1
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Aibara D, Matsuo K, Matsusue K. Lipase family member N is a novel target gene for CCAAT/enhancer-binding protein α in type 2 diabetic model mouse liver. Endocr J 2022; 69:567-575. [PMID: 35082200 DOI: 10.1507/endocrj.ej21-0465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CCAAT/enhancer-binding protein α (C/EBPα) is a transcription factor abundantly expressed in the liver and white adipose tissue (WAT). In this study, we investigated the mechanism by which C/EBPα regulates the lipase family member N (Lipn) gene in the mouse liver. Mouse Lipn consists of non-coding exon 1 and the translation start site located in exon 2. Lipn expression in the fatty liver of ob/ob mice was significantly higher than that in OB/OB mice and was significantly repressed by liver-specific C/EBPα deficiency. Lipn expression in ob/ob mice was detected in the liver, epididymal WAT (eWAT), subcutaneous WAT (sWAT), brown adipose tissue (BAT), and skeletal muscle, but not in the kidney, brain, and heart. Lipn expression in the liver, eWAT, and sWAT of wild-type mice was undetectable, although C/EBPα was highly expressed in these tissues. The database analysis revealed four putative C/EBP-responsive elements (CEBPREs), highly homologous with the typical CEBPRE consensus sequence at positions -2,686/-2,678, -1,364/-1,356, -106/-98, and -45/-37 from the transcription start site (+1) of Lipn. Reporter assays using reporter constructs with serial or internal deletions of the 5'-flanking regions of Lipn showed that two functional CEBPREs (-106/-98 and -45/-37) in the Lipn promoter region are essential for enhancing Lipn transcriptional activity by C/EBPα. Electrophoretic mobility shift assay showed that C/EBPα/β binds to CEBPRE (-106/-98). These results suggest that C/EBPα and type 2 diabetic environment may be required for hepatic Lipn expression.
Collapse
Affiliation(s)
- Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
3
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
4
|
Activated Histone Acetyltransferase p300/CBP-Related Signalling Pathways Mediate Up-Regulation of NADPH Oxidase, Inflammation, and Fibrosis in Diabetic Kidney. Antioxidants (Basel) 2021; 10:antiox10091356. [PMID: 34572988 PMCID: PMC8469026 DOI: 10.3390/antiox10091356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence implicates the histone acetylation-based epigenetic mechanisms in the pathoetiology of diabetes-associated micro-/macrovascular complications. Diabetic kidney disease (DKD) is a progressive chronic inflammatory microvascular disorder ultimately leading to glomerulosclerosis and kidney failure. We hypothesized that histone acetyltransferase p300/CBP may be involved in mediating diabetes-accelerated renal damage. In this study, we aimed at investigating the potential role of p300/CBP in the up-regulation of renal NADPH oxidase (Nox), reactive oxygen species (ROS) production, inflammation, and fibrosis in diabetic mice. Diabetic C57BL/6J mice were randomized to receive 10 mg/kg C646, a selective p300/CBP inhibitor, or its vehicle for 4 weeks. We found that in the kidney of C646-treated diabetic mice, the level of H3K27ac, an epigenetic mark of active gene expression, was significantly reduced. Pharmacological inhibition of p300/CBP significantly down-regulated the diabetes-induced enhanced expression of Nox subtypes, pro-inflammatory, and pro-fibrotic molecules in the kidney of mice, and the glomerular ROS overproduction. Our study provides evidence that the activation of p300/CBP enhances ROS production, potentially generated by up-regulated Nox, inflammation, and the production of extracellular matrix proteins in the diabetic kidney. The data suggest that p300/CBP-pharmacological inhibitors may be attractive tools to modulate diabetes-associated pathological processes to efficiently reduce the burden of DKD.
Collapse
|
5
|
Cecoltan S, Ciortan L, Macarie RD, Vadana M, Mihaila AC, Tucureanu M, Vlad ML, Droc I, Gherghiceanu M, Simionescu A, Simionescu DT, Butoi E, Manduteanu I. High Glucose Induced Changes in Human VEC Phenotype in a 3D Hydrogel Derived From Cell-Free Native Aortic Root. Front Cardiovasc Med 2021; 8:714573. [PMID: 34458339 PMCID: PMC8387830 DOI: 10.3389/fcvm.2021.714573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Valvular endothelial cells (VEC) have key roles in maintaining valvular integrity and homeostasis, and dysfunctional VEC are the initiators and major contributors to aortic valve disease in diabetes. Previous studies have shown that HG stimulated an inflammatory phenotype in VEC. Inflammation was shown to induce endothelial to mesenchymal transition (EndMT), a process extensively involved in many pathologies, including calcification of the aortic valve. However, the effect of HG on EndMT in VEC is not known. In addition, there is evidence that endothelin (ET) is a proinflammatory agent in early diabetes and was detected in aortic stenosis, but it is not known whether HG induces ET and endothelin receptors and whether endothelin modulates HG-dependent inflammation in VEC. This study aims to evaluate HG effects on EndMT, on endothelin and endothelin receptors induction in VEC and their role in HG induced VEC inflammation. Methods and Results: We developed a new 3D model of the aortic valve consisting of a hydrogel derived from a decellularized extracellular cell matrix obtained from porcine aortic root and human valvular cells. VEC were cultured on the hydrogel surface and VIC within the hydrogel, and the resulted 3D construct was exposed to high glucose (HG) conditions. VEC from the 3D construct exposed to HG exhibited: attenuated intercellular junctions and an abundance of intermediate filaments (ultrastructural analysis), decreased expression of endothelial markers CD31 and VE-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin (qPCR and immunocytochemistry), increased expression of inflammatory molecules ET-1 and its receptors ET-A and ET-B, ICAM-1, VCAM-1 (qPCR and Immunocytochemistry) and augmented adhesiveness. Blockade of ET-1 receptors, ET-A and ET-B reduced secretion of inflammatory biomarkers IL-1β and MCP-1 (ELISA assay). Conclusions: This study demonstrates that HG induces EndMT in VEC and indicates endothelin as a possible target to reduce HG-induced inflammation in VEC.
Collapse
Affiliation(s)
- Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Razvan D. Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Andreea C. Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Monica Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Mihaela-Loredana Vlad
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Victor Babeş National Institute of Pathology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Agneta Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
- Clemson University, Cardiovascular Tissue Engineering in Diabetes, Clemson, SC, United States
| | - Dan Teodor Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
- Clemson University, Cardiovascular Tissue Engineering in Diabetes, Clemson, SC, United States
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| |
Collapse
|
6
|
Meakin PJ, Coull BM, Tuharska Z, McCaffery C, Akoumianakis I, Antoniades C, Brown J, Griffin KJ, Platt F, Ozber CH, Yuldasheva NY, Makava N, Skromna A, Prescott A, McNeilly AD, Siddiqui M, Palmer CN, Khan F, Ashford ML. Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction. J Clin Invest 2021; 130:4104-4117. [PMID: 32407295 PMCID: PMC7410081 DOI: 10.1172/jci122237] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes, obesity, and Alzheimer’s disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased β-site amyloid precursor protein–cleaving (APP-cleaving) enzyme 1 (BACE1), APP, and β-amyloid (Aβ) are linked with vascular disease development and increased BACE1 and Aβ accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, increased Aβ, and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice increased plasma and vascular Aβ42 that correlated with decreased NO bioavailability, endothelial dysfunction, and increased blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aβ42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aβ42 infusion into control diet–fed mice to mimic obese levels impaired NO production, vascular relaxation, and raised blood pressure. In humans, increased plasma Aβ42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aβ42 reduced endothelial NO synthase (eNOS), cyclic GMP (cGMP), and protein kinase G (PKG) activity independently of diet, whereas endothelin-1 was increased by diet and Aβ42. Lowering Aβ42 reversed the DIO deficit in the eNOS/cGMP/PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.
Collapse
Affiliation(s)
- Paul J Meakin
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom.,Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Bethany M Coull
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Zofia Tuharska
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Christopher McCaffery
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Level 6 West Wing, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Charalambos Antoniades
- Cardiovascular Medicine Division, Level 6 West Wing, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jane Brown
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Kathryn J Griffin
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona Platt
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Claire H Ozber
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nadira Y Yuldasheva
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natallia Makava
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Anna Skromna
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Alan Prescott
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alison D McNeilly
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Moneeza Siddiqui
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Colin Na Palmer
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Faisel Khan
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Michael Lj Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
7
|
Kong F, Zhou K, Zhu T, Lian Q, Tao Y, Li N, Tu T, Bi Y, Yang X, Pan X, Li S, You H, Zheng K, Tang R. Interleukin-34 mediated by hepatitis B virus X protein via CCAAT/enhancer-binding protein α contributes to the proliferation and migration of hepatoma cells. Cell Prolif 2019; 52:e12703. [PMID: 31621133 PMCID: PMC6869657 DOI: 10.1111/cpr.12703] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives Interleukin‐34 (IL‐34) is associated with hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). However, the role and associated mechanisms of IL‐34 in HBV‐related HCC remain unclear. In this study, the expression, biological function and associated mechanisms of IL‐34 in HBV‐related HCC cells were investigated. Methods IL‐34 expression induced by HBV and HBV X (HBX) gene was measured in hepatoma cells. The role of CCAAT/enhancer‐binding protein α (CEBP/α) in HBX‐induced IL‐34 expression was examined. The signal pathways involved in the expression of CEBP/α and IL‐34 induced by HBX were assessed. The role of IL‐34 in the proliferation and migration of HCC cells, and related mechanisms were explored. Results Dependent on HBX, HBV increased IL‐34 expression in hepatoma cells, and HBX upregulated and interacted with CEBP/α to enhance the activity of IL‐34 promoters. CEBP/α mediated by HBX was associated with the activation of PI3‐K and NF‐κB pathways to promote IL‐34 expression. Via CSF1‐R and CD138, IL‐34 promoted the proliferation and migration of hepatoma cells, and contributed to the activation of ERK and STAT3 pathways and the upregulation of Bcl‐xl and c‐Myc mediated by HBX. Conclusion We demonstrate that IL‐34 contributes to HBX‐mediated functional abnormality of HCC cells and provides a novel insight into the molecular mechanism of carcinogenesis mediated by HBX.
Collapse
Affiliation(s)
- Fanyun Kong
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,Clinical Laboratory, Enze Hospital, Taizhou Enze Medical Center, Luqiao, China
| | - Ting Zhu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qi Lian
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yukai Tao
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Nan Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Tao Tu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yanwei Bi
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shibao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Ruan W, Li J, Xu Y, Wang Y, Zhao F, Yang X, Jiang H, Zhang L, Saavedra JM, Shi L, Pang T. MALAT1 Up-Regulator Polydatin Protects Brain Microvascular Integrity and Ameliorates Stroke Through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ Pathway. Cell Mol Neurobiol 2019; 39:265-286. [PMID: 30607811 PMCID: PMC11469806 DOI: 10.1007/s10571-018-00646-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA contributing to protect the blood-brain barrier (BBB) after stroke. We searched for small molecules that may up-regulate MALAT1 and focused on polydatin (PD), a natural product, as a possible candidate. PD enhanced MALAT1 gene expression in rat brain microvascular endothelial cells, reducing cell toxicity and apoptosis after oxygen and glucose deprivation (OGD). These effects correlated with reduction of inflammatory factors and enhancement of expression of BBB markers. We found opposite changes after MALAT1 silencing. We determined that C/EBPβ is a key transcription factor for PD-mediated MALAT1 expression. PPARγ activity is involved in MALAT1 protective effects through its coactivator PGC-1α and the transcription factor CREB. This suggests that PD activates the MALAT1/CREB/PGC-1α/PPARγ signaling pathway to protect endothelial cells against ischemia. PD administration to rats subjected to brain ischemia by transient middle cerebral artery occlusion (tMCAO) reduced cerebral infarct volume and brain inflammation, protected cerebrovascular endothelial cells and BBB integrity. These effects correlated with increased expression of MALAT1, C/EBPβ, and PGC-1α. Our results strongly suggest that the beneficial effects of PD involve the C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway, which may provide a novel therapeutic strategy for brain ischemic stroke.
Collapse
Affiliation(s)
- Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Jingwei Li
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yunjie Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xu Yang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
- Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
9
|
Blocking C/EBP β protects vascular endothelial cells from injury induced by intermittent hypoxia. Sleep Breath 2019; 23:953-962. [PMID: 30680681 DOI: 10.1007/s11325-018-1759-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intermittent hypoxia (IH) can damage endothelial cells and lead to apoptosis in obstructive sleep apnea-hypopnea syndrome (OSAHS). Hypoxia induces apoptosis in endothelial cells via upregulation of endothelin-1 (ET-1) and hypoxia inducible factor-1 alpha (HIF-1α) plays a key role in the hypoxic stress response. PURPOSE We investigated an approach to diminish the negative effect of HIF-1α while maintaining its protective effect. METHODS Human umbilical vein endothelial cells (HUVECs) were subjected to sustained hypoxia (SH) or IH for 24 h, and the responses of HIF-1α, CCAAT/enhancer binding protein beta (C/EBP β), and endothelin-1 (ET-1) were assessed by western blotting. A luciferase reporter system was employed to verify the potential binding site (transcription factor binding site, TFBS) for C/EBP β in the ET-1 promoter. The specificity of regulation of ET-1 by HIF-1α via C/EBP β was evaluated by a lentiviral system. The effects of silencing of C/EBP β on IH-induced apoptosis, vascular endothelial growth factor (VEGF) protein levels, proliferation, and in vitro tube formation were studied. RESULTS We found that IH significantly increased HIF-1α, C/EBP β, and ET-1 in HUVECs. Knockdown of HIF-1α or C/EBP β inhibited the upregulation of ET-1 induced by IH. Blocking C/EBP β impaired IH-induced apoptosis but did not affect VEGF expression, proliferation, or in vitro tube formation. C/EBP β was shown to mediate increased ET-1 transcription by HIF-1α through the TFBS, 5'-GTTGCCTGTTG-3', in ET-1 promoter. CONCLUSION Silencing of C/EBP β can suppress apoptosis but does not affect the protective role of HIF-1α in the hypoxic stress response.
Collapse
|
10
|
Endothelin-1 traps potently reduce pathologic markers back to basal levels in an in vitro model of diabetes. J Diabetes Metab Disord 2018; 17:189-195. [PMID: 30918854 DOI: 10.1007/s40200-018-0360-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Background Diabetes mellitus is a group of metabolic disorders in which there are high blood glucose levels over a prolonged period. Diabetes is one of many diseases associated with pathologically elevated levels of endothelin (ET)-1. We have recently proposed the development of ET-traps, which are an antibody - based fusion protein that potently bind and sequester pathologically elevated levels of endothelin-1. Methods We constructed ET-traps that were found to be very potent binders to ET-1, with a KD of 32.5ρM. We then treated human retinal microvascular endothelial cells (HRMECs), which are an in vitro model of glucose induced cellular damage, with 10 nM ET-1 or high glucose levels (25 mM). Results In this study, we investigated the effects of our ET-trap constructs on the expression levels of both collagen 4α1 and fibronectin, which are both important pathologic markers in diabetes. Treating HRMECs with 10 nM ET-1 or 25 mM glucose significantly induces the expression of the ECM proteins fibronectin and collagen 4α1, as is found in chronic diabetic complications; Incubation of the cells with the ET-traps significantly prevented the increased expression of fibronectin and collagen 4α1 back to basal levels. This was found with both mRNA and protein expression levels of the two ECM proteins. Conclusion Our results provide the first evidence of the efficacy of ET-traps in reducing pathologic markers in an in vitro model (of diabetes). Further research is warranted to determine the efficacy of ET-traps as a therapeutic tool for diabetes, which is a major public health burden around the world.
Collapse
|
11
|
Li W, Abdul Y, Ward R, Ergul A. Endothelin and diabetic complications: a brain-centric view. Physiol Res 2018; 67:S83-S94. [PMID: 29947530 DOI: 10.33549/physiolres.933833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The global epidemic of diabetes is of significant concern. Diabetes associated vascular disease signifies the principal cause of morbidity and mortality in diabetic patients. It is also the most rapidly increasing risk factor for cognitive impairment, a silent disease that causes loss of creativity, productivity, and quality of life. Small vessel disease in the cerebral vasculature plays a major role in the pathogenesis of cognitive impairment in diabetes. Endothelin system, including endothelin-1 (ET-1) and the receptors (ET(A) and ET(B)), is a likely candidate that may be involved in many aspects of the diabetes cerebrovascular disease. In this review, we took a brain-centric approach and discussed the role of the ET system in cerebrovascular and cognitive dysfunction in diabetes.
Collapse
Affiliation(s)
- W Li
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA, Department of Physiology, Augusta University, Augusta, Georgia, USA.
| | | | | | | |
Collapse
|
12
|
da Luz PL, Favarato D, Berwanger O. Action of Red Wine and Polyphenols Upon Endothelial Function and Clinical Events. ENDOTHELIUM AND CARDIOVASCULAR DISEASES 2018:391-418. [DOI: 10.1016/b978-0-12-812348-5.00026-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Padilla J, Carpenter AJ, Das NA, Kandikattu HK, López-Ongil S, Martinez-Lemus LA, Siebenlist U, DeMarco VG, Chandrasekar B. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol 2018; 314:H52-H64. [PMID: 28971844 PMCID: PMC5866390 DOI: 10.1152/ajpheart.00478.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 01/15/2023]
Abstract
Hyperglycemia-induced production of endothelin (ET)-1 is a hallmark of endothelial dysfunction in diabetes. Although the detrimental vascular effects of increased ET-1 are well known, the molecular mechanisms regulating endothelial synthesis of ET-1 in the setting of diabetes remain largely unidentified. Here, we show that adapter molecule TRAF3 interacting protein 2 (TRAF3IP2) mediates high glucose-induced ET-1 production in endothelial cells and ET-1-mediated endothelial cell inflammation. Specifically, we found that high glucose upregulated TRAF3IP2 in human aortic endothelial cells, which subsequently led to activation of JNK and IKKβ. shRNA-mediated silencing of TRAF3IP2, JNK1, or IKKβ abrogated high-glucose-induced ET-converting enzyme 1 expression and ET-1 production. Likewise, overexpression of TRAF3IP2, in the absence of high glucose, led to activation of JNK and IKKβ as well as increased ET-1 production. Furthermore, ET-1 transcriptionally upregulated TRAF3IP2, and this upregulation was prevented by pharmacological inhibition of ET-1 receptor B using BQ-788, or inhibition of NADPH oxidase-derived reactive oxygen species using gp91ds-tat and GKT137831. Notably, we found that knockdown of TRAF3IP2 abolished ET-1-induced proinflammatory and adhesion molecule (IL-1β, TNF-α, monocyte chemoattractant protein 1, ICAM-1, VCAM-1, and E-selectin) expression and monocyte adhesion to endothelial cells. Finally, we report that TRAF3IP2 is upregulated and colocalized with CD31, an endothelial marker, in the aorta of diabetic mice. Collectively, findings from the present study identify endothelial TRAF3IP2 as a potential new therapeutic target to suppress ET-1 production and associated vascular complications in diabetes. NEW & NOTEWORTHY This study provides the first evidence that the adapter molecule TRAF3 interacting protein 2 mediates high glucose-induced production of endothelin-1 by endothelial cells as well as endothelin-1-mediated endothelial cell inflammation. The findings presented herein suggest that TRAF3 interacting protein 2 may be an important therapeutic target in diabetic vasculopathy characterized by excess endothelin-1 production.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
- Department of Child Health, University of Missouri , Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center , San Antonio, Texas
| | - Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center , San Antonio, Texas
| | - Hemanth Kumar Kandikattu
- Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri , Columbia, Missouri
| | - Susana López-Ongil
- Research Unit, Fundación para la Investigación Biomédica del Hospital Universitario Prıncipe de Asturias, Alcala de Henares, Madrid , Spain
- Instituto Reina Sofıa de Investigación Nefrológica, IRSIN, Madrid , Spain
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri , Columbia, Missouri
- Division of Endocrinology, Department of Medicine, University of Missouri , Columbia, Missouri
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri , Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
14
|
Tokonami N, Cheval L, Monnay I, Meurice G, Loffing J, Feraille E, Houillier P. Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia. J Physiol 2017; 595:2535-2550. [PMID: 28120456 DOI: 10.1113/jp273610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. ABSTRACT Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria.
Collapse
Affiliation(s)
- Natsuko Tokonami
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Lydie Cheval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Isabelle Monnay
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Guillaume Meurice
- Bioinformatic Core Facility, UMS AMMICA, INSERM US23, CNRS UMS3665, Gustave Roussy, Villejuif, France
| | | | - Eric Feraille
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Pascal Houillier
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| |
Collapse
|
15
|
Thomas SR. Haematopoietic-expressed C/EBPβ: A novel transcriptional regulator of hepatic liver metabolism and macrophage foam cells during atherosclerosis? Atherosclerosis 2016; 250:183-5. [PMID: 27207261 DOI: 10.1016/j.atherosclerosis.2016.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Shane R Thomas
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Mondal D, Mathur A, Chandra PK. Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer. Biochimie 2016; 124:34-52. [DOI: 10.1016/j.biochi.2016.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022]
|
17
|
Manea SA, Fenyo IM, Manea A. c-Src tyrosine kinase mediates high glucose-induced endothelin-1 expression. Int J Biochem Cell Biol 2016; 75:123-30. [PMID: 27102411 DOI: 10.1016/j.biocel.2016.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/25/2022]
Abstract
Endothelin-1 (ET-1) plays an important role in the pathophysiology of diabetes-associated cardiovascular disorders. The molecular mechanisms leading to ET-1 upregulation in diabetes are not entirely defined. c-Src tyrosine kinase regulates important pathophysiological aspects of vascular response to insults. In this study, we aimed to elucidate whether high glucose-activated c-Src signaling plays a role in the regulation of ET-1 expression. Human endothelial cells EAhy926 (ECs) were exposed to normal or high levels of glucose for 24h. Male C57BL/6J mice were rendered diabetic with streptozotocin and then treated with a specific c-Src inhibitor (Src I1) or c-Src siRNA. Real-time PCR, Western blot, and ELISA, were used to investigate ET-1 regulation. The c-Src activity and expression were selectively downregulated by pharmacological inhibition and siRNA-mediated gene silencing, respectively. High glucose dose-dependently up-regulated c-Src phosphorylation and ET-1 gene and protein expression levels in human ECs. Chemical inhibition or silencing of c-Src significantly decreased the high-glucose augmented ET-1 expression in cultured ECs. In vivo studies showed significant elevations in the aortic ET-1 mRNA expression and plasma ET-1 concentration in diabetic mice compared to non-diabetic animals. Treatment with Src I1, as well as in vivo silencing of c-Src, significantly reduced the upregulated ET-1 expression in diabetic mice. These data provide new insights into the regulation of ET-1 expression in endothelial cells in diabetes. Pharmacological targeting of c-Src activity and/or expression may represent a potential therapeutic strategy to reduce ET-1 level and to counteract diabetes-induced deleterious vascular effects.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
18
|
Ko AR, Kang TC. Blockade of endothelin B receptor improves the efficacy of levetiracetam in chronic epileptic rats. Seizure 2015; 31:133-40. [PMID: 26362390 DOI: 10.1016/j.seizure.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To elucidate the mechanisms that regulate p-glycoprotein (PGP) expression and function in pharmacoresistant epilepsy, we investigated the effect of an ETB receptor antagonist (BQ788) and a p38 mitogen-activated protein kinase (p38MAPK) inhibitor (SB202190) on intractable seizures in chronic epileptic rats. METHODS Lithium-pilocarpine-induced chronic epileptic rats were used in the present study. Animals were given levetiracetam (LEV), LEV + SB202190, LEV + BQ788, SB202190 or BQ788 over a 3-day period using an osmotic pump. Seizure activity was recorded by video-EEG monitoring with 2h of recording per day at the same time of day. We also performed western blot after EEG analysis. RESULTS Compared to control animals, PGP, ETB receptor and p38MAPK expression was increased in the hippocampus of epileptic animals. Neither SB202190 nor BQ788 affected the spontaneous seizure activity in epileptic rats. Three of ten rats were responders and achieved complete seizure control or significant reduction in seizure activity by LEV. In four of ten rats, seizure frequency was unaltered by LEV (non-responders). LEV + SB202190 reduced seizure duration, but not seizure frequency, in both responders and non-responders. LEV + BQ788 alleviated seizure frequency and seizure duration in both responders and non-responders. Compared to responders, PGP and ETB receptor expression was enhanced in the hippocampus of non-responders. CONCLUSION To the best of our knowledge, these findings are the first indications of the role of ETB receptor in pharmacoresistant epilepsy. Therefore, the present data suggest that the regulation of the ETB receptor-mediated signaling pathway may be important for identification of new therapeutic strategies for improving antiepileptic drug efficacy.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea.
| |
Collapse
|
19
|
Manea SA, Constantin A, Manda G, Sasson S, Manea A. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5:358-366. [PMID: 26133261 PMCID: PMC4501559 DOI: 10.1016/j.redox.2015.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases. Nox is a unique class of enzymes whose sole function is the generation of ROS. Nox-derived ROS play a major role in cell physiology. Enhanced expression and activation of Nox has been reported in numerous pathologies. Nox expression is regulated via complex transcription factor-epigenetic mechanisms. Understanding of Nox regulation is essential to counteract ROS-induced cell damage.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Shlomo Sasson
- The Institute for Drug Research, Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
20
|
Manea A, Manea SA, Gan AM, Constantin A, Fenyo IM, Raicu M, Muresian H, Simionescu M. Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 2015; 461:172-9. [DOI: 10.1016/j.bbrc.2015.04.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022]
|
21
|
Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M. High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARα and PPARβ/δ. Cell Tissue Res 2015; 361:593-604. [PMID: 25722086 DOI: 10.1007/s00441-015-2120-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 12/29/2014] [Indexed: 01/04/2023]
Abstract
High glucose induces vascular smooth muscle cell (SMC) dysfunction by generating oxidative stress attributable, in part, to the up-regulated NADPH oxidases (Nox). We have attempted to elucidate the high-glucose-generated molecular signals that mediate this effect and hypothesize that products of high-glucose-induced lipid peroxidation regulate Nox by activating peroxisome proliferator-activated receptors (PPARs). Human aortic SMCs were exposed to glucose (5.5-25 mM) or 4-hydroxynonenal (1-25 μM, 4-HNE). Lucigenin assay, real-time polymerase chain reaction, western blot, and promoter analyses were employed to investigate Nox. We found that high glucose generated an increase in Nox activity and expression. It also promoted oxidative stress that consequently induced lipid peroxidation, which resulted in the production of 4-HNE. Pharmacological inhibition of Nox activity significantly reduced the formation of high-glucose-induced 4-HNE. Exposure of SMCs to non-cytotoxic concentrations (1-10 μM) of 4-HNE alone mimicked the effect of high glucose incubation, whereas scavenging of 4-HNE by N-acetyl L-cysteine completely abolished both the effects of high glucose and 4-HNE. The latter exerted its effect by activating PPARα and PPARβ/δ, but not PPARγ, as assessed pharmacologically by the inhibitory effect of selective antagonists and following the silencing of the expression of these receptors. These new data indicate that 4-HNE, generated following Nox activation, functions as an endogenous activator of PPARα and PPARβ/δ. The newly discovered "lipid peroxidation products-PPARs-Nox axis" represents a novel mechanism of Nox regulation and an additional therapeutic target for oxidative stress in diabetes.
Collapse
Affiliation(s)
- Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Hasdeu Street, 050568, Bucharest, Romania,
| | | | | | | | | | | | | |
Collapse
|
22
|
Bilodeau MS, Arguin G, Gendron FP. C/EBPβ regulates P2X7 receptor expression in response to glucose challenge in intestinal epithelial cells. Biochem Cell Biol 2015; 93:38-46. [DOI: 10.1139/bcb-2014-0098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activation of the ATP-dependent P2X7 receptor modulates glucose transport in intestinal epithelial cells through the downregulation of glucose transporter GLUT2. In the present study, we show that an increase in glucose concentration stimulates P2X7 receptor transcription via modulation of CCAAT/enhancer binding proteins (C/EBPs) α and β expression. The described human P2X7 receptor promoter region (GenBank Y12851) was cloned upstream of a luciferase reporter gene in pGL4.10 plasmid and used to determine whether C/EBPs, namely C/EBPα and C/EBPβ, are able to stimulate the transcription of P2X7 receptor. Results show that C/EBPβ was the main regulator of P2X7 receptor expression in response to a glucose challenge. Chromatin immunoprecipitation (ChIP) assays further revealed that C/EBPβ occupied the –213 to +6 nt P2X7 promoter region. Surprisingly, C/EBPα was also able to bind this region as revealed by ChIP assays, but without inducing receptor transcription. In fact, C/EBPα and the C/EBPβ-LIP isoform blocked the C/EBPβ-dependent regulation of P2X7 receptor transcription. These findings suggest that glucose is not only the major source of energy for cell function but may also act as a signaling molecule to stimulate the expression of regulatory proteins.
Collapse
Affiliation(s)
- Maude S. Bilodeau
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| |
Collapse
|
23
|
Yu AP, Tam BT, Yau WY, Chan KS, Yu SS, Chung TL, Siu PM. Association of endothelin-1 and matrix metallopeptidase-9 with metabolic syndrome in middle-aged and older adults. Diabetol Metab Syndr 2015; 7:111. [PMID: 26692905 PMCID: PMC4676096 DOI: 10.1186/s13098-015-0108-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) contains a cluster of cardiovascular risk factors. People with MetS are more susceptible to cardiovascular disease, diabetes mellitus, and cancer. Endothelin-1 (ET-1) and matrix metallopeptidase-9 (MMP-9) have been implicated in the development of cardiovascular diseases, diabetes mellitus and cancers. This cross-sectional study aimed to examine the association of ET-1 and MMP-9 with MetS in middle-aged and older Hong Kong Chinese adults. METHODS 149 adults aged 50 to 92 (n = 75 for non-MetS group and n = 74 for MetS group) were examined. All subjects were screened for MetS according to the diagnostic guideline of the United States National Cholesterol Education Program (NCEP) Expert Panel Adult Treatment Panel (ATP) III criteria. Serum levels of ET-1 and MMP-9 were measured. Independent t test was used to detect differences between non-MetS and MetS groups and between subjects with or without certain metabolic abnormality. The association of the serum concentration of MMP-9 and ET-1 with MetS parameters were examined by Pearson's correlation analysis. RESULTS Serum level of ET-1 is higher in MetS-positive subjects and in subjects with high blood pressure, elevated fasting blood glucose, and central obesity. The serum concentration of MMP-9 is higher in subjects positively diagnosed with MetS and subjects with high blood pressure, elevated fasting blood glucose, low blood high-density lipoprotein-cholesterol (HDL-C), high blood triglycerides, and central obesity. Correlation analyses revealed that serum concentration of ET-1 is positively correlated to systolic blood pressure, waist circumference, fasting blood glucose, and age whereas it is negatively correlated to HDL-C. MMP-9 is positively correlated to systolic blood pressure, waist circumference, fasting blood glucose, and age whereas it is negatively correlated to HDL-C. CONCLUSION Serum ET-1 is higher in subjects with hypertension, hyperglycemia, central obesity or MetS. Serum MMP-9 is higher in subjects diagnosed with MetS or having either one of the MetS parameters. Both circulating levels of ET-1 and MMP-9 are correlated to systolic blood pressure, waist circumference, fasting blood glucose, HDL-C, and age. Further research is needed to fully dissect the role of ET-1 and MMP-9 in the development of cancers, diabetes and cardiovascular disease in relation to MetS.
Collapse
Affiliation(s)
- A. P. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - B. T. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - W. Y. Yau
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - K. S. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - S. S. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - T. L. Chung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - P. M. Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|