAS 7001 Australia
| | - Ben Raymond
- Institute for Marine and Antarctic Studies University of Tasmania Private Bag 129 Hobart TAS 7001 Australia
- Australian Antarctic Division 203 Channel Highway Kingston TAS 7050 Australia
| | - Simon N. Jarman
- Australian Antarctic Division 203 Channel Highway Kingston TAS 7050 Australia
- CIBIO‐InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão 4485‐661 Portugal
| |
Collapse
|
42
|
Sousa LL, Xavier R, Costa V, Humphries NE, Trueman C, Rosa R, Sims DW, Queiroz N. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. Sci Rep 2016; 6:28762. [PMID: 27373803 PMCID: PMC4931451 DOI: 10.1038/srep28762] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.
Collapse
Affiliation(s)
- Lara L Sousa
- CIBIO - Universidade do Porto, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-668 Vairão, Portugal.,Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.,Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Raquel Xavier
- CIBIO - Universidade do Porto, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-668 Vairão, Portugal.,School of Biological Sciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Vânia Costa
- CIBIO - Universidade do Porto, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-668 Vairão, Portugal.,Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nicolas E Humphries
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Clive Trueman
- Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - David W Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.,Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.,Centre for Biological Sciences, Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Nuno Queiroz
- CIBIO - Universidade do Porto, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-668 Vairão, Portugal
| |
Collapse
|
43
|
Roslin T, Majaneva S. The use of DNA barcodes in food web construction-terrestrial and aquatic ecologists unite! Genome 2016; 59:603-28. [PMID: 27484156 DOI: 10.1139/gen-2015-0229] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems-revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal.
Collapse
Affiliation(s)
- Tomas Roslin
- a Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07 Uppsala, Sweden.,b Spatial Foodweb Ecology Group, Department of Agricultural Sciences, PO Box 27, (Latokartanonkaari 5), FI-00014 University of Helsinki, Finland
| | - Sanna Majaneva
- c Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| |
Collapse
|
44
|
McInnes JC, Emmerson L, Southwell C, Faux C, Jarman SN. Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adélie penguins. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150443. [PMID: 26909171 PMCID: PMC4736926 DOI: 10.1098/rsos.150443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/30/2015] [Indexed: 06/01/2023]
Abstract
As central place foragers, breeding penguins are restricted in foraging range by the need to return to the colony to feed chicks. Furthermore, breeding birds must balance energetic gain from self-feeding with the costs of returning to provision young. Non-breeding birds, however, are likely to be less restricted in foraging range and lack the high energy demands of provisioning, therefore may consume different prey to breeders. We used DNA dietary analysis to determine whether there was a difference in provisioning and self-feeding diet by identifying prey DNA in scat samples from breeding and chick Adélie penguins at two locations in East Antarctica. We also investigated diet differences between breeders and non-breeders at one site. Although previous work shows changing foraging behaviour between chick provisioning and self-feeding, our results suggest no significant differences in the main prey groups consumed by chicks and breeders at either site or between breeding stages. This may reflect the inability of penguins to selectively forage when provisioning, or resources were sufficient for all foraging needs. Conversely, non-breeders were found to consume different prey groups to breeders, which may reflect less restricted foraging ranges, breeders actively selecting particular prey during breeding or reduced foraging experience of non-breeders.
Collapse
|
45
|
Raupach MJ, Radulovici AE. Looking back on a decade of barcoding crustaceans. Zookeys 2015; 539:53-81. [PMID: 26798245 PMCID: PMC4714055 DOI: 10.3897/zookeys.539.6530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication.
Collapse
Affiliation(s)
- Michael J. Raupach
- Molecular Taxonomy of Marine Organisms, German Centre of Marine Biodiversity Research (DZMB), Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany
| | - Adriana E. Radulovici
- Biodiversity Institute of Ontario (BIO), University of Guelph, 50 Stone Road E, Guelph (ON) N1G 2W1, Ontario, Canada
| |
Collapse
|
46
|
Thalinger B, Oehm J, Mayr H, Obwexer A, Zeisler C, Traugott M. Molecular prey identification in Central European piscivores. Mol Ecol Resour 2015; 16:123-37. [PMID: 26053612 PMCID: PMC4744964 DOI: 10.1111/1755-0998.12436] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022]
Abstract
Diet analysis is an important aspect when investigating the ecology of fish‐eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time‐consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two‐step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species‐specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field‐collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost‐effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity.
Collapse
Affiliation(s)
- Bettina Thalinger
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Johannes Oehm
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Hannes Mayr
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Armin Obwexer
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christiane Zeisler
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Michael Traugott
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
47
|
Boyer S, Cruickshank RH, Wratten SD. Faeces of generalist predators as ‘biodiversity capsules’: A new tool for biodiversity assessment in remote and inaccessible habitats. FOOD WEBS 2015. [DOI: 10.1016/j.fooweb.2015.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Kartzinel TR, Pringle RM. Molecular detection of invertebrate prey in vertebrate diets: trophic ecology of Caribbean island lizards. Mol Ecol Resour 2015; 15:903-14. [PMID: 25545675 DOI: 10.1111/1755-0998.12366] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Understanding community assembly and population dynamics frequently requires detailed knowledge of food web structure. For many consumers, obtaining precise information about diet composition has traditionally required sacrificing animals or other highly invasive procedures, generating tension between maintaining intact study populations and knowing what they eat. We developed 16S mitochondrial DNA sequencing methods to identify arthropods in the diets of generalist vertebrate predators without requiring a blocking primer. We demonstrate the utility of these methods for a common Caribbean lizard that has been intensively studied in the context of small island food webs: Anolis sagrei (a semi-arboreal 'trunk-ground' anole ecomorph). Novel PCR primers were identified in silico and tested in vitro. Illumina sequencing successfully characterized the arthropod component of 168 faecal DNA samples collected during three field trips spanning 12 months, revealing 217 molecular operational taxonomic units (mOTUs) from at least nine arthropod orders (including Araneae, Blattodea, Coleoptera, Hemiptera, Hymenoptera, Isoptera, Lepidoptera and Orthoptera). Three mOTUs (one beetle, one cockroach and one ant) were particularly frequent, occurring in ≥50% of samples, but the majority of mOTUs were infrequent (180, or 83%, occurred in ≤5% of samples). Species accumulation curves showed that dietary richness and composition were similar between size-dimorphic sexes; however, female lizards had greater per-sample dietary richness than males. Overall diet composition (but not richness) was significantly different across seasons, and we found more pronounced interindividual variation in December than in May. These methods will be generally useful in characterizing the diets of diverse insectivorous vertebrates.
Collapse
Affiliation(s)
- Tyler R Kartzinel
- Department of Ecology & Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544, USA
| | - Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544, USA
| |
Collapse
|
49
|
Alonso H, Granadeiro JP, Waap S, Xavier J, Symondson WOC, Ramos JA, Catry P. An holistic ecological analysis of the diet of Cory's shearwaters using prey morphological characters and DNA barcoding. Mol Ecol 2014; 23:3719-33. [PMID: 24806079 DOI: 10.1111/mec.12785] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/29/2022]
Abstract
Knowledge of the dietary choices and trophic niches of organisms is the key to understanding their roles in ecosystems. In seabird diet studies, prey identification is a difficult challenge, often yielding results with technique-specific biases. Additionally, sampling efforts are often not extensive enough to reveal intrapopulational variation. Immature animals, which may constitute up to 50% of a population, may occupy a significantly different trophic niche to more experienced birds, but this remains largely unexplored. We investigated the diet of Cory's shearwater (Calonectris diomedea) from Selvagem Grande, an island located off the northwest African coast, collecting a total of 698 regurgitate samples over three consecutive breeding seasons. The diet was assessed using two complementary approaches for prey identification: conventional morphological analysis (using fish vertebrae, otoliths and cephalopod beaks) and DNA barcoding of the 16S rRNA mitochondrial gene, in cases where a positive identification could not be retrieved. Species assignments employed BLAST and distance-based methods, as well as direct optimization of the tree length based on unaligned sequences in POY. This method resulted in robust tree estimates and species assignments, showing its potential for DNA barcoding of stomach contents using hypervariable markers such as the 16S. The molecular approach increased taxonomic resolution and revealed an additional 17 taxa. Diet differed significantly according to breeding status, sex, breeding phase (prelaying and chick rearing) and year. Such direct evidence of trophic segregation within the same population has rarely been shown in seabirds and highlights the importance of including such variables in ecosystem-based management approaches.
Collapse
Affiliation(s)
- Hany Alonso
- Eco-Ethology Research Unit, ISPA, Rua Jardim do Tabaco 34, 1149-041, Lisboa, Portugal; Institute of Marine Research (IMAR/CMA), Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal; Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica 58, 1250-102, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|