1
|
Perry KI, Bahlai CA, Assal TJ, Riley CB, Turo KJ, Taylor L, Radl J, Delgado de la Flor YA, Sivakoff FS, Gardiner MM. Landscape change and alien invasions drive shifts in native lady beetle communities over a century. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3024. [PMID: 39192693 DOI: 10.1002/eap.3024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 08/29/2024]
Abstract
Understanding causes of insect population declines is essential for the development of successful conservation plans, but data limitations restrict assessment across spatial and temporal scales. Museum records represent a source of historical data that can be leveraged to investigate temporal trends in insect communities. Native lady beetle decline has been attributed to competition with established alien species and landscape change, but the relative importance of these drivers is difficult to measure with short-term field-based studies. We assessed distribution patterns for native lady beetles over 12 decades using museum records, and evaluated the relative importance of alien species and landscape change as factors contributing to changes in communities. We compiled occurrence records for 28 lady beetle species collected in Ohio, USA, from 1900 to 2018. Taxonomic beta-diversity was used to evaluate changes in lady beetle community composition over time. To evaluate the relative influence of temporal, spatial, landscape, and community factors on the captures of native species, we constructed negative binomial generalized additive models. We report evidence of declines in captures for several native species. Importantly, the timing, severity, and drivers of these documented declines were species-specific. Land cover change was associated with declines in captures, particularly for Coccinella novemnotata which declined prior to the arrival of alien species. Following the establishment and spread of alien lady beetles, processes of species loss/gain and turnover shifted communities toward the dominance of a few alien species beginning in the 1980s. Because factors associated with declines in captures were highly species-specific, this emphasizes that mechanisms driving population losses cannot be generalized even among closely related native species. These findings also indicate the importance of museum holdings and the analysis of species-level data when studying temporal trends in insect populations.
Collapse
Affiliation(s)
- Kayla I Perry
- Department of Entomology, The Ohio State University, Wooster, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Timothy J Assal
- Department of Geography, Kent State University, Kent, Ohio, USA
| | | | - Katherine J Turo
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - Leo Taylor
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - James Radl
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | | | - Frances S Sivakoff
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Marion, Ohio, USA
| | - Mary M Gardiner
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Soares AO, Haelewaters D, Ameixa OMCC, Borges I, Brown PMJ, Cardoso P, de Groot MD, Evans EW, Grez AA, Hochkirch A, Holecová M, Honěk A, Kulfan J, Lillebø AI, Martinková Z, Michaud JP, Nedvěd O, Roy HE, Saxena S, Shandilya A, Sentis A, Skuhrovec J, Viglášová S, Zach P, Zaviezo T, Losey JE. A roadmap for ladybird conservation and recovery. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13965. [PMID: 35686511 DOI: 10.1111/cobi.13965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ladybirds (Coleoptera: Coccinellidae) provide services that are critical to food production, and they fulfill an ecological role as a food source for predators. The richness, abundance, and distribution of ladybirds, however, are compromised by many anthropogenic threats. Meanwhile, a lack of knowledge of the conservation status of most species and the factors driving their population dynamics hinders the development and implementation of conservation strategies for ladybirds. We conducted a review of the literature on the ecology, diversity, and conservation of ladybirds to identify their key ecological threats. Ladybird populations are most affected by climate factors, landscape composition, and biological invasions. We suggest mitigating actions for ladybird conservation and recovery. Short-term actions include citizen science programs and education, protective measures for habitat recovery and threatened species, prevention of the introduction of non-native species, and the maintenance and restoration of natural areas and landscape heterogeneity. Mid-term actions involve the analysis of data from monitoring programs and insect collections to disentangle the effect of different threats to ladybird populations, understand habitat use by taxa on which there is limited knowledge, and quantify temporal trends of abundance, diversity, and biomass along a management-intensity gradient. Long-term actions include the development of a worldwide monitoring program based on standardized sampling to fill data gaps, increase explanatory power, streamline analyses, and facilitate global collaborations.
Collapse
Affiliation(s)
- António O Soares
- Center for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group (cE3c-ABG) / CHANGE - Global Change and Sustainability Institute, Faculty of Science and Technology, University of the Azores, Ponta Delgada, São Miguel Island (Azores), Portugal
- IUCN SSC, Ladybird Specialist Group
| | - Danny Haelewaters
- IUCN SSC, Ladybird Specialist Group
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Olga M C C Ameixa
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Isabel Borges
- Center for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group (cE3c-ABG) / CHANGE - Global Change and Sustainability Institute, Faculty of Science and Technology, University of the Azores, Ponta Delgada, São Miguel Island (Azores), Portugal
| | - Peter M J Brown
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
| | - Michiel D de Groot
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Edward W Evans
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Audrey A Grez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Axel Hochkirch
- Department of Biogeography, Trier University, Trier, Germany
- IUCN SSC Invertebrate Conservation Committee, Trier, Germany
| | - Milada Holecová
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Alois Honěk
- Crop Research Institute, Prague, Czech Republic
| | - Ján Kulfan
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovak Republic
| | - Ana I Lillebø
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | - J P Michaud
- Agricultural Research Center - Hays (ARCH), Department of Entomology, Kansas State University, Hays, Kansas, USA
| | - Oldřich Nedvěd
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Helen E Roy
- UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Swati Saxena
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Apoorva Shandilya
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Arnaud Sentis
- UMR RECOVER, National Research Institute for Agriculture, Food and the Environment (INRAE) & Aix-Marseille University, Aix-en-Provence, France
| | | | - Sandra Viglášová
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovak Republic
| | - Peter Zach
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovak Republic
| | - Tania Zaviezo
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - John E Losey
- IUCN SSC, Ladybird Specialist Group
- Department of Entomology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Arnold MB, Back M, Crowell MD, Farooq N, Ghimire P, Obarein OA, Smart KE, Taucher T, VanderJeugdt E, Perry KI, Landis DA, Bahlai CA. Coexistence between similar invaders: The case of two cosmopolitan exotic insects. Ecology 2023; 104:e3979. [PMID: 36691998 DOI: 10.1002/ecy.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 01/25/2023]
Abstract
Biological invasions are usually examined in the context of their impacts on native species. However, few studies have examined the dynamics between invaders when multiple exotic species successfully coexist in a novel environment. Yet, long-term coexistence of now established exotic species has been observed in North American lady beetle communities. Exotic lady beetles Harmonia axyridis and Coccinella septempunctata were introduced for biological control in agricultural systems and have since become dominant species within these communities. In this study, we investigated coexistence via spatial and temporal niche partitioning among H. axyridis and C. septempunctata using a 31-year data set from southwestern Michigan, USA. We found evidence of long-term coexistence through a combination of small-scale environmental, habitat, and seasonal mechanisms. Across years, H. axyridis and C. septempunctata experienced patterns of cyclical dominance likely related to yearly variation in temperature and precipitation. Within years, populations of C. septempunctata peaked early in the growing season at 550 degree days, while H. axyridis populations grew in the season until 1250 degree days and continued to have high activity after this point. C. septempunctata was generally most abundant in herbaceous crops, whereas H. axyridis did not display strong habitat preferences. These findings suggest that within this region H. axyridis has broader habitat and abiotic environmental preferences, whereas C. septempunctata thrives under more specific ecological conditions. These ecological differences have contributed to the continued coexistence of these two invaders. Understanding the mechanisms that allow for the coexistence of dominant exotic species contributes to native biodiversity conservation management of invaded ecosystems.
Collapse
Affiliation(s)
- Matthew B Arnold
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Michael Back
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | | | - Nageen Farooq
- Department of Earth Sciences, Kent State University, Kent, Ohio, USA
| | - Prashant Ghimire
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Omon A Obarein
- Department of Geography, Kent State University, Kent, Ohio, USA
| | - Kyle E Smart
- Department of Earth Sciences, Kent State University, Kent, Ohio, USA
| | - Trixie Taucher
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Erin VanderJeugdt
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Kayla I Perry
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Douglas A Landis
- Department of Entomology, and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| |
Collapse
|
4
|
Bahlai CA, Hart C, Kavanaugh MT, White JD, Ruess RW, Brinkman TJ, Ducklow HW, Foster DR, Fraser WR, Genet H, Groffman PM, Hamilton SK, Johnstone JF, Kielland K, Landis DA, Mack MC, Sarnelle O, Thompson JR. Cascading effects: insights from the U.S. Long Term Ecological Research Network. Ecosphere 2021. [DOI: 10.1002/ecs2.3430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Christie A. Bahlai
- Department of Biological Sciences Kent State University Kent Ohio44242USA
- Kellogg Biological Station Michigan State University Hickory Corners Michigan49060USA
| | - Clarisse Hart
- Harvard Forest Harvard University Petersham Massachusetts01366USA
| | - Maria T. Kavanaugh
- College of Earth Ocean, and Atmospheric Sciences Oregon State University Corvallis Oregon97331USA
| | - Jeffrey D. White
- Department of Biology Framingham State University 100 State Street Framingham Massachusetts01702USA
| | - Roger W. Ruess
- Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| | - Todd J. Brinkman
- Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| | | | - David R. Foster
- Harvard Forest Harvard University Petersham Massachusetts01366USA
| | | | - Hélène Genet
- Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| | - Peter M. Groffman
- City University of New York Advanced Science Research Center at the Graduate Center New York New York10031USA
- Cary Institute of Ecosystem Studies Millbrook New York12545USA
| | - Stephen K. Hamilton
- Kellogg Biological Station Michigan State University Hickory Corners Michigan49060USA
- Cary Institute of Ecosystem Studies Millbrook New York12545USA
| | - Jill F. Johnstone
- Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| | - Knut Kielland
- Institute of Arctic Biology University of Alaska Fairbanks Alaska99775USA
| | - Douglas A. Landis
- Department of Entomology Michigan State University East Lansing Michigan48824USA
| | - Michelle C. Mack
- Center for Ecosystem Science and Society and Department of Biological Sciences Northern Arizona University Flagstaff Arizona86011USA
| | - Orlando Sarnelle
- Department of Fisheries and Wildlife Michigan State University 480 Wilson Road East Lansing Michigan48824USA
| | | |
Collapse
|
5
|
Li H, Li B, Lövei GL, Kring TJ, Obrycki JJ. Interactions Among Native and Non-Native Predatory Coccinellidae Influence Biological Control and Biodiversity. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2021; 114:119-136. [PMID: 33732410 PMCID: PMC7953206 DOI: 10.1093/aesa/saaa047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 05/05/2023]
Abstract
Over the past 30 yr, multiple species of predatory Coccinellidae, prominently Coccinella septempunctata L. and Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) have spread to new continents, influencing biodiversity and biological control. Here we review the mechanisms underlying these ecological interactions, focusing on multi-year field studies of native and non-native coccinellids and those using molecular and quantitative ecological methods. Field data from Asia show that H. axyridis, C. septempunctata, and Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) are regularly among the most abundant predatory species but their rank varies by habitat. Studies of these species in their native Asian range, primarily related to their range in mainland China, document different patterns of seasonal abundance, species specific associations with prey, and habitat separation. Intraguild predation is well documented both in Asia and in newly invaded areas, and H. axyridis benefits most from this interaction. Harmonia axyridis also seems to rely more on cannibalism in times of prey scarcity than other species, and relatively sparse data indicate a lower predation pressure on it from natural enemies of coccinellids. Declines in the abundance of native coccinellids following the spread and increase of non-native species, documented in several multi-year studies on several continents, is a major concern for native biodiversity and the persistence of native coccinellid species. We suggest that future studies focus more attention on the community ecology of these invasive species in their native habitats.
Collapse
Affiliation(s)
- Hongran Li
- Department of Entomology, University of Kentucky, Lexington, KY, USA
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Baoping Li
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Gábor L Lövei
- Department of Agroecology, Aarhus University, Flakkebjerg Research Centre, Forsøgsvej 1, Slagelse, Denmark
| | - Timothy J Kring
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY, USA
- Corresponding author, e-mail: john.
| |
Collapse
|
6
|
Long Term Monitoring in Switzerland Reveals That Adalia bipunctata Strongly Declines in Response to Harmonia axyridis Invasion. INSECTS 2020; 11:insects11120883. [PMID: 33322836 PMCID: PMC7764166 DOI: 10.3390/insects11120883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
Simple Summary The harlequin ladybird, Harmonia axyridis, is an Asian species that has invaded Europe and other continents, where it is suspected to cause the decline of native ladybirds through competition and predation. In north-western Switzerland, ladybirds were monitored for 11 years in four habitats (broadleaved hedges, meadows, pine and spruce stands) to assess the decline of native ladybirds following the invasion of the harlequin ladybird. These surveys showed that, on broadleaved hedges, the harlequin ladybird quickly became the most abundant species, representing 60–80% of all specimens collected in this habitat. One species, the two-spot ladybird, Adalia bipunctata, almost disappeared during this period, whereas it was the most abundant ladybird on broadleaved trees and shrubs when this study started. The other native species did not show any clear sign of decline. The harlequin ladybird was the second most abundant species in pine stands, and was not abundant in meadows and in spruce stands. The total number of ladybirds feeding on aphids did not decline during this period, suggesting that the arrival of the harlequin ladybird did not affect the predation pressure on aphids. Nevertheless, the severe decline of the two-spot ladybird deserves further investigations. Abstract A long-term monitoring was conducted at 40 sites in four different habitats in north-western Switzerland to observe changes in populations of native ladybirds, following the invasion of the Asian harlequin ladybird, Harmonia axyridis. From 2006 to 2017, the same trees and meadows were sampled at least seven times per year using standard protocols. On 15 broadleaved hedges, H. axyridis quickly became the dominant species, representing 60 to 80% of adult ladybirds collected. It was second in abundance at five pine (Pinus sylvestris) stands and was a minor component of the ladybird complex at five spruce (Picea abies) stands and in 15 meadows. This survey revealed the severe decline of Adalia bipunctata, which was the most abundant native ladybird on broadleaved trees in 2006–2009 and has almost disappeared since 2010. So far, other native ladybirds do not seem to decline significantly, including species occupying the same ecological niches as H. axyridis. The total number of aphidophagous ladybirds did not decline either, suggesting that the biological control function of ladybirds on aphids living in these habitats has not been affected by the arrival of H. axyridis. Recommendations are given to further assess the impact of H. axyridis on native ladybirds and aphids.
Collapse
|
7
|
Lamb RJ, Bannerman JA, Costamagna AC. Interactions between exotic and native lady beetle species stabilize community abundance. Oecologia 2020; 193:701-711. [PMID: 32705347 DOI: 10.1007/s00442-020-04716-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
A 23-year time-series of abundance for 13 lady beetle species (Coccinellidae) was used to investigate community stability. The community exhibited persistence in ten habitats, no overall trend in abundance, and low temporal variability quantified as Population variability (PV) = 0.33 on a scale from 0 to 1 that declined to 0.16 in the past 8 years. This high level of stability occurred as exotic lady beetles disrupted populations of the native species. For hypothetical communities of pairs of species (with randomly generated annual abundances in the range for lady beetles), PV increased linearly with the correlation coefficients between individual time series, illustrating a "portfolio effect". PV for the real community and the negative correlation between the abundance of exotics and natives fit this relationship precisely. A gradual decline of natives matched by an equal gradual rise in the abundance of exotics contributed to the negative correlation that stabilized the community. The abundance of the dominant species, an exotic, was negatively correlated with other exotics and most natives, and its stability increased over time, helping to stabilize the community. The community was most stable in habitats where beetle abundance was high (crops, particularly perennial crops) and, unexpectedly, was least stable in habitats with high diversity and stability of vegetation cover (forests). These data are consistent with the hypothesis that competition between exotic and native species, with release from competition for natives in some years, stabilized the abundance of this community. Stability may not last if populations of native species continue declining.
Collapse
Affiliation(s)
- Robert J Lamb
- Department of Entomology, University of Manitoba, 12 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | - Jordan A Bannerman
- Department of Entomology, University of Manitoba, 12 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada.
| | - Alejandro C Costamagna
- Department of Entomology, University of Manitoba, 12 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
8
|
Bahlai CA, Zipkin EF. The Dynamic Shift Detector: An algorithm to identify changes in parameter values governing populations. PLoS Comput Biol 2020; 16:e1007542. [PMID: 31940344 PMCID: PMC6961891 DOI: 10.1371/journal.pcbi.1007542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022] Open
Abstract
Environmental factors interact with internal rules of population regulation, sometimes perturbing systems to alternate dynamics though changes in parameter values. Yet, pinpointing when such changes occur in naturally fluctuating populations is difficult. An algorithmic approach that can identify the timing and magnitude of parameter shifts would facilitate understanding of abrupt ecological transitions with potential to inform conservation and management of species. The “Dynamic Shift Detector” is an algorithm to identify changes in parameter values governing temporal fluctuations in populations with nonlinear dynamics. The algorithm examines population time series data for the presence, location, and magnitude of parameter shifts. It uses an iterative approach to fitting subsets of time series data, then ranks the fit of break point combinations using model selection, assigning a relative weight to each break. We examined the performance of the Dynamic Shift Detector with simulations and two case studies. Under low environmental/sampling noise, the break point sets selected by the Dynamic Shift Detector contained the true simulated breaks with 70–100% accuracy. The weighting tool generally assigned breaks intentionally placed in simulated data (i.e., true breaks) with weights averaging >0.8 and those due to sampling error (i.e., erroneous breaks) with weights averaging <0.2. In our case study examining an invasion process, the algorithm identified shifts in population cycling associated with variations in resource availability. The shifts identified for the conservation case study highlight a decline process that generally coincided with changing management practices affecting the availability of hostplant resources. When interpreted in the context of species biology, the Dynamic Shift Detector algorithm can aid management decisions and identify critical time periods related to species’ dynamics. In an era of rapid global change, such tools can provide key insights into the conditions under which population parameters, and their corresponding dynamics, can shift. Populations naturally fluctuate in abundance, and the rules governing these fluctuations are a result of both internal (density dependent) and external (environmental) processes. For these reasons, pinpointing when changes in populations occur is difficult. In this study, we develop a novel break-point analysis tool for population time series data. Using a density dependent model to describe a population’s underlying dynamic process, our tool iterates through all possible break point combinations (i.e., abrupt changes in parameter values) and applies information-theoretic decision tools (i.e. Akaike's Information Criterion corrected for small sample sizes) to determine best fits. Here, we develop the approach, simulate data under a variety of conditions to demonstrate its utility, and apply the tool to two case studies: an invasion of multicolored Asian ladybeetle and declining monarch butterflies. The Dynamic Shift Detector algorithm identified parameter changes that correspond to known environmental change events in both case studies.
Collapse
Affiliation(s)
- Christie A. Bahlai
- Department of Biological Sciences and Environmental Science and Design Research Initiative, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| | - Elise F. Zipkin
- Department of Integrative Biology; Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
9
|
Myers A, Bahlai CA, Landis DA. Habitat Type Influences Danaus plexippus (Lepidoptera: Nymphalidae) Oviposition and Egg Survival on Asclepias syriaca (Gentianales: Apocynaceae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:675-684. [PMID: 31074487 DOI: 10.1093/ee/nvz046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 06/09/2023]
Abstract
As agricultural practices intensify, species once common in agricultural landscapes are declining in abundance. One such species is the monarch butterfly (Danaus plexippus L.), whose eastern North American population has decreased approximately 80% during the past 20 yr. One hypothesis explaining the monarch's decline is reduced breeding habitat via loss of common milkweed (Asclepias syriaca L.) from agricultural landscapes in the north central United States due to the adoption of herbicide-tolerant row crops. Current efforts to enhance monarch breeding habitat primarily involve restoring milkweed in perennial grasslands. However, prior surveys found fewer monarch eggs on common milkweed in grassland versus crop habitats, indicating potential preference for oviposition in row crop habitats, or alternatively, greater egg loss to predation in grasslands. We tested these alternative mechanisms by measuring oviposition and egg predation on potted A. syriaca host plants. Our study revealed that habitat context influences both monarch oviposition preference and egg predation rates and that these patterns vary by year. We found higher monarch egg predation rates during the first 24 h after exposure and that much of the predation occurs at night. Overall, we documented up to 90% egg mortality over 72 h in perennial grasslands, while predation rates in corn were lower (10-30% mortality) and more consistent between years. These findings demonstrate that weekly monarch egg surveys are too infrequent to distinguish oviposition habitat preferences from losses due to egg predation and suggest that monarch restoration efforts need to provide both attractive and safe habitats for monarch reproduction.
Collapse
Affiliation(s)
- Andrew Myers
- Department of Entomology, Michigan State University, East Lansing, MI
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI
| | | | - Douglas A Landis
- Department of Entomology, Michigan State University, East Lansing, MI
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI
| |
Collapse
|
10
|
|
11
|
Tiede J, Scherber C, Mutschler J, McMahon KD, Gratton C. Gut microbiomes of mobile predators vary with landscape context and species identity. Ecol Evol 2017; 7:8545-8557. [PMID: 29075470 PMCID: PMC5648672 DOI: 10.1002/ece3.3390] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023] Open
Abstract
Landscape context affects predator–prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we studied the performance and gut microbiota of six predatory insect species along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, suggesting better feeding conditions in prairies. Species origin mediated landscape context effects, suggesting differences in foraging of exotic and native predators on a landscape scale. Overall, our study highlights complex interactions among gut microbiota, predator identity, and landscape context.
Collapse
Affiliation(s)
- Julia Tiede
- Institute of Landscape Ecology University of Muenster Muenster Germany.,Department of Crop Sciences University of Goettingen Goettingen Germany.,Department of Entomology University of Wisconsin-Madison Madison WI USA
| | - Christoph Scherber
- Institute of Landscape Ecology University of Muenster Muenster Germany.,Department of Crop Sciences University of Goettingen Goettingen Germany
| | - James Mutschler
- Departments of Civil and Environmental Engineering and Bacteriology University of Wisconsin-Madison Madison WI USA
| | - Katherine D McMahon
- Departments of Civil and Environmental Engineering and Bacteriology University of Wisconsin-Madison Madison WI USA
| | - Claudio Gratton
- Department of Entomology University of Wisconsin-Madison Madison WI USA
| |
Collapse
|
12
|
Bahlai CA, van der Werf W, O'Neal M, Hemerik L, Landis DA. Shifts in dynamic regime of an invasive lady beetle are linked to the invasion and insecticidal management of its prey. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1807-1818. [PMID: 26591447 DOI: 10.1890/14-2022.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The spread and impact of invasive species may vary over time in relation to changes in the species itself, the biological community of which it is part, or external controls on the system. We investigate whether there have been changes in dynamic regimes over the last 20 years of two invasive species in the midwestern United States, the multicolored Asian lady beetle Harmonia axyridis and the soybean aphid Aphis glycines. We show by model selection that after its 1993 invasion into the American Midwest, the year-to-year population dynamics of H. axyridis were initially governed by a logistic rule supporting gradual rise to a stable carrying capacity. After invasion of the soybean aphid in 2000, food resources at the landscape level became abundant, supporting a higher year-to-year growth rate and a higher but unstable carrying capacity, with two-year cycles in both aphid and lady beetle abundance as a consequence. During 2005-2007, farmers in the Midwest progressively increased their use of insecticides for managing A. glycines, combining prophylactic seed treatment with curative spraying based on thresholds. This human intervention dramatically reduced the soybean aphid as a major food resource for H. axyridis at landscape level and corresponded to a reverse shift towards the original logistic rule for year-to-year dynamics. Thus, we document a short episode of major predator-prey fluctuations in an important agricultural system resulting from two biological invasions that were apparently damped by widespread insecticide use. Recent advances in development of plant resistance to A. glycines in soybeans may mitigate the need for pesticidal control and achieve the same stabilization of pest and predator populations at lower cost and environmental burden.
Collapse
|
13
|
The role of exotic ladybeetles in the decline of native ladybeetle populations: evidence from long-term monitoring. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0772-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|