1
|
Johnson MM, Scheyer TM, Canoville A, Maxwell EE. Palaeohistology of Macrospondylus bollensis (Crocodylomorpha: Thalattosuchia: Teleosauroidea) from the Posidonienschiefer Formation (Toarcian) of Germany, with insights into life history and ecology. Anat Rec (Hoboken) 2024. [PMID: 39340240 DOI: 10.1002/ar.25577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/30/2024]
Abstract
The Posidonienschiefer Formation of southern Germany has yielded an array of incredible fossil vertebrates. One of the best represented clades therein is Teleosauroidea, a successful thalattosuchian crocodylomorph group that dominated the coastlines. The most abundant teleosauroid, Macrospondylus bollensis, is known from a wide range of body sizes, making it an ideal taxon for histological and ontogenetic investigations. Previous studies examining thalattosuchian histology provide a basic understanding of bone microstructure in teleosauroids, but lack the taxonomic, stratigraphic, and ontogenetic control required to understand growth and palaeobiology within a species. Here, we examine the bone microstructure of three femora and one tibia from three different-sized M. bollensis individuals. We also perform bone compactness analyses to evaluate for ontogenetic and ecological variation. Our results suggests that (1) the smallest specimen was a young, skeletally immature individual with well-vascularized-parallel-fibered bone and limited remodeling in the midshaft periosteal cortex; (2) the intermediate specimen was skeletally immature at death, with vascularized parallel-fibered bone tissue interrupted by at least 10 LAGs, but no clear external fundamental system (EFS), and rather extensive inner cortical bone remodeling; and (3) the largest specimen was skeletally mature, with parallel-fibered bone tissue interrupted by numerous LAGs, a well-developed EFS, and extensive remodeling in the deep cortex. Macrospondylus bollensis grew relatively regularly until reaching adult size, and global bone compactness values fall within the range reported for modern crocodylians. The lifestyle inference models used suggest that M. bollensis was well adapted for an aquatic environment but also retained some ability to move on land. Finally, both larger specimens display a peculiar, localized area of disorganized bone tissue interpreted as pathological.
Collapse
Affiliation(s)
| | - Torsten M Scheyer
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Aurore Canoville
- Museum für Naturkunde, Berlin, Germany
- Friedenstein Stiftung Gotha, Gotha, Germany
| | | |
Collapse
|
2
|
Baiano MA, Cerda IA, Bertozzo F, Pol D. New information on paleopathologies in non-avian theropod dinosaurs: a case study on South American abelisaurids. BMC Ecol Evol 2024; 24:6. [PMID: 38291378 PMCID: PMC10829224 DOI: 10.1186/s12862-023-02187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024] Open
Abstract
Studies on pathological fossil bones have allowed improving the knowledge of physiology and ecology, and consequently the life history of extinct organisms. Among extinct vertebrates, non-avian dinosaurs have drawn attention in terms of pathological evidence, since a wide array of fossilized lesions and diseases were noticed in these ancient organisms. Here, we evaluate the pathological conditions observed in individuals of different brachyrostran (Theropoda, Abelisauridae) taxa, including Aucasaurus garridoi, Elemgasem nubilus, and Quilmesaurus curriei. For this, we use multiple methodological approaches such as histology and computed tomography, in addition to the macroscopic evaluation. The holotype of Aucasaurus shows several pathognomonic traits of a failure of the vertebral segmentation during development, causing the presence of two fused caudal vertebrae. The occurrence of this condition in Aucasaurus is the first case to be documented so far in non-tetanuran theropods. Regarding the holotype of Elemgasem, the histology of two fused vertebrae shows an intervertebral space between the centra, thus the fusion is limited to the distal rim of the articular surfaces. This pathology is here considered as spondyloarthropathy, the first evidence for a non-tetanuran theropod. The microstructural arrangement of the right tibia of Quilmesaurus shows a marked variation in a portion of the outer cortex, probably due to the presence of the radial fibrolamellar bone tissue. Although similar bone tissue is present in other extinct vertebrates and the cause of its formation is still debated, it could be a response to some kind of pathology. Among non-avian theropods, traumatic injuries are better represented than other maladies (e.g., infection, congenital or metabolic diseases, etc.). These pathologies are recovered mainly among large-sized theropods such as Abelisauridae, Allosauridae, Carcharodontosauridae, and Tyrannosauridae, and distributed principally among axial elements. Statistical tests on the distribution of injuries in these theropod clades show a strong association between taxa-pathologies, body regions-pathologies, and taxa-body regions, suggesting different life styles and behaviours may underlie the frequency of different injuries among theropod taxa.
Collapse
Affiliation(s)
- Mattia A Baiano
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Ciudad Autónoma de Buenos Aires, Argentina.
- Area Laboratorio e Investigación, Museo Municipal 'Ernesto Bachmann', Dr Natali S/N, 8311, Villa El Chocon, Neuquén, Argentina.
- Universidad Nacional de Río Negro (UNRN), Isidro Lobo 516, 8332, General Roca, Río Negro, Argentina.
| | - Ignacio A Cerda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad Nacional de Río Negro (UNRN), Isidro Lobo 516, 8332, General Roca, Río Negro, Argentina
- Instituto de Investigacion en Paleobiología y Geología (IIPG), Av. Roca 1242, 8332, General Roca, Río Negro, Argentina
- Museo Carlos Ameghino, Belgrano 1700 (Paraje Pichi Ruca, Predio Marabunta), 8324, Cipolletti, Río Negro, Argentina
| | - Filippo Bertozzo
- Operational Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Diego Pol
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Ciudad Autónoma de Buenos Aires, Argentina
- Museo Paleontológico Egidio Feruglio, Av. Fontana 140, 9100, Trelew, Chubut, Argentina
| |
Collapse
|
3
|
Anné J, Whitney M, Brocklehurst R, Donnelly K, Rothschild B. Unusual lesions seen in the caudals of the hadrosaur, Edmontosaurus annectens. Anat Rec (Hoboken) 2023; 306:594-606. [PMID: 36089756 DOI: 10.1002/ar.25078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
The study of pathologies in the fossil record allows for unique insights into the physiology, immunology, biomechanics, and daily life history of extinct organisms. This is especially important in organisms that have body structures dissimilar to those of extant organisms as well as transitional groups whose extant relatives may have very dissimilar physiologies. Comparisons between modern groups and their fossil ancestors are further complicated by the fact that fossil groups may have experienced unique biomechanical stresses as well as possessing a mixture of anatomical features seen in their related extant groups. In this study, we present lesions in the caudal vertebrae of the hadrosaur, Edmontosaurus annectens from the Ruth Mason Dinosaur Quarry of South Dakota, which exhibit unique morphologies. X-ray microtomography was performed on the most extreme example of this morphology to allow for both a detailed and more accurate diagnosis of the pathologic condition as well as virtual conservation of the specimen. Based on the location, the overall morphology of the lesion, and the relative "normal" appearance of the internal microstructure, the most probable cause is postulated as long-term biomechanical stresses exerted on this section of the tail by both lateral and dorsoventral motions of the tail. This deduction was based on a process of elimination for a variety of known osteological conditions; however, future work is needed to determine the nature of the stresses and why this condition has not been recorded in more hadrosaurian specimens.
Collapse
Affiliation(s)
- Jennifer Anné
- The Children's Museum of Indianapolis, Indianapolis, Indiana, USA
| | - Megan Whitney
- Harvard Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Robert Brocklehurst
- Harvard Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Kevin Donnelly
- Department of Toxicology/Pathology, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Bruce Rothschild
- Laboratory of Biological Anthropology, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
4
|
Chinzorig T, Beguesse KA, Canoville A, Phillips G, Zanno LE. Chronic fracture and osteomyelitis in a large-bodied ornithomimosaur with implications for the identification of unusual endosteal bone in the fossil record. Anat Rec (Hoboken) 2022. [PMID: 36193654 DOI: 10.1002/ar.25069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Paleopathological diagnoses provide key information on the macroevolutionary origin of disease as well as behavioral and physiological inferences that are inaccessible via direct observation of extinct organisms. Here we describe the external gross morphology and internal architecture of a pathologic right second metatarsal (MMNS VP-6332) of a large-bodied ornithomimid (~432 kg) from the Santonian (Upper Cretaceous) Eutaw Formation in Mississippi, using a combination of X-ray computed microtomography (microCT) and petrographic histological analyses. X-ray microCT imaging and histopathologic features are consistent with multiple complete, oblique to comminuted, minimally displaced mid-diaphyseal cortical fractures that produce a "butterfly" fragment fracture pattern, and secondary osteomyelitis with a bone fistula formation. We interpret this as evidence of blunt force trauma to the foot that could have resulted from intra- or interspecific competition or predator-prey interaction, and probably impaired the function of the metatarsal as a weight-bearing element until the animal's death. Of particular interest is the apparent decoupling of endosteal and periosteal pathological bone deposition in MMNS VP-6332, which produces transverse sections exhibiting homogenously thick endosteal pathological bone in the absence of localized periosteal reactive bone. These distribution and depositional patterns are used as criteria for ruling out a pathological origin in favor of a reproductive one for unusual endosteal bone in fossil specimens. On the basis of MMNS VP-6332, we suggest caution in their use to substantiate a medullary bone identification in extinct archosaurians.
Collapse
Affiliation(s)
- Tsogtbaatar Chinzorig
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Paleontology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Kyla A Beguesse
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Paleontology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Aurore Canoville
- Stiftung Schloss Friedenstein, Gotha & Museum für Naturkunde, Berlin, Germany
| | - George Phillips
- Conservation & Biodiversity Section, Mississippi Museum of Natural Science, Jackson, Mississippi, USA
| | - Lindsay E Zanno
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Paleontology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Bestwick J, Jones AS, Nesbitt SJ, Lautenschlager S, Rayfield EJ, Cuff AR, Button DJ, Barrett PM, Porro LB, Butler RJ. Cranial functional morphology of the pseudosuchian Effigia and implications for its ecological role in the Triassic. Anat Rec (Hoboken) 2021; 305:2435-2462. [PMID: 34841701 DOI: 10.1002/ar.24827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022]
Abstract
Pseudosuchians, archosaurian reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic with numerous examples of morphological convergence described between Triassic pseudosuchians and post-Triassic dinosaurs. One example is the shuvosaurid Effigia okeeffeae which exhibits an "ostrich-like" bauplan comprising a gracile skeleton with edentulous jaws and large orbits, similar to ornithomimid dinosaurs and extant palaeognaths. This bauplan is regarded as an adaptation for herbivory, but this hypothesis assumes morphological convergence confers functional convergence, and has received little explicit testing. Here, we restore the skull morphology of Effigia, perform myological reconstructions, and apply finite element analysis to quantitatively investigate skull function. We also perform finite element analysis on the crania of the ornithomimid dinosaur Ornithomimus edmontonicus, the extant palaeognath Struthio camelus and the extant pseudosuchian Alligator mississippiensis to assess the degree of functional convergence with a taxon that exhibit "ostrich-like" bauplans and its closest extant relatives. We find that Effigia possesses a mosaic of mechanically strong and weak features, including a weak mandible that likely restricted feeding to the anterior portion of the jaws. We find limited functional convergence with Ornithomimus and Struthio and limited evidence of phylogenetic constraints with extant pseudosuchians. We infer that Effigia was a specialist herbivore that likely fed on softer plant material, a niche unique among the study taxa and potentially among contemporaneous Triassic herbivores. This study increases the known functional diversity of pseudosuchians and highlights that superficial morphological similarity between unrelated taxa does not always imply functional and ecological convergence.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew S Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Andrew R Cuff
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York, UK
| | - David J Button
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Paul M Barrett
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Laura B Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Moro D, Kerber L, Müller RT, Pretto FA. Sacral co-ossification in dinosaurs: The oldest record of fused sacral vertebrae in Dinosauria and the diversity of sacral co-ossification patterns in the group. J Anat 2021; 238:828-844. [PMID: 33164207 PMCID: PMC7930772 DOI: 10.1111/joa.13356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
The fusion of the sacrum occurs in the major dinosaur lineages, i.e. ornithischians, theropods, and sauropodomorphs, but it is unclear if this trait is a common ancestral condition, or if it evolved independently in each lineage, or even how or if it is related to ontogeny. In addition, the order in which the different structures of the sacrum are fused, as well as the causes that lead to this co-ossification, are poorly understood. Herein, we described the oldest record of fused sacral vertebrae within dinosaurs, based on two primordial sacral vertebrae from the Late Triassic of Candelária Sequence, southern Brazil. We used computed microtomography (micro-CT) to analyze the extent of vertebral fusion, which revealed that it occurred only between the centra. We also assessed the occurrence of sacral fusion in Dinosauria and close relatives. The degree of fusion observed in representatives of the major dinosaur lineages suggested that there may be a sequential pattern of fusion of the elements of the sacrum, more clearly observed in Sauropodomorpha. Our analyses suggest that primordial sacral vertebrae fuse earlier in the lineage (as seen in Norian sauropodomorphs). Intervertebral fusion is observed to encompass progressively more vertebral units as sauropodomorphs evolve, reaching up to five or more fully fused sacrals in Neosauropoda. Furthermore, the new specimen described here indicates that the fusion of sacral elements occurred early in the evolution of dinosaurs. Factors such as ontogeny and the increase in body size, combined with the incorporation of vertebrae to the sacrum may have a significant role in the process and in the variation of sacral fusion observed.
Collapse
Affiliation(s)
- Débora Moro
- Programa de Pós‐Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaRSBrazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
| | - Leonardo Kerber
- Programa de Pós‐Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaRSBrazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
- Museu Paraense Emílio GoeldiCoordenação de Ciências da Terra e EcologiaBelémBrazil
| | - Rodrigo T. Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
| | - Flávio A. Pretto
- Programa de Pós‐Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaRSBrazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
| |
Collapse
|
7
|
Griffin CT, Stocker MR, Colleary C, Stefanic CM, Lessner EJ, Riegler M, Formoso K, Koeller K, Nesbitt SJ. Assessing ontogenetic maturity in extinct saurian reptiles. Biol Rev Camb Philos Soc 2020; 96:470-525. [PMID: 33289322 DOI: 10.1111/brv.12666] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life-history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least-inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260-million-year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. 'juvenile', 'mature') and provide routes for better clarity and cross-study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method-specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, 'Ontogenetic Assessment', be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well-represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well-constrained, empirically tested methods.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Michelle R Stocker
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Caitlin Colleary
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Vertebrate Paleontology, Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH, 44106, U.S.A
| | - Candice M Stefanic
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Anatomical Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, U.S.A
| | - Emily J Lessner
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Pathology and Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, U.S.A
| | - Mitchell Riegler
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL, 32611, U.S.A
| | - Kiersten Formoso
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, U.S.A
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA, 90007, U.S.A
| | - Krista Koeller
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, U.S.A
| | - Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| |
Collapse
|
8
|
Hamm CA, Hampe O, Schwarz D, Witzmann F, Makovicky PJ, Brochu CA, Reiter R, Asbach P. A comprehensive diagnostic approach combining phylogenetic disease bracketing and CT imaging reveals osteomyelitis in a Tyrannosaurus rex. Sci Rep 2020; 10:18897. [PMID: 33144637 PMCID: PMC7642268 DOI: 10.1038/s41598-020-75731-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/14/2020] [Indexed: 01/25/2023] Open
Abstract
Traditional palaeontological techniques of disease characterisation are limited to the analysis of osseous fossils, requiring several lines of evidence to support diagnoses. This study presents a novel stepwise concept for comprehensive diagnosis of pathologies in fossils by computed tomography imaging for morphological assessment combined with likelihood estimation based on systematic phylogenetic disease bracketing. This approach was applied to characterise pathologies of the left fibula and fused caudal vertebrae of the non-avian dinosaur Tyrannosaurus rex. Initial morphological assessment narrowed the differential diagnosis to neoplasia or infection. Subsequent data review from phylogenetically closely related species at the clade level revealed neoplasia rates as low as 3.1% and 1.8%, while infectious-disease rates were 32.0% and 53.9% in extant dinosaurs (birds) and non-avian reptiles, respectively. Furthermore, the survey of literature revealed that within the phylogenetic disease bracket the oldest case of bone infection (osteomyelitis) was identified in the mandible of a 275-million-year-old captorhinid eureptile Labidosaurus. These findings demonstrate low probability of a neoplastic aetiology of the examined pathologies in the Tyrannosaurus rex and in turn, suggest that they correspond to multiple foci of osteomyelitis.
Collapse
Affiliation(s)
- C A Hamm
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute for Diagnostic Radiology and Neuroradiology, Greifswald University Hospital, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - O Hampe
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - D Schwarz
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - F Witzmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - P J Makovicky
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
- Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL, 60605, USA
| | - C A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - R Reiter
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, IL, 60607, USA
| | - P Asbach
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Palaeontological evidence reveals convergent evolution of intervertebral joint types in amniotes. Sci Rep 2020; 10:14106. [PMID: 32839497 PMCID: PMC7445751 DOI: 10.1038/s41598-020-70751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022] Open
Abstract
The intervertebral disc (IVD) has long been considered unique to mammals. Palaeohistological sampling of 17 mostly extinct clades across the amniote tree revealed preservation of different intervertebral soft tissue types (cartilage, probable notochord) seen in extant reptiles. The distribution of the fossilised tissues allowed us to infer the soft part anatomy of the joint. Surprisingly, we also found evidence for an IVD in fossil reptiles, including non-avian dinosaurs, ichthyosaurs, plesiosaurs, and marine crocodiles. Based on the fossil dataset, we traced the evolution of the amniote intervertebral joint through ancestral character state reconstruction. The IVD evolved at least twice, in mammals and in extinct diapsid reptiles. From this reptilian IVD, extant reptile groups and some non-avian dinosaurs independently evolved a synovial ball-and-socket joint. The unique birds dorsal intervertebral joint evolved from this dinosaur joint. The tuatara and some geckos reverted to the ancestral persisting notochord.
Collapse
|
10
|
Kato KM, Rega EA, Sidor CA, Huttenlocker AK. Investigation of a bone lesion in a gorgonopsian (Synapsida) from the Permian of Zambia and periosteal reactions in fossil non-mammalian tetrapods. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190144. [PMID: 31928188 DOI: 10.1098/rstb.2019.0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While only distantly related to mammals, the anatomy of Permian gorgonopsians has shed light on the functional biology of non-mammalian synapsids and on the origins of iconic 'mammal-like' anatomical traits. However, little is known of gorgonopsian behaviour or physiology, which would aid in reconstructing the paleobiological context in which familiar mammalian features arose. Using multi-modal imaging, we report a discrete osseous lesion in the forelimb of a late Permian-aged gorgonopsian synapsid, recording reactive periosteal bone deposition and providing insights into the origins and diversity of skeletal healing responses in premammalian synapsids. We suggest that the localized lesion on the anterolateral (preaxial) shaft of the left radius represents acute periostitis and, conservatively, most likely developed as a subperiosteal haematoma with subsequent bone deposition and limited internal remodelling. The site records an inner zone of reactive cortical bone forming irregular to radial bony spicules and an outer, denser zone of slowed subperiosteal bone apposition, all of which likely occurred within a single growing season. In surveys of modern reptiles-crocodylians, varanids-such haematomas are rare compared to other documented osteopathologies. The extent and rapidity of the healing response is reminiscent of mammalian and dinosaurian bone pathologies, and may indicate differing behaviour or bone physiology compared to non-dinosaurian reptiles. This report adds to a growing list of putative disease entities recognized in early synapsids and broadens comparative baselines for pathologies and the evolution of bone response to disease in mammalian forebears. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Kyle M Kato
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Elizabeth A Rega
- College of Osteopathic Medicine of the Pacific and the Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Christian A Sidor
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98105, USA
| | - Adam K Huttenlocker
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Sengupta S. Fusion of cervical vertebrae from a basal archosauromorph from the Middle Triassic Denwa Formation, Satpura Gondwana Basin, India. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 20:80-84. [PMID: 29496220 DOI: 10.1016/j.ijpp.2017.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 10/15/2017] [Accepted: 10/27/2017] [Indexed: 06/08/2023]
Abstract
This report describes two adjacent, longitudinally-fused anterior cervical vertebrae from a basal archosauromorph. The specimen was collected from the Denwa Formation, Satpura Gondwana Basin, India. The differential diagnosis of the fusion includes genetic or environmentally-mediated congenital malformations, nonspecific spondyloarthopathy, and various infectious agents. These observations represent the first published recognition of archosauromorph vertebral pathology from specimens that were discovered in India. The observations affirm that basal archosauromorphs suffered from disorders that have been observed in later dinosaurs and modern-day vertebrates. Considering the process of orderly differential diagnosis is an important aspect of understanding lesions of ancient bones.
Collapse
Affiliation(s)
- Saradee Sengupta
- Geological Studies Unit, Indian Statistical Institute,203 B. T. Road, Kolkata 700108, India.
| |
Collapse
|
12
|
Turner ML, Sidor CA. Pathology in a Permian parareptile: congenital malformation of sacral vertebrae. J Zool (1987) 2017. [DOI: 10.1111/jzo.12519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M. L. Turner
- Department of Ecology and Evolutionary Biology Brown University Providence RI USA
| | - C. A. Sidor
- Department of Biology and Burke Museum University of Washington Seattle WA USA
| |
Collapse
|
13
|
Griffin CT, Stefanic CM, Parker WG, Hungerbühler A, Stocker MR. Sacral anatomy of the phytosaur Smilosuchus adamanensis, with implications for pelvic girdle evolution among Archosauriformes. J Anat 2017; 231:886-905. [PMID: 28836268 DOI: 10.1111/joa.12681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 11/29/2022] Open
Abstract
The sacrum - consisting of those vertebrae that articulate with the ilia - is the exclusive skeletal connection between the hindlimbs and axial skeleton in tetrapods. Therefore, the morphology of this portion of the vertebral column plays a major role in the evolution of terrestrial locomotion. Whereas most extant reptiles only possess the two plesiomorphic sacral vertebrae, additional vertebrae have been incorporated into the sacrum multiple times independently among early-diverging archosaurian (crocodylians + birds) clades. Phytosauria was a diverse, abundant, and cosmopolitan clade of archosauriforms throughout the Late Triassic, but postcrania of this clade are rarely described and few species-level taxonomic placements of phytosaurian postcranial material are available, potentially hampering knowledge of morphological disparity in the postcranial skeleton among phytosaurs. Here, we describe the sacrum of Smilosuchus adamanensis, a phytosaur recovered from the Upper Triassic Chinle Formation of Arizona. This sacrum consists of the two primordial sacral vertebrae, but has a vertebra incorporated from the trunk into the sacrum (= a dorsosacral) and is therefore the first Late Triassic phytosaur and one of the first non-archosaurian archosauromorphs to be described with more than two sacral vertebrae. Our interpretation of this element as a dorsosacral is justified by the lateral extent of the dorsosacral ribs, clear surfaces of articulation between the distal ends of the dorsosacral ribs and the first primordial sacral ribs, and the scar on the medial surface of each ilium for articulation with each dorsosacral rib. Additionally, we provide the first detailed description of the vertebral junction formed by two anteriorly projecting flanges on the first primordial sacral ribs and their corresponding facets on the centrum of the dorsosacral. Computed tomographic (CT) imaging reveals that the two primordial sacrals are not co-ossified and that the dorsosacral morphology of this specimen is not the result of obvious pathology. We place this incorporation of a trunk vertebra into the phytosaurian sacrum in a broader evolutionary context, with this shift in vertebral identity occurring at least seven times independently among Triassic archosauriforms, including at least three times in early crocodylian-line archosaurs and at least four times among bird-line archosaurs. Additionally, anteriorly projecting flanges of sacral ribs which articulate with the anterior-adjacent centrum have evolved several times in archosauriforms, and we interpret 'shared' sacral ribs (= a sacral rib that articulates with two adjacent sacral centra more or less equally) present in some archosaurian clades as a more extreme example of this morphology. In extant taxa the highly conserved Hox gene family plays a central role in the patterning of the axial skeleton, especially vertebral identity; therefore, the independent incorporation of a trunk vertebra into the sacrum across multiple archosauriform lineages may suggest a homologous underlying developmental mechanism for this evolutionary trend.
Collapse
Affiliation(s)
| | - Candice M Stefanic
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | | | | |
Collapse
|
14
|
Lautenschlager S, Butler RJ. Neural and endocranial anatomy of Triassic phytosaurian reptiles and convergence with fossil and modern crocodylians. PeerJ 2016; 4:e2251. [PMID: 27547557 PMCID: PMC4963226 DOI: 10.7717/peerj.2251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/22/2016] [Indexed: 12/04/2022] Open
Abstract
Phytosaurs are a clade of large, carnivorous pseudosuchian archosaurs from the Late Triassic with a near cosmopolitan distribution. Their superficial resemblance to longirostrine (long-snouted) crocodylians, such as gharials, has often been used in the past to infer ecological and behavioural convergence between the two groups. Although more than thirty species of phytosaur are currently recognised, little is known about the endocranial anatomy of this clade. Here, we describe the endocranial anatomy (including the brain, inner ear, neurovascular structures and sinus systems) of the two non-mystriosuchine phytosaurs Parasuchus angustifrons (=“Paleorhinus angustifrons”) and Ebrachosuchus neukami from the Late Triassic of Germany based on digital reconstructions. Results show that the endocasts of both taxa are very similar to each other in their rostrocaudally elongate morphology, with long olfactory tracts, weakly demarcated cerebral regions and dorsoventrally short endosseous labyrinths. In addition, several sinuses, including large antorbital sinuses and prominent dural venous sinuses, were reconstructed. Comparisons with the endocranial anatomy of derived phytosaurs indicate that Phytosauria is united by the presence of elongate olfactory tracts and longitudinally arranged brain architecture—characters which are also shared with Crocodyliformes. However, a substantial morphological variability is observed in the cephalic and pontine flexure and the presence of a pineal organ across the different phytosaur species. These results suggest that the endocranial anatomy in Phytosauria generally follows a plesiomorphic pattern, with moderate variation within the clade likely resulting from divergent sensory and behavioural adaptations.
Collapse
Affiliation(s)
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Dumbravă MD, Rothschild BM, Weishampel DB, Csiki-Sava Z, Andrei RA, Acheson KA, Codrea VA. A dinosaurian facial deformity and the first occurrence of ameloblastoma in the fossil record. Sci Rep 2016; 6:29271. [PMID: 27377317 PMCID: PMC4932493 DOI: 10.1038/srep29271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/15/2016] [Indexed: 01/21/2023] Open
Abstract
Despite documentation of various types of neoplastic pathologies encountered in the vertebrate fossil record, no ameloblastic tumours have been recognised so far. Ameloblastoma is a benign neoplasic tumour with a strong preponderance for the mandible. Here, we report for the first time the presence of an ameloblastoma neoplasm in the lower jaw of a specimen referred to the derived non-hadrosaurid hadrosauroid dinosaur Telmatosaurus transsylvanicus from the uppermost Cretaceous of the Haeg Basin in Romania. The location, external appearance and internal structure of the pathological outgrowth provide clear evidence for the diagnosis of ameloblastoma in Telmatosaurus. This report extends the range of pathologies encountered in hadrosauroid dinosaurs. In addition, recognition of an ameloblastoma neoplasm in a taxon lying close to the origin of 'duck-billed' hadrosaurid dinosaurs confirms the predisposition of this clade towards neoplasia pathologies already in its basal members.
Collapse
Affiliation(s)
- Mihai D. Dumbravă
- Laboratory of Paleotheriology and Quaternary Geology, Faculty of Biology and Geology, BabeS-Bolyai University, 1, M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
| | - Bruce M. Rothschild
- Department of Medicine, Northeast Ohio Medical University, Rootstown, 44505 Ohio, USA
| | - David B. Weishampel
- Center for Functional Anatomy and Evolution, Johns Hopkins School of Medicine, 1830 E. Monument St., Room 306 Baltimore, MD 21205, USA
| | - Zoltán Csiki-Sava
- Faculty of Geology and Geophysics, University of Bucharest, 1, N. Bălcescu Blvd., 010041 Bucharest, Romania
| | - Răzvan A. Andrei
- Faculty of Geology and Geophysics, University of Bucharest, 1, N. Bălcescu Blvd., 010041 Bucharest, Romania
| | - Katharine A. Acheson
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Vlad A. Codrea
- Laboratory of Paleotheriology and Quaternary Geology, Faculty of Biology and Geology, BabeS-Bolyai University, 1, M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Foth C, Evers SW, Pabst B, Mateus O, Flisch A, Patthey M, Rauhut OWM. New insights into the lifestyle of Allosaurus (Dinosauria: Theropoda) based on another specimen with multiple pathologies. PeerJ 2015; 3:e940. [PMID: 26020001 PMCID: PMC4435507 DOI: 10.7717/peerj.940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/16/2015] [Indexed: 12/03/2022] Open
Abstract
Adult large-bodied theropods are often found with numerous pathologies. A large, almost complete, probably adult Allosaurus specimen from the Howe Stephens Quarry, Morrison Formation (Late Kimmeridgian–Early Tithonian), Wyoming, exhibits multiple pathologies. Pathologic bones include the left dentary, two cervical vertebrae, one cervical and several dorsal ribs, the left scapula, the left humerus, the right ischium, and two left pedal phalanges. These pathologies can be classified as follows: the fifth cervical vertebra, the scapula, several ribs and the ischium are probably traumatic, and a callus on the shaft of the left pedal phalanx II-2 is probably traumatic-infectious. Traumatically fractured elements exposed to frequent movement (e.g., the scapula and the ribs) show a tendency to develop pseudarthroses instead of a callus. The pathologies in the lower jaw and a reduced extensor tubercle of the left pedal phalanx II-2 are most likely traumatic or developmental in origin. The pathologies on the fourth cervical are most likely developmental in origin or idiopathic, that on the left humerus could be traumatic, developmental, infectious or idiopathic, whereas the left pedal phalanx IV-1 is classified as idiopathic. With exception of the ischium, all as traumatic/traumatic-infectious classified pathologic elements show unambiguous evidences of healing, indicating that the respective pathologies did not cause the death of this individual. Alignment of the scapula and rib pathologies from the left side suggests that all may have been caused by a single traumatic event. The ischial fracture may have been fatal. The occurrence of multiple lesions interpreted as traumatic pathologies again underlines that large-bodied theropods experienced frequent injuries during life, indicating an active predatory lifestyle, and their survival perhaps supports a gregarious behavior for Allosaurus. Alternatively, the frequent survival of traumatic events could be also related to the presence of non-endothermic metabolic rates that allow survival based on sporadic food consumption or scavenging behavior. Signs of pathologies consistent with infections are scarce and locally restricted, indicating a successful prevention of the spread of pathogens, as it is the case in extant reptiles (including birds).
Collapse
Affiliation(s)
- Christian Foth
- SNBS, Bayerische Staatssammlung für Paläontologie und Geologie , München , Germany ; Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität , München , Germany ; Department of Geosciences, University of Fribourg/Freiburg , Fribourg , Switzerland
| | - Serjoscha W Evers
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität , München , Germany ; Department of Earth Sciences, University of Oxford , Oxford , UK
| | - Ben Pabst
- Sauriermuseum Aathal , Aathal-Seegräben , Switzerland
| | - Octávio Mateus
- CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa , Caparica , Portugal ; Museu da Lourinhã , Rua João Luis de Moura, Lourinhã , Portugal
| | - Alexander Flisch
- Swiss Federal Laboratories for Materials Science and Technology , Center for X-ray Analytics, Düebendorf , Switzerland
| | - Mike Patthey
- Vetsuisse Fakulty, Universität Zürich , Zürich , Switzerland
| | - Oliver W M Rauhut
- SNBS, Bayerische Staatssammlung für Paläontologie und Geologie , München , Germany ; Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität , München , Germany
| |
Collapse
|