1
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
2
|
Jeon YH, Lee S, Kim DW, Kim S, Bae SS, Han M, Seong EY, Song SH. Serum and urine metabolomic biomarkers for predicting prognosis in patients with immunoglobulin A nephropathy. Kidney Res Clin Pract 2023; 42:591-605. [PMID: 37448290 PMCID: PMC10565460 DOI: 10.23876/j.krcp.22.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most prevalent form of glomerulonephritis worldwide. Prediction of disease progression in IgAN can help to provide individualized treatment based on accurate risk stratification. METHODS We performed proton nuclear magnetic resonance-based metabolomics analyses of serum and urine samples from healthy controls, non-progressor (NP), and progressor (P) groups to identify metabolic profiles of IgAN disease progression. Metabolites that were significantly different between the NP and P groups were selected for pathway analysis. Subsequently, we analyzed multivariate area under the receiver operating characteristic (ROC) curves to evaluate the predictive power of metabolites associated with IgAN progression. RESULTS We observed several distinct metabolic fingerprints of the P group involving the following metabolic pathways: glycolipid metabolism; valine, leucine, and isoleucine biosynthesis; aminoacyl-transfer RNA biosynthesis; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism. In multivariate ROC analyses, the combinations of serum glycerol, threonine, and proteinuria (area under the curve [AUC], 0.923; 95% confidence interval [CI], 0.667-1.000) and of urinary leucine, valine, and proteinuria (AUC, 0.912; 95% CI, 0.667-1.000) showed the highest discriminatory ability to predict IgAN disease progression. CONCLUSION This study identified serum and urine metabolites profiles that can aid in the identification of progressive IgAN and proposed perturbed metabolic pathways associated with the identified metabolites.
Collapse
Affiliation(s)
- You Hyun Jeon
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sujin Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Da Woon Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Sun Sik Bae
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Miyeun Han
- Division of Nephrology, Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Eun Young Seong
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Humphries TLR, Vesey DA, Galloway GJ, Gobe GC, Francis RS. Identifying disease progression in chronic kidney disease using proton magnetic resonance spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:52-64. [PMID: 37321758 DOI: 10.1016/j.pnmrs.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 06/17/2023]
Abstract
Chronic kidney disease (CKD) affects approximately 10% of the world population, higher still in some developing countries, and can cause irreversible kidney damage eventually leading to kidney failure requiring dialysis or kidney transplantation. However, not all patients with CKD will progress to this stage, and it is difficult to distinguish between progressors and non-progressors at the time of diagnosis. Current clinical practice involves monitoring estimated glomerular filtration rate and proteinuria to assess CKD trajectory over time; however, there remains a need for novel, validated methods that differentiate CKD progressors and non-progressors. Nuclear magnetic resonance techniques, including magnetic resonance spectroscopy and magnetic resonance imaging, have the potential to improve our understanding of CKD progression. Herein, we review the application of magnetic resonance spectroscopy both in preclinical and clinical settings to improve the diagnosis and surveillance of patients with CKD.
Collapse
Affiliation(s)
- Tyrone L R Humphries
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia; Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia; Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Graham J Galloway
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Ross S Francis
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia; Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
4
|
Gupta N, Yadav DK, Gautam S, Kumar A, Kumar D, Prasad N. Nuclear Magnetic Resonance-Based Metabolomics Approach Revealed the Intervention Effect of Using Complementary and Alternative Medicine (CAM) by CKD Patients. ACS OMEGA 2023; 8:7722-7737. [PMID: 36872986 PMCID: PMC9979328 DOI: 10.1021/acsomega.2c06469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Chronic kidney disease (CKD) is the end point of a number of systemic chronic diseases. The prevalence of CKD is increasing worldwide and recent epidemiological studies are showing the high prevalence of renal failure in CKD patients using complementary and alternative medicines (CAMs). Clinicians believe that biochemical profiles of CKD patients using CAM (referred here to as CAM-CKD) may be different compared to those on standard clinical treatment and should be managed differently. The present study aims to explore the potential of the NMR-based metabolomics approach to reveal the serum metabolic disparity between CKD and CAM-CKD patients with respect to normal control (NC) subjects and if the differential metabolic patterns can provide rationale for the efficacy and safety of standard and/or alternative therapies. Serum samples were obtained from 30 CKD patients, 43 CAM-CKD patients, and 47 NC subjects. The quantitative serum metabolic profiles were measured using 1D 1H CPMG NMR experiments performed at 800 MHz NMR spectrometer. The serum metabolic profiles were compared using various multivariate statistical analysis tools available on MetaboAnalyst (freely available web-based software) such as partial least-squares discriminant analysis (PLS-DA) and random forest (a machine learning) classification method. The discriminatory metabolites were identified based on variable importance in projection (VIP) statistics and further evaluated for statistical significance (i.e., p < 0.05) using either Student t-test or ANOVA statistics. PLS-DA models were capable of clustering CKD and CAM-CKD with considerably high values of Q 2 and R 2. Compared to CAM-CKD patients, the sera of CKD patients were characterized by (a) elevated levels of urea, creatinine, citrate, glucose, glycerol, and phenylalanine and phenylalanine-to-tyrosine ratio (PTR) and (b) decreased levels of various amino acids (such leucine, isoleucine, valine, and alanine), high-density lipoproteins, lactate, and acetate. These changes suggested that CKD patients manifest severe oxidative stress, hyperglycemia (with dampened glycolysis), increased protein energy wasting, and reduced lipid/membrane metabolism. Statistically significant and strong positive correlation of PTR with serum creatinine levels suggested the role of oxidative stress in the progression of kidney disease. Significant differences in metabolic patterns between CKD and CAM-CKD patients were observed. With respect to NC subjects, the serum metabolic changes were more aberrant in CKD patients compared to CAM-CKD patients. The aberrant metabolic changes in CKD patients with manifestations of higher oxidative stress compared to CAM-CKD patients could explain clinical discrepancies between CKD and CAM-CKD patients and further advocate the use of different treatment strategies for CKD and CAM-CKD patients.
Collapse
Affiliation(s)
- Nikhil Gupta
- Centre
of Biomedical Research (CBMR), Lucknow, Uttar Pradesh 226014, India
- Department
of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | | | - Sonam Gautam
- Department
of Nephrology, SGPGIMS, Lucknow, Uttar Pradesh 226014, India
| | - Ashish Kumar
- Department
of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Dinesh Kumar
- Centre
of Biomedical Research (CBMR), Lucknow, Uttar Pradesh 226014, India
| | - Narayan Prasad
- Department
of Nephrology, SGPGIMS, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
5
|
Bächle H, Sekula P, Schlosser P, Steinbrenner I, Cheng Y, Kotsis F, Meiselbach H, Stockmann H, Schönherr S, Eckardt KU, Devuyst O, Scherberich J, Köttgen A, Schultheiss UT. Uromodulin and its association with urinary metabolites: the German Chronic Kidney Disease Study. Nephrol Dial Transplant 2023; 38:70-79. [PMID: 35612992 DOI: 10.1093/ndt/gfac187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The progression of chronic kidney disease (CKD), a global public health burden, is accompanied by a declining number of functional nephrons. Estimation of remaining nephron mass may improve assessment of CKD progression. Uromodulin has been suggested as a marker of tubular mass. We aimed to identify metabolites associated with uromodulin concentrations in urine and serum to characterize pathophysiologic alterations of metabolic pathways to generate new hypotheses regarding CKD pathophysiology. METHODS We measured urinary and serum uromodulin levels (uUMOD, sUMOD) and 607 urinary metabolites and performed cross-sectional analyses within the German Chronic Kidney Disease study (N = 4628), a prospective observational study. Urinary metabolites significantly associated with uUMOD and sUMOD were used to build weighted metabolite scores for urine (uMS) and serum uromodulin (sMS) and evaluated for time to adverse kidney events over 6.5 years. RESULTS Metabolites cross-sectionally associated with uromodulin included amino acids of the tryptophan metabolism, lipids and nucleotides. Higher levels of the sMS [hazard ratio (HR) = 0.73 (95% confidence interval 0.64; 0.82), P = 7.45e-07] and sUMOD [HR = 0.74 (95% confidence interval 0.63; 0.87), P = 2.32e-04] were associated with a lower risk of adverse kidney events over time, whereas uUMOD and uMS showed the same direction of association but were not significant. CONCLUSIONS We identified urinary metabolites associated with urinary and serum uromodulin. The sUMOD and the sMS were associated with lower risk of adverse kidney events among CKD patients. Higher levels of sUMOD and sMS may reflect a higher number of functional nephrons and therefore a reduced risk of adverse kidney outcomes.
Collapse
Affiliation(s)
- Helena Bächle
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.,Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité, University-Medicine, Berlin, Germany
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Nephrology and Medical Intensive Care, Charité, University-Medicine, Berlin, Germany
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Nephrology & Clinical Immunology, Teaching Hospital of the Ludwig-Maximilians-University München, Munich, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.,Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
6
|
Jenne A, Bermel W, Michal CA, Gruschke O, Soong R, Ghosh Biswas R, Bastawrous M, Simpson AJ. DREAMTIME NMR Spectroscopy: Targeted Multi-Compound Selection with Improved Detection Limits. Angew Chem Int Ed Engl 2022; 61:e202110044. [PMID: 35170183 DOI: 10.1002/anie.202110044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/06/2022]
Abstract
NMR/MRI are critical tools for studying molecular structure and interactions but suffer from relatively low sensitivity and spectral overlap. Here, a Nuclear Magnetic Resonance (NMR) approach, termed DREAMTIME, is introduced that provides "a molecular window" inside complex systems, capable of showing only what the user desires, with complete molecular specificity. The user chooses a list of molecules of interest, and the approach detects only those targets while all other molecules are invisible. The approach is demonstrated in whole human blood and urine, small living aquatic organisms in 1D/2D NMR, and MRI. Finally, as proof-of-concept, once overlap is removed via DREAMTIME, a novel "multi-focusing" approach can be used to increase sensitivity. In human blood and urine, sensitivity increases of 7-12 fold over standard 1 H NMR are observed. Applicable even to unknowns, DREAMTIME has widespread application, from monitoring product formation in organic chemistry to monitoring/identifying suites of molecular targets in complex media or in vivo.
Collapse
Affiliation(s)
- Amy Jenne
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Strasse 23, 76275, Ettlingen, Germany
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada
| | - Oliver Gruschke
- Bruker BioSpin GmbH, Rudolf-Plank-Strasse 23, 76275, Ettlingen, Germany
| | - Ronald Soong
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Monica Bastawrous
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Andre J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
7
|
Jenne A, Bermel W, Michal CA, Gruschke O, Soong R, Ghosh Biswas R, Bastawrous M, Simpson AJ. DREAMTIME NMR Spectroscopy: Targeted Multi‐Compound Selection with Improved Detection Limits. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amy Jenne
- Environmental NMR Centre University of Toronto Scarborough 1265 Military Trail Toronto ON, M1C 1A4 Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH Rudolf-Plank-Strasse 23 76275 Ettlingen Germany
| | - Carl A. Michal
- Department of Physics and Astronomy University of British Columbia 6224 Agricultural Road Vancouver BC, V6T 1Z1 Canada
| | - Oliver Gruschke
- Bruker BioSpin GmbH Rudolf-Plank-Strasse 23 76275 Ettlingen Germany
| | - Ronald Soong
- Environmental NMR Centre University of Toronto Scarborough 1265 Military Trail Toronto ON, M1C 1A4 Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Centre University of Toronto Scarborough 1265 Military Trail Toronto ON, M1C 1A4 Canada
| | - Monica Bastawrous
- Environmental NMR Centre University of Toronto Scarborough 1265 Military Trail Toronto ON, M1C 1A4 Canada
| | - Andre J. Simpson
- Environmental NMR Centre University of Toronto Scarborough 1265 Military Trail Toronto ON, M1C 1A4 Canada
| |
Collapse
|
8
|
Huang HX, Shen LL, Huang HY, Zhao LH, Xu F, Zhang DM, Zhang XL, Chen T, Wang XQ, Xie Y, Su JB. Associations of Plasma Glucagon Levels with Estimated Glomerular Filtration Rate, Albuminuria and Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2021; 45:868-879. [PMID: 33752319 PMCID: PMC8640146 DOI: 10.4093/dmj.2020.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by elevated fasting glucagon and impaired suppression of postprandial glucagon secretion, which may participate in diabetic complications. Therefore, we investigated the associations of plasma glucagon with estimated glomerular filtration rate (eGFR), albuminuria and diabetic kidney disease (DKD) in T2DM patients. METHODS Fasting glucagon and postchallenge glucagon (assessed by area under the glucagon curve [AUCgla]) levels were determined during oral glucose tolerance tests. Patients with an eGFR <60 mL/min/1.73 m2 and/or a urinary albumin-to-creatinine ratio (UACR) ≥30 mg/g who presented with diabetic retinopathy were identified as having DKD. RESULTS Of the 2,436 recruited patients, fasting glucagon was correlated with eGFR and UACR (r=-0.112 and r=0.157, respectively; P<0.001), and AUCgla was also correlated with eGFR and UACR (r=-0.267 and r=0.234, respectively; P<0.001). Moreover, 31.7% (n=771) presented with DKD; the prevalence of DKD was 27.3%, 27.6%, 32.5%, and 39.2% in the first (Q1), second (Q2), third (Q3), and fourth quartile (Q4) of fasting glucagon, respectively; and the corresponding prevalence for AUCgla was 25.9%, 22.7%, 33.7%, and 44.4%, respectively. Furthermore, after adjusting for other clinical covariates, the adjusted odds ratios (ORs; 95% confidence intervals) for DKD in Q2, Q3, and Q4 versus Q1 of fasting glucagon were 0.946 (0.697 to 1.284), 1.209 (0.895 to 1.634), and 1.521 (1.129 to 2.049), respectively; the corresponding ORs of AUCgla were 0.825 (0.611 to 1.114), 1.323 (0.989 to 1.769), and 2.066 (1.546 to 2.760), respectively. Additionally, when we restricted our analysis in patients with glycosylated hemoglobin <7.0% (n=471), we found fasting glucagon and AUCgla were still independently associated with DKD. CONCLUSION Both increased fasting and postchallenge glucagon levels were independently associated with DKD in T2DM patients.
Collapse
Affiliation(s)
- Hua-Xing Huang
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Liang-Lan Shen
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Hai-Yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Dong-Mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Tong Chen
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Yan Xie
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| | - Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| |
Collapse
|
9
|
Hoel A, Osman T, Hoel F, Elsaid H, Chen T, Landolt L, Babickova J, Tronstad KJ, Lorens JB, Gausdal G, Marti HP, Furriol J. Axl-inhibitor bemcentinib alleviates mitochondrial dysfunction in the unilateral ureter obstruction murine model. J Cell Mol Med 2021; 25:7407-7417. [PMID: 34219376 PMCID: PMC8335678 DOI: 10.1111/jcmm.16769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a progressive histological manifestation leading to chronic kidney disease (CKD) and associated with mitochondrial dysfunction. In previous work, we showed that Bemcentinib, an Axl receptor tyrosine kinase inhibitor, reduced fibrosis development. In this study, to investigate its effects on mitochondrial dysfunction in renal fibrosis, we analysed genome‐wide transcriptomics data from a unilateral ureter obstruction (UUO) murine model in the presence or absence of bemcentinib (n = 6 per group) and SHAM‐operated (n = 4) mice. Kidney ligation resulted in dysregulation of mitochondria‐related pathways, with a significant reduction in the expression of oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), citric acid cycle (TCA), response to reactive oxygen species and amino acid metabolism‐related genes. Bemcentinib treatment increased the expression of these genes. In contrast, AKT/PI3K signalling pathway genes were up‐regulated upon UUO, but bemcentinib largely inhibited their expression. At the functional level, ligation reduced mitochondrial biomass, which was increased upon bemcentinib treatment. Serum metabolomics analysis also showed a normalizing amino acid profile in UUO, compared with SHAM‐operated mice following bemcentinib treatment. Our data suggest that mitochondria and mitochondria‐related pathways are dramatically affected by UUO surgery and treatment with Axl‐inhibitor bemcentinib partially reverses these effects.
Collapse
Affiliation(s)
- August Hoel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hassan Elsaid
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tony Chen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - James B Lorens
- BerGenBio ASA, Bergen, Norway.,Department of Biomedicine, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | | | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
10
|
Unique Metabolomic Profile of Skeletal Muscle in Chronic Limb Threatening Ischemia. J Clin Med 2021; 10:jcm10030548. [PMID: 33540726 PMCID: PMC7867254 DOI: 10.3390/jcm10030548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic limb threatening ischemia (CLTI) is the most severe manifestation of peripheral atherosclerosis. Patients with CLTI have poor muscle quality and function and are at high risk for limb amputation and death. The objective of this study was to interrogate the metabolome of limb muscle from CLTI patients. To accomplish this, a prospective cohort of CLTI patients undergoing either a surgical intervention (CLTI Pre-surgery) or limb amputation (CLTI Amputation), as well as non-peripheral arterial disease (non-PAD) controls were enrolled. Gastrocnemius muscle biopsy specimens were obtained and processed for nuclear magnetic resonance (NMR)-based metabolomics analyses using solution state NMR on extracted aqueous and organic phases and 1H high-resolution magic angle spinning (HR-MAS) on intact muscle specimens. CLTI Amputation specimens displayed classical features of ischemic/hypoxic metabolism including accumulation of succinate, fumarate, lactate, alanine, and a significant decrease in the pyruvate/lactate ratio. CLTI Amputation muscle also featured aberrant amino acid metabolism marked by elevated branched chain amino acids. Finally, both Pre-surgery and Amputation CLTI muscles exhibited pronounced accumulation of lipids, suggesting the presence of myosteatosis, including cholesterol, triglycerides, and saturated fatty acids. Taken together, these metabolite differences add to a growing body of literature that have characterized profound metabolic disturbance’s in the failing ischemic limb of CLTI patients.
Collapse
|
11
|
Ottka C, Vapalahti K, Määttä A, Huuskonen N, Sarpanen S, Jalkanen L, Lohi H. High serum creatinine concentration is associated with metabolic perturbations in dogs. J Vet Intern Med 2021; 35:405-414. [PMID: 33349961 PMCID: PMC7848334 DOI: 10.1111/jvim.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The kidneys have many essential metabolic functions, and metabolic disturbances during decreased renal function have not been studied extensively. OBJECTIVES To identify metabolic changes in blood samples with increased serum creatinine concentration, indicating decreased glomerular filtration. ANIMALS Clinical samples analyzed using a nuclear magnetic resonance (NMR) based metabolomics platform. The case group consisted of 23 samples with serum creatinine concentration >125 μmol/L, and the control group of 873 samples with serum creatinine concentration within the reference interval. METHODS Biomarker association with increased serum creatinine concentration was evaluated utilizing 3 statistical approaches: Wilcoxon rank-sum test, logistic regression analysis (false discovery rate (FDR)-corrected P-values), and random forest classification. Medians of the biomarkers were compared to reference intervals. A heatmap and box plots were used to represent the differences. RESULTS All 3 statistical approaches identified similar analytes associated with increased serum creatinine concentrations. The percentages of citrate, tyrosine, branched-chain amino acids, valine, leucine, albumin, linoleic acid and the ratio of phenylalanine to tyrosine differed significantly using all statistical approaches, acetate differed using the Wilcoxon test and random forest, docosapentaenoic acid percentage only using logistic regression (P < .05), and alanine only using random forest. CONCLUSIONS AND CLINICAL IMPORTANCE We identified several metabolic changes associated with increased serum creatinine concentrations, including prospective diagnostic markers and therapeutic targets. Further research is needed to verify the association of these changes with the clinical state of the dog. The NMR metabolomics test is a promising tool for improving diagnostic testing and management of renal diseases in dogs.
Collapse
Affiliation(s)
- Claudia Ottka
- PetMeta Labs LtdHelsinkiFinland
- Department of Veterinary BiosciencesUniversity of HelsinkiHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Katariina Vapalahti
- PetMeta Labs LtdHelsinkiFinland
- Department of Veterinary BiosciencesUniversity of HelsinkiHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | | | | | | | | | - Hannes Lohi
- PetMeta Labs LtdHelsinkiFinland
- Department of Veterinary BiosciencesUniversity of HelsinkiHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| |
Collapse
|
12
|
Baptista AL, Padilha K, Malagrino PA, Venturini G, Zeri AC, Dos Reis LM, Martins JS, Jorgetti V, Pereira AC, Titan SM, Moyses RM. Potential Biomarkers of the Turnover, Mineralization, and Volume Classification: Results Using NMR Metabolomics in Hemodialysis Patients. JBMR Plus 2020; 4:e10372. [PMID: 32666023 PMCID: PMC7340447 DOI: 10.1002/jbm4.10372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 11/11/2022] Open
Abstract
Bone biopsy is still the gold standard to assess bone turnover (T), mineralization (M), and volume (V) in CKD patients, and serum biomarkers are not able to replace histomorphometry. Recently, metabolomics has emerged as a new technique that could allow for the identification of new biomarkers useful for disease diagnosis or for the understanding of pathophysiologic mechanisms, but it has never been assessed in the chronic kidney disease-mineral and bone disorder (CKD-MBD) scenario. In this study, we investigated the association between serum metabolites and the bone TMV classification in patients with end-stage renal disease by using serum NMR spectroscopy and bone biopsy of 49 hemodialysis patients from a single center in Brazil. High T was identified in 21 patients and was associated with higher levels of dimethylsulfone, glycine, citrate, and N-acetylornithine. The receiver-operating characteristic curve for the combination of PTH and these metabolites provided an area under the receiver-operating characteristic curve (AUC) of 0.86 (0.76 to 0.97). Abnormal M was identified in 30 patients and was associated with lower ethanol. The AUC for age, diabetes mellitus, and ethanol was 0.83 (0.71 to 0.96). Low V was identified in 17 patients and was associated with lower carnitine. The association of age, phosphate, and carnitine provided an AUC of 0.83 (0.70 to 0.96). Although differences among the curves by adding selected metabolites to traditional models were not statistically significant, the accuracy of the diagnosis according to the TMV classification seemed to be improved. This is the first study to evaluate the TMV classification system in relation to the serum metabolome assessed by NMR spectroscopy, showing that selected metabolites may help in the evaluation of bone phenotypes in CKD-MBD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Aline L Baptista
- Laboratório de Investigação Médica/LIM 16, Nephrology Division Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Kallyandra Padilha
- Laboratório de Genética e Cardiologia Molecular Instituto do Coração (INCOR), Faculdade de Medicina, Universidade de São Paulo São Paulo Brazil
| | - Pamella A Malagrino
- Laboratório de Genética e Cardiologia Molecular Instituto do Coração (INCOR), Faculdade de Medicina, Universidade de São Paulo São Paulo Brazil
| | - Gabriela Venturini
- Laboratório de Genética e Cardiologia Molecular Instituto do Coração (INCOR), Faculdade de Medicina, Universidade de São Paulo São Paulo Brazil
| | - Ana Cm Zeri
- Biosciences National Laboratory LNBio Campinas Brazil
| | - Luciene M Dos Reis
- Laboratório de Investigação Médica/LIM 16, Nephrology Division Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Janaina S Martins
- Endocrine Unit Massachusetts General Hospital Boston MA USA.,Endocrine Unit, Medicine, Harvard Medical School Boston MA USA
| | - Vanda Jorgetti
- Laboratório de Investigação Médica/LIM 16, Nephrology Division Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Alexandre C Pereira
- Laboratório de Genética e Cardiologia Molecular Instituto do Coração (INCOR), Faculdade de Medicina, Universidade de São Paulo São Paulo Brazil
| | - Silvia M Titan
- Nephrology Division Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Rosa Ma Moyses
- Laboratório de Investigação Médica/LIM 16, Nephrology Division Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
13
|
Song Z, Wang H, Yin X, Deng P, Jiang W. Application of NMR metabolomics to search for human disease biomarkers in blood. Clin Chem Lab Med 2019; 57:417-441. [PMID: 30169327 DOI: 10.1515/cclm-2018-0380] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/16/2018] [Indexed: 02/05/2023]
Abstract
Recently, nuclear magnetic resonance spectroscopy (NMR)-based metabolomics analysis and multivariate statistical techniques have been incorporated into a multidisciplinary approach to profile changes in small molecules associated with the onset and progression of human diseases. The purpose of these efforts is to identify unique metabolite biomarkers in a specific human disease so as to (1) accurately predict and diagnose diseases, including separating distinct disease stages; (2) provide insights into underlying pathways in the pathogenesis and progression of the malady and (3) aid in disease treatment and evaluate the efficacy of drugs. In this review we discuss recent developments in the application of NMR-based metabolomics in searching disease biomarkers in human blood samples in the last 5 years.
Collapse
Affiliation(s)
- Zikuan Song
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Haoyu Wang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaotong Yin
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
14
|
Hanifa MA, Skott M, Maltesen RG, Rasmussen BS, Nielsen S, Frøkiær J, Ring T, Wimmer R. Tissue, urine and blood metabolite signatures of chronic kidney disease in the 5/6 nephrectomy rat model. Metabolomics 2019; 15:112. [PMID: 31422467 DOI: 10.1007/s11306-019-1569-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Progressive chronic kidney disease (CKD) is an important cause of morbidity and mortality. It has a long asymptomatic phase, where routine blood tests cannot identify early functional losses, and therefore identifying common mechanisms across the many etiologies is an important goal. OBJECTIVES Our aim was to characterize serum, urine and tissue (kidney, lung, heart, spleen and liver) metabolomics changes in a rat model of CKD. METHODS A total of 17 male Wistar rats underwent 5/6 nephrectomy, whilst 13 rats underwent sham operation. Urine samples were collected weekly, for 6 weeks; blood was collected at weeks 0, 3 and 6; and tissue samples were collected at week 6. Samples were analyzed on a nuclear magnetic resonance spectroscopy platform with multivariate and univariate data analysis. RESULTS Changes in several metabolites were statistically significant. Allantoin was affected in all compartments. Renal asparagine, creatine, hippurate and trimethylamine were significantly different; in other tissues creatine, dimethylamine, dimethylglycine, trigonelline and trimethylamine were significant. Benzoate, citrate, dimethylglycine, fumarate, guanidinoacetate, malate, myo-inositol and oxoglutarate were altered in urine or serum. CONCLUSION Although the metabolic picture is complex, we suggest oxidative stress, the gut-kidney axis, acid-base balance, and energy metabolism as promising areas for future investigation.
Collapse
Affiliation(s)
- Munsoor A Hanifa
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Martin Skott
- Department of Urology, Aarhus University Hospital, 8250, Aarhus N, Denmark
| | - Raluca G Maltesen
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Bodil S Rasmussen
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Troels Ring
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Department of Critical Care Medicine, The Center for Critical Care Nephrology, University of Pittsburgh, Pittsburg, PA, 15261, USA
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
15
|
Dobberthien BJ, Volotovskyy V, Tessier AG, Yahya A. Magnetic resonance spectroscopy of rat kidney
in vivo
at 9.4 T. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Kalantari S, Nafar M. An update of urine and blood metabolomics in chronic kidney disease. Biomark Med 2019; 13:577-597. [DOI: 10.2217/bmm-2019-0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic kidney disease is considered as a serious obstacle in global health, with increasing incidence and prevalence. In spite of numerous attempts by using recent omics technologies, specially metabolomics, for understanding pathophysiology, molecular mechanism and identification reliable consensus biomarkers for diagnosis and prognosis of this complex disease, the current biomarkers are still insensitive and many questions about its pathomechanism are still to be unanswered. This review is focused on recent findings about urine and serum/plasma metabolite biomarkers and changes in the pathways that occurs in the disease conditions. The urine and blood metabolome content in the normal and disease state is investigated based on the current metabolomics studies and well known metabolite candidate biomarkers for chronic kidney disease are discussed.
Collapse
Affiliation(s)
- Shiva Kalantari
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Number 103, Boostan 9th Street, Pasdaran Avenue, 1666663111 Tehran, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Number 103, Boostan 9th Street, Pasdaran Avenue, 1666663111 Tehran, Iran
| |
Collapse
|
17
|
Xu C, Wang Y, Rezeng C, Zhang L, Zhao B, Wang X, Wu X, Li Z, Chen J. Tissue metabolomics study to reveal the toxicity of a traditional Tibetan medicine 'Renqing Changjue' in rats. RSC Adv 2018; 8:37652-37664. [PMID: 35558588 PMCID: PMC9089440 DOI: 10.1039/c8ra07058j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
Renqing Changjue (RQCJ), a precious Traditional Tibetan Medicine (TTM), has been widely used in the management of diseases of the digestive system, toxinosis and pyreticosis. However, in the formula, a significant level of heavy metals, which are potential toxic elements, are present. Therefore, it is important to assess the toxicity of RQCJ dynamically and holistically. In the present study, a 1H NMR metabolomics approach and inductively coupled plasma mass spectrometry (ICP-MS) were implemented to analyze the samples of liver, kidney and spleen from rats treated with RQCJ. The results revealed that 9 metabolites in the liver, 13 metabolites in the kidney and 16 metabolites in the spleen were significantly altered, which suggest that disturbances in TCA cycle, amino acid metabolism, energy metabolism and oxidative stress are produced by successive administration of RQCJ over 15 days. Complemented by histopathology and biochemical assay, the trends of the metabolite levels indicate that RQCJ caused tissue injury to a certain extent, which was evidenced by the high levels of As and Hg in the tissue. The toxic effects of RQCJ were alleviated in liver and kidney during the recovery period, and RQCJ may cause long-term damage in spleen. These findings provide a significant experimental proof on the estimated safety and valuable information about the metabolism of RQCJ, which will be valuable in determining the health risks of the drug.
Collapse
Affiliation(s)
- Can Xu
- Department of Chemistry, Capital Normal UniversityNo. 105, Xisanhuanbeilu, Haidian DistrictBeijing 100048PR China+86-10-68902687+86-10-68902655
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal UniversityNo. 105, Xisanhuanbeilu, Haidian DistrictBeijing 100048PR China+86-10-68902687+86-10-68902655
| | - Caidan Rezeng
- College of Pharmacy, Qinghai Nationalities UniversityNo. 3 Bayizhong RoadXining810000PR China
| | - Lan Zhang
- Department of Chemistry, Capital Normal UniversityNo. 105, Xisanhuanbeilu, Haidian DistrictBeijing 100048PR China+86-10-68902687+86-10-68902655
| | - Baosheng Zhao
- Beijing University of Chinese MedicineNo. 11 Beisanhuandonglu, Chaoyang DistrictBeijing 100029PR China+86-010-64286283+86-010-64286508
| | - Xia Wang
- Department of Chemistry, Capital Normal UniversityNo. 105, Xisanhuanbeilu, Haidian DistrictBeijing 100048PR China+86-10-68902687+86-10-68902655
| | - Xiuyuan Wu
- Department of Chemistry, Capital Normal UniversityNo. 105, Xisanhuanbeilu, Haidian DistrictBeijing 100048PR China+86-10-68902687+86-10-68902655
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal UniversityNo. 105, Xisanhuanbeilu, Haidian DistrictBeijing 100048PR China+86-10-68902687+86-10-68902655
| | - Jianxin Chen
- Beijing University of Chinese MedicineNo. 11 Beisanhuandonglu, Chaoyang DistrictBeijing 100029PR China+86-010-64286283+86-010-64286508
| |
Collapse
|
18
|
Barrios C, Zierer J, Würtz P, Haller T, Metspalu A, Gieger C, Thorand B, Meisinger C, Waldenberger M, Raitakari O, Lehtimäki T, Otero S, Rodríguez E, Pedro-Botet J, Kähönen M, Ala-Korpela M, Kastenmüller G, Spector TD, Pascual J, Menni C. Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations. Sci Rep 2018; 8:15249. [PMID: 30323304 PMCID: PMC6189123 DOI: 10.1038/s41598-018-33507-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023] Open
Abstract
Using targeted NMR spectroscopy of 227 fasting serum metabolic traits, we searched for novel metabolic signatures of renal function in 926 type 2 diabetics (T2D) and 4838 non-diabetic individuals from four independent cohorts. We furthermore investigated longitudinal changes of metabolic measures and renal function and associations with other T2D microvascular complications. 142 traits correlated with glomerular filtration rate (eGFR) after adjusting for confounders and multiple testing: 59 in diabetics, 109 in non-diabetics with 26 overlapping. The amino acids glycine and phenylalanine and the energy metabolites citrate and glycerol were negatively associated with eGFR in all the cohorts, while alanine, valine and pyruvate depicted opposite association in diabetics (positive) and non-diabetics (negative). Moreover, in all cohorts, the triglyceride content of different lipoprotein subclasses showed a negative association with eGFR, while cholesterol, cholesterol esters (CE), and phospholipids in HDL were associated with better renal function. In contrast, phospholipids and CEs in LDL showed positive associations with eGFR only in T2D, while phospholipid content in HDL was positively associated with eGFR both cross-sectionally and longitudinally only in non-diabetics. In conclusion, we provide a wide list of kidney function-associated metabolic traits and identified novel metabolic differences between diabetic and non-diabetic kidney disease.
Collapse
Affiliation(s)
- Clara Barrios
- Department for Twin Research, King's College London, London, UK
- Department of Nephrology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Barcelona, Spain
| | - Jonas Zierer
- Department for Twin Research, King's College London, London, UK.
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
- Weill Cornell Medical College, New York City, USA.
| | - Peter Würtz
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Nightingale Health Ltd, Helsinki, Finland
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T, Augsburg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Sol Otero
- Department of Nephrology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Barcelona, Spain
- Department of Nephrology, Consorci Sanitari del Garraf, Barcelona, Spain
| | - Eva Rodríguez
- Department of Nephrology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Barcelona, Spain
| | - Juan Pedro-Botet
- Department of Endocrinology and Nutrition, Hospital del Mar, Institut Mar d'Investigacions Mediques, Barcelona, Spain
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tim D Spector
- Department for Twin Research, King's College London, London, UK
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Barcelona, Spain
| | - Cristina Menni
- Department for Twin Research, King's College London, London, UK.
| |
Collapse
|
19
|
Bastawrous M, Jenne A, Tabatabaei Anaraki M, Simpson AJ. In-Vivo NMR Spectroscopy: A Powerful and Complimentary Tool for Understanding Environmental Toxicity. Metabolites 2018; 8:E35. [PMID: 29795000 PMCID: PMC6027203 DOI: 10.3390/metabo8020035] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Part review, part perspective, this article examines the applications and potential of in-vivo Nuclear Magnetic Resonance (NMR) for understanding environmental toxicity. In-vivo NMR can be applied in high field NMR spectrometers using either magic angle spinning based approaches, or flow systems. Solution-state NMR in combination with a flow system provides a low stress approach to monitor dissolved metabolites, while magic angle spinning NMR allows the detection of all components (solutions, gels and solids), albeit with additional stress caused by the rapid sample spinning. With in-vivo NMR it is possible to use the same organisms for control and exposure studies (controls are the same organisms prior to exposure inside the NMR). As such individual variability can be reduced while continual data collection over time provides the temporal resolution required to discern complex interconnected response pathways. When multidimensional NMR is combined with isotopic labelling, a wide range of metabolites can be identified in-vivo providing a unique window into the living metabolome that is highly complementary to more traditional metabolomics studies employing extracts, tissues, or biofluids.
Collapse
Affiliation(s)
- Monica Bastawrous
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Amy Jenne
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Maryam Tabatabaei Anaraki
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - André J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
20
|
Fan Y, Liu S, Chen X, Feng M, Song F, Gao X. Toxicological effects of Nux Vomica in rats urine and serum by means of clinical chemistry, histopathology and 1H NMR-based metabonomics approach. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:242-253. [PMID: 28648929 DOI: 10.1016/j.jep.2017.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/06/2017] [Accepted: 06/18/2017] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried ripe seeds of Nux Vomica (Strychnos nux-vomica L.), a traditional Chinese medicine, have been used to treat multifarious symptoms. However, the clinical applications of Nux Vomica are limited by its severe toxicity. In this study, Nux Vomica was subjected to nuclear magnetic resonance (NMR) metabonomics and pathological examination to determine relevant biomarkers in target organs and to explain the underlying toxicity mechanism. MATERIALS AND METHOD Thirty-six male Sprague-Dawley rats were randomly divided into three groups of twelve rats. The control group was oral gavaged with distilled water, and two experiment groups were treated with Nux Vomica at a dose of 0.315 and 0.630g/kg body weight. On days 14 and 21, serum, urine, liver and kidney tissues were collected for histopathological examination, biochemical analysis and 1H-NMR analysis. RESULTS The metabolites changes of rats treated with Nux Vomica are obviously differ from that of controls. In serum, low-dose group compared with control shows the significantly changes included elevated concentration of glucose, TMAO, and creatine, with decreased lipids, 3-HB, lactate, and unsaturated fatty acid. Change in taurine was only observed in the separation comparison of high-dose group and control. In urine, the variation metabolites included elevations in glucose, creatine, and TMAO as well as decreased lactate, succinate, α-ketoglutaric acid, citrate and hippurate in low-dose group compared with control. Only alanine and creatine were decreased significantly in high-dose group compared with control. CONCLUSION Nux Vomica induced disruptions in glycolysis, lipid and amino acid metabolism, and toxic effects were aggravated in liver and kidney tissues as dosing time was prolonged. 1H NMR-based metabonomics combined with biochemical and histopathological methods can be applied to elucidate the toxicity mechanism of Nux Vomica decoction that caused liver and kidney injuries in rats.
Collapse
Affiliation(s)
- Yunfei Fan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shaofeng Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Department of Pharmacy, Hezhou City People's Hospital, Hezhou 542800, PR China
| | - Xiaodong Chen
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Sirio Pharm CO., LTD, Shantou 515041, PR China
| | - Meirou Feng
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fenyun Song
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiaoxia Gao
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Xu C, Rezeng C, Li J, Zhang L, Yan Y, Gao J, Wang Y, Li Z, Chen J. 1H NMR-Based Metabolomics Study of the Toxicological Effects in Rats Induced by "Renqing Mangjue" Pill, a Traditional Tibetan Medicine. Front Pharmacol 2017; 8:602. [PMID: 28928660 PMCID: PMC5591455 DOI: 10.3389/fphar.2017.00602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/21/2017] [Indexed: 12/03/2022] Open
Abstract
“RenqingMangjue” pill (RMP), as an effective prescription of Traditional Tibetan Medicine (TTM), has been widely used in treating digestive diseases and ulcerative colitis for over a thousand years. In certain classical Tibetan Medicine, heavy metal may add as an active ingredient, but it may cause contamination unintentionally in some cases. Therefore, the toxicity and adverse effects of TTM became to draw public attention. In this study, 48 male Wistar rats were orally administrated with different dosages of RMP once a day for 15 consecutive days, then half of the rats were euthanized on the 15th day and the remaining were euthanized on the 30th day. Plasma, kidney and liver samples were acquired to 1H NMR metabolomics analysis. Histopathology and ICP-MS were applied to support the metabolomics findings. The metabolic signature of plasma from RMP-administrated rats exhibited increasing levels of glucose, betaine, and creatine, together with decreasing levels of lipids, 3-hydroxybutate, pyruvate, citrate, valine, leucine, isoleucine, glutamate, and glutamine. The metabolomics analysis results of liver showed that after RMP administration, the concentrations of valine, leucine, proline, tyrosine, and tryptophan elevated, while glucose, sarcosine and 3-hydroxybutyrate decreased. The levels of metabolites in kidney, such as, leucine, valine, isoleucine and tyrosine, were increased, while taurine, glutamate, and glutamine decreased. The study provides several potential biomarkers for the toxicity mechanism research of RMP and shows that RMP may cause injury in kidney and liver and disturbance of several pathways, such as energy metabolism, oxidative stress, glucose and amino acids metabolism.
Collapse
Affiliation(s)
- Can Xu
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Caidan Rezeng
- Research Center of Chinese and Tibetan Medicine, Medicine College of Qinghai UniversityXining, China
| | - Jian Li
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
| | - Lan Zhang
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Yujing Yan
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Jian Gao
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Jianxin Chen
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
22
|
Wang CY, Hsu YJ, Peng YJ, Lee HS, Chang YC, Chang CS, Chiang SW, Hsu YC, Lin MH, Huang GS. Knee subchondral bone perfusion and its relationship to marrow fat and trabeculation on multi-parametric MRI and micro-CT in experimental CKD. Sci Rep 2017; 7:3073. [PMID: 28596576 PMCID: PMC5465086 DOI: 10.1038/s41598-017-03059-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of chronic kidney disease (CKD) is multifactorial. In the progression of CKD arthropathy, arteriosclerosis may alter the knee subchondral bone marrow by altering blood flow through the bone vasculature. Herein, multi-parametric MRI assessment, including dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), magnetic resonance spectroscopy (MRS), MRI T2*, contrast enhanced MR angiography (CE-MRA), and micro-CT were applied in a rodent nephrectomy model to: 1) investigate the blood perfusion of subchondral bone marrow and its relationship to fat water content and trabeculation pattern in CKD and 2) demonstrate the feasibility of using multi-parametric MRI parameters as imaging biomarkers to evaluate the disease’s progression. Two groups of rats in our study underwent either 1) no intervention or 2) 5/6 nephrectomy. We found that in the CKD group, perfusion amplitude A and elimination constant kel values were significantly decreased, and vascular permeability kep was significantly increased. MRS showed that fat fraction (FF) was significantly lower, water fraction (WF) was significantly higher in the CKD group. Micro-CT showed a significant loss of trabecular bone. Knee subchondral bone marrow perfusion deficiency in experimental CKD may be associated with decreased fat content, increased water content, and sparse trabeculation.
Collapse
Affiliation(s)
- Chao-Ying Wang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.,Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, New Taipei, Taiwan
| | - Chih-Shan Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Wei Chiang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Huang Lin
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
23
|
Jang WG, Park JY, Lee J, Bang E, Kim SR, Lee EK, Yun HJ, Kang CM, Hwang GS. Investigation of relative metabolic changes in the organs and plasma of rats exposed to X-ray radiation using HR-MAS (1)H NMR and solution (1)H NMR. NMR IN BIOMEDICINE 2016; 29:507-518. [PMID: 26871685 DOI: 10.1002/nbm.3485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Excess exposure to ionizing radiation generates reactive oxygen species and increases the cellular inflammatory response by modifying various metabolic pathways. However, an investigation of metabolic perturbations and organ-specific responses based on the amount of radiation during the acute phase has not been conducted. In this study, high-resolution magic-angle-spinning (HR-MAS) NMR and solution NMR-based metabolic profiling were used to investigate dose-dependent metabolic changes in multiple organs and tissues--including the jejunum, spleen, liver, and plasma--of rats exposed to X-ray radiation. The organs, tissues, and blood samples were obtained 24, 48, and 72 h after exposure to low-dose (2 Gy) and high-dose (6 Gy) X-ray radiation and subjected to metabolite profiling and multivariate analyses. The results showed the time course of the metabolic responses, and many significant changes were detected in the high-dose compared with the low-dose group. Metabolites with antioxidant properties showed acute responses in the jejunum and spleen after radiation exposure. The levels of metabolites related to lipid and protein metabolism were decreased in the jejunum. In addition, amino acid levels increased consistently at all post-irradiation time points as a consequence of activated protein breakdown. Consistent with these changes, plasma levels of tricarboxylic acid cycle intermediate metabolites decreased. The liver did not appear to undergo remarkable metabolic changes after radiation exposure. These results may provide insight into the major metabolic perturbations and mechanisms of the biological systems in response to pathophysiological damage caused by X-ray radiation.
Collapse
Affiliation(s)
- Won Gyo Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ju Yeon Park
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Bang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - So Ra Kim
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Eun Kyeong Lee
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyun Jin Yun
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chang-Mo Kang
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review summarizes recent metabolomics studies of renal disease, outlining some of the limitations of the literature to date. RECENT FINDINGS The application of metabolomics in nephrology research has expanded from the initial analyses of uremia to include both cross-sectional and longitudinal studies of earlier stages of kidney disease. Although these studies have nominated several potential markers of incident chronic kidney disease (CKD) and CKD progression, a lack of overlap in metabolite coverage has limited the ability to synthesize results across groups. Furthermore, direct examination of renal metabolite handling has underscored the substantial impact kidney function has on these potential markers (and many other circulating metabolites). In experimental studies, metabolomics has been used to identify a signature of decreased mitochondrial function in diabetic nephropathy and a preference for aerobic glucose metabolism in polycystic kidney disease. In each case, these studies have outlined novel therapeutic opportunities. Finally, as a complement to the longstanding interest in renal metabolite clearance, the microbiome has been increasingly recognized as the source of many plasma metabolites, including some with potential functional relevance to CKD and its complications. SUMMARY The high-throughput, high-resolution phenotyping enabled by metabolomics technologies has begun to provide insight on renal disease in clinical, physiologic, and experimental contexts.
Collapse
|
25
|
Jung JW, Lee MS, Choi HJ, Jung S, Lee YJ, Hwang GS, Kwon TH. Mass spectrometric imaging of metabolites in kidney tissues from rats treated with furosemide. Am J Physiol Renal Physiol 2016; 310:F1317-27. [PMID: 26962105 DOI: 10.1152/ajprenal.00524.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/07/2016] [Indexed: 12/16/2022] Open
Abstract
In the kidney, metabolic processes are different among the cortex (COR), outer medulla (OM), and inner medulla (IM). Using matrix-assisted laser desorption/ionization (MALDI) and imaging mass spectrometry (IMS), we examined the change of metabolites in the COR, OM, and IM of the rat kidney after furosemide treatment compared with vehicle-treated controls. Osmotic minipumps were implanted in male Sprague-Dawley rats to deliver 12 mg·day(-1)·rat(-1) of furosemide. Vehicle-treated (n = 14) and furosemide-treated (furosemide rats, n = 15) rats in metabolic cages received a fixed amount of rat chow (15 g·220 g body wt(-1)·day(-1) for each rat) with free access to water intake for 6 days. At day 6, higher urine output (32 ± 4 vs. 9 ± 1 ml/day) and lower urine osmolality (546 ± 44 vs. 1,677 ± 104 mosmol/kgH2O) were observed in furosemide rats. Extracts of COR, OM, and IM were analyzed by ultraperformance liquid chromatography coupled with quadrupole time-of-flight (TOF) mass spectrometry, where multivariate analysis revealed significant differences between the two groups. Several metabolites, including acetylcarnitine, betaine, carnitine, choline, and glycerophosphorylcholine (GPC), were significantly changed. The changes of metabolites were further identified by MALDI-TOF/TOF and IMS. Their spatial distribution and relative quantitation in the kidneys were analyzed by IMS. Carnitine compounds were increased in COR and IM, whereas carnitine and acetylcarnitine were decreased in OM. Choline compounds were increased in COR and OM but decreased in IM from furosemide rats. Betaine and GPC were decreased in OM and IM. Taken together, MALDI-TOF/TOF and IMS successfully provide the spatial distribution and relative quantitation of metabolites in the kidney.
Collapse
Affiliation(s)
- Jin Woo Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Mi Suk Lee
- Department of Biochemistry and Cell Biology, Korea; and BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, Korea; and
| | - Sunhee Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yu-Jung Lee
- Department of Biochemistry and Cell Biology, Korea; and BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, Korea; and BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
26
|
Metabonomic biomarkers for risk factors of chronic kidney disease. Int Urol Nephrol 2016; 48:547-52. [DOI: 10.1007/s11255-016-1239-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
27
|
Barrios C, Spector TD, Menni C. Blood, urine and faecal metabolite profiles in the study of adult renal disease. Arch Biochem Biophys 2015; 589:81-92. [PMID: 26476344 DOI: 10.1016/j.abb.2015.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/04/2023]
Abstract
Chronic kidney disease (CKD) is a major public health burden and to date traditional biomarkers of renal function (such as serum creatinine and cystatin C) are unable to identify at-risk individuals before the disease process is well under way. To help preventive strategies and maximize the potential for effective interventions, it is important to characterise the molecular changes that take place in the development of renal damage. Metabolomics is a promising tool to identify markers of renal disease since the kidneys are involved in the handling of major biochemical classes of metabolites. These metabolite levels capture a snap-shot of the metabolic profile of the individual, allowing for the potential identification of early biomarkers, and the monitoring of real-time kidney function. In this review, we describe the current status of the identification of blood/urine/faecal metabolic biomarkers in different entities of kidney diseases including: acute kidney injury, chronic kidney disease, renal transplant, diabetic nephropathy and other disorders.
Collapse
Affiliation(s)
- Clara Barrios
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK; Department of Nephrology, Hospital del Mar. Institut Mar d'Investigacions Mediques, Barcelona, Spain
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
28
|
Abstract
This paper reviews the use of NMR metabolomics for the metabolic characterization of renal cancer. The existing challenges in the clinical management of this disease are first presented, followed by a brief introduction to the metabolomics approach, in the context of cancer research. A subsequent review of the literature on NMR metabolic studies of renal cancer reveals that the subject has been clearly underdeveloped, compared with other types of cancer, particularly regarding cultured cells and tissue analysis. NMR analysis of biofluids has focused on blood (plasma or serum) metabolomics, comprising no account of studies on human urine, in spite of its noninvasiveness and physiological proximity to the affected organs. Finally, some areas of potential future development are identified.
Collapse
|
29
|
Joyce R, Kuziene V, Zou X, Wang X, Pullen F, Loo RL. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine. Amino Acids 2015; 48:219-34. [PMID: 26319643 PMCID: PMC4710665 DOI: 10.1007/s00726-015-2076-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (<15 %) and precision (<15 %) were observed using three quality control samples at a concentration of low, medium and high range of the calibration curve. The limits of detection (LOD) and lower limit of quantification of our method were ranging from approximately 1-300 nM and 0.01-0.5 µM, respectively. The stability of amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.
Collapse
Affiliation(s)
- Richard Joyce
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
- RJMS Consultancy, Rochester, Kent, UK
| | - Viktorija Kuziene
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Xin Zou
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Xueting Wang
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK
| | - Frank Pullen
- Medway Metabonomics Research Group, School of Science, University of Greenwich, Kent, UK
| | - Ruey Leng Loo
- Medway Metabonomics Research Group, Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, UK.
| |
Collapse
|
30
|
Qiu S, Zhang AH, Sun H, Yan GL, Wang XJ. Overview on metabolomics in traditional Chinese medicine. World J Pharmacol 2014; 3:33-38. [DOI: 10.5497/wjp.v3.i3.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has been widely used in the modern research of traditional Chinese medicine (TCM). At the same time, the world is increasingly concerned about TCM, and many studies have been conducted to investigate different aspects of TCM. Among these studies, metabolomic approach has been implemented to facilitate TCM development. The current methods for TCM research are diverse, including nuclear magnetic resonance, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. Using these techniques, some advantageous results have been obtained in the studies of TCM, such as diagnosis and treatment, quality control, and mechanisms of action. It is believed that the further development of metabolomic analytical techniques is beneficial to the modernization of TCM. This review summarizes potential applications of metabolomics in the area of TCM. Guidelines for good practice for the application of metabolomics in TCM research are also proposed, and the special role of metabolomics in TCM is highlighted.
Collapse
|
31
|
Metabonomic study of biochemical changes in urinary of type 2 diabetes mellitus patients after the treatment of sulfonylurea antidiabetic drugs based on ultra-performance liquid chromatography/mass spectrometry. Biomed Chromatogr 2014; 29:115-22. [DOI: 10.1002/bmc.3247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 01/09/2023]
|