1
|
Anang S, Zhang S, Fritschi C, Chiu TJ, Yang D, Smith III AB, Madani N, Sodroski J. V3 tip determinants of susceptibility to inhibition by CD4-mimetic compounds in natural clade A human immunodeficiency virus (HIV-1) envelope glycoproteins. J Virol 2023; 97:e0117123. [PMID: 37888980 PMCID: PMC10688366 DOI: 10.1128/jvi.01171-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE CD4-mimetic compounds (CD4mcs) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. CD4mcs target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor, CD4, and is highly conserved among HIV-1 strains. Nonetheless, naturally occurring HIV-1 strains exhibit a wide range of sensitivities to CD4mcs. Our study identifies changes distant from the binding pocket that can influence the susceptibility of natural HIV-1 strains to the antiviral effects of multiple CD4mcs. We relate the antiviral potency of the CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate entry-related changes in Env conformation prematurely. These findings will guide efforts to improve the potency and breadth of CD4mcs against natural HIV-1 variants.
Collapse
Affiliation(s)
- Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Fritschi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Derek Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B. Smith III
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Curreli F, Kwon YD, Nicolau I, Burgos G, Altieri A, Kurkin AV, Verardi R, Kwong PD, Debnath AK. Antiviral Activity and Crystal Structures of HIV-1 gp120 Antagonists. Int J Mol Sci 2022; 23:ijms232415999. [PMID: 36555641 PMCID: PMC9784924 DOI: 10.3390/ijms232415999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
As part of our effort to discover drugs that target HIV-1 entry, we report the antiviral activity and crystal structures of two novel inhibitors in a complex with a gp120 core. NBD-14204 showed similar antiviral activity against all the clinical isolates tested. The IC50 values were in the range of 0.24-0.9 µM with an overall mean of 0.47 ± 0.03 µM, showing slightly better activity against the clinical isolates than against the lab-adapted HIV-1HXB2 (IC50 = 0.96 ± 0.1 µM). Moreover, the antiviral activity of NBD-14208 was less consistent, showing a wider range of IC50 values (0.66-5.7 µM) with an overall mean of 3 ± 0.25 µM and better activity against subtypes B and D (Mean IC50 2.2-2.5 µM) than the A, C and Rec viruses (Mean IC50 2.9-3.9 µM). SI of NBD-14204 was about 10-fold higher than NBD-14208, making it a better lead compound for further optimization. In addition, we tested these compounds against S375Y and S375H mutants of gp120, which occurred in some clades and observed these to be sensitive to NBD-14204 and NBD-14208. These inhibitors also showed modest activity against HIV-1 reverse transcriptase. Furthermore, we determined the crystal structures of both inhibitors in complexes with gp120 cores. As expected, both NBD-14204 and NBD-14208 bind primarily within the Phe43 cavity. It is noteworthy that the electron density of the thiazole ring in both structures was poorly defined due to the flexibility of this scaffold, suggesting that these compounds maintain substantial entropy, even when bound to the Phe43 cavity.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Young D. Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabella Nicolau
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Giancarla Burgos
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Andrea Altieri
- EDASA Scientific srls, Via Stingi 37, 66050 San Salvo, Italy
| | | | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asim K. Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
3
|
Kurkin AV, Curreli F, Iusupov IR, Spiridonov EA, Ahmed S, Markov PO, Manasova EV, Altieri A, Debnath AK. Design, Synthesis, and Antiviral Activity of the Thiazole Positional Isomers of a Potent HIV-1 Entry Inhibitor NBD-14270. ChemMedChem 2022; 17:e202200344. [PMID: 36097139 DOI: 10.1002/cmdc.202200344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Indexed: 01/14/2023]
Abstract
The envelope glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1) plays a critical role in virus entry to the cells by binding to the host cellular protein CD4. Earlier, we reported the design and discovery of a series of highly potent small-molecule entry antagonists containing a thiazole ring (Scaffold A). Since this thiazole ring connected with an ethyl amide linkage represents the molecule's flexible part, we decided to explore substituting Scaffold A with two other positional isomers of the thiazole ring (Scaffold B and C) to evaluate their effect on the antiviral potency and cellular toxicity. Here we report the novel synthesis of two sets of positional thiazole isomers of the NBD-14270 by retrosynthetic analysis approach, their anti-HIV-1 activity, cellular toxicity, and structure-activity relationships. The study revealed that Scaffold A provided the best HIV-1 inhibitors with higher potency and better selectivity index (SI).
Collapse
Affiliation(s)
| | - Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Ildar R Iusupov
- EDASA Scientific srls, Via Stingi 37, 66050, San Salvo (CH), Italy
| | | | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Pavel O Markov
- EDASA Scientific srls, Via Stingi 37, 66050, San Salvo (CH), Italy
| | | | - Andrea Altieri
- EDASA Scientific srls, Via Stingi 37, 66050, San Salvo (CH), Italy
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| |
Collapse
|
4
|
Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV. Pharmaceuticals (Basel) 2022; 15:ph15111415. [PMID: 36422545 PMCID: PMC9692459 DOI: 10.3390/ph15111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem and the emergence of HIV has further worsened it. Long chemotherapy and the emergence of drug-resistance strains of Mycobacterium tuberculosis as well as HIV has aggravated the problem. This demands urgent the need to develop new anti-tuberculosis and antiretrovirals to treat TB and HIV. The lack of diversity in drugs designed using traditional approaches is a major disadvantage and limits the treatment options. Therefore, new technologies and approaches are required to solve the current issues and enhance the production of drugs. Interestingly, fragment-based drug discovery (FBDD) has gained an advantage over high-throughput screenings as FBDD has enabled rapid and efficient progress to develop potent small molecule compounds that specifically bind to the target. Several potent inhibitor compounds of various targets have been developed using FBDD approach and some of them are under progression to clinical trials. In this review, we emphasize some of the important targets of mycobacteria and HIV. We also discussed about the target-based druggable molecules that are identified using the FBDD approach, use of these druggable molecules to identify novel binding sites on the target and assays used to evaluate inhibitory activities of these identified druggable molecules on the biological activity of the targets.
Collapse
|
5
|
Comparative Pharmacokinetics of a Dual Inhibitor of HIV-1, NBD-14189, in Rats and Dogs with a Proof-of-Concept Evaluation of Antiviral Potency in SCID-hu Mouse Model. Viruses 2022; 14:v14102268. [PMID: 36298823 PMCID: PMC9611370 DOI: 10.3390/v14102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
We earlier reported substantial progress in designing gp120 antagonists. Notably, we discovered that NBD-14189 is not only the most active gp120 antagonist but also shows antiviral activity against HIV-1 Reverse Transcriptase (RT). We also confirmed its binding to HIV-1 RT by X-ray crystallography. The dual inhibition is highly significant because, intriguingly, this compound bridges the dNTP and NNRTI-binding sites and inhibits the polymerase activity of isolated RT in the enzymatic assay. This novel finding is expected to lead to new avenues in designing a novel class of HIV-1 dual inhibitors. Therefore, we needed to advance this inhibitor to preclinical assessment. To this end, we report the pharmacokinetics (PK) study of NBD-14189 in rats and dogs. Subsequently, we assessed the toxicity and therapeutic efficacy in vivo in the SCID-hu Thy/Liv mouse model. The PK data indicated a favorable half-life (t1/2) and excellent oral bioavailability (%F = 61%). NBD-14189 did not show any measurable toxicity in the mice, and treatment reduced HIV replication at 300 mg/kg per day in the absence of clear evidence of protection from HIV-mediated human thymocyte depletion. The data indicated the potential of this inhibitor as an anti-HIV-1 agent and needs to be assessed in a non-human primate (NHP) model.
Collapse
|
6
|
Anang S, Richard J, Bourassa C, Goyette G, Chiu TJ, Chen HC, Smith AB, Madani N, Finzi A, Sodroski J. Characterization of Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Variants Selected for Resistance to a CD4-Mimetic Compound. J Virol 2022; 96:e0063622. [PMID: 35980207 PMCID: PMC9472635 DOI: 10.1128/jvi.00636-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
Abstract
Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Goyette
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Jiang S, Tuzikov A, Andrianov A. Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodies. Cell Chem Biol 2022; 29:757-773. [PMID: 35353988 DOI: 10.1016/j.chembiol.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Highly active antiretroviral therapy currently used for HIV/AIDS has significantly increased the life expectancy of HIV-infected individuals. It has also improved the quality of life, reduced mortality, and decreased the incidence of AIDS and HIV-related conditions. Currently, however, affected individuals are typically on a lifetime course of several therapeutic drugs, all with the potential for associated toxicity and emergence of resistance. This calls for development of novel, potent, and broad anti-HIV agents able to stop the spread of HIV/AIDS. Significant progress has been made toward identification of anti-HIV-1 broadly neutralizing antibodies (bNAbs). However, antibody-based drugs are costly to produce and store. Administration (by injection only) and other obstacles limit clinical use. In recent years, several highly promising small-molecule HIV-1 entry inhibitors targeting the epitopes of bNAbs have been developed. These newly developed compounds are the focus of the present article.
Collapse
Affiliation(s)
- Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China.
| | - Alexander Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Republic of Belarus
| | - Alexander Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
9
|
Pyrroles as Privileged Scaffolds in the Search for New Potential HIV Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14090893. [PMID: 34577593 PMCID: PMC8468532 DOI: 10.3390/ph14090893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV) and remains a global health problem four decades after the report of its first case. Despite success in viral load suppression and the increase in patient survival due to combined antiretroviral therapy (cART), the development of new drugs has become imperative due to strains that have become resistant to antiretrovirals. In this context, there has been a continuous search for new anti-HIV agents based on several chemical scaffolds, including nitrogenated heterocyclic pyrrole rings, which have been included in several compounds with antiretroviral activity. Thus, this review aims to describe pyrrole-based compounds with anti-HIV activity as a new potential treatment against AIDS, covering the period between 2015 and 2020. Our research allowed us to conclude that pyrrole derivatives are still worth exploring, as they may provide highly active compounds targeting different steps of the HIV-1 replication cycle and act with an innovative mechanism.
Collapse
|
10
|
Lai YT. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021; 13:v13050843. [PMID: 34066522 PMCID: PMC8148533 DOI: 10.3390/v13050843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the host receptor CD4. This interaction, referred to as the attachment step, has long been considered an attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that elucidated the mode of action, and structural studies that revealed atomic details of the interaction between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance mutations to the attachment inhibitors and the development of next-generation attachment inhibitors are also highlighted.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Chandra I, Prabhu SV, Nayak C, Singh SK. E-pharmacophore based screening to identify potential HIV-1 gp120 and CD4 interaction blockers for wild and mutant types. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:353-377. [PMID: 33832362 DOI: 10.1080/1062936x.2021.1901310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
HIV-1 gp120 provides a multistage viral entry process through the conserved CD4 binding site. Hunting of potential blockers can diminish the interaction of gp120 with the CD4 host receptor leading to the suppression of HIV-1 infection. Structure-based pharmacophore virtual screening followed by binding free energy calculation, molecular dynamics (MD) simulation and density functional theory (DFT) calculation is applied to discriminate the potential blockers from six small molecule databases. Five compounds from six databases exhibited vital interactions with key residues ASP368, GLU370, ASN425, MET426, TRP427 and GLY473 of gp120, involved in the binding with CD4, host receptor. Most importantly, compound NCI-254200 displayed strong communication with key residues of wild type and drug resistance single mutant gp120 (M426L and W427V) even in the dynamic condition, evidenced from MD simulation. This investigation provided a potential compound NCI-254200 which may show inhibitory activity against HIV-1 gp120 variant interactions with CD4 host cell receptors.
Collapse
Affiliation(s)
- I Chandra
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - S V Prabhu
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - C Nayak
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - S K Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
12
|
On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch Virol 2021; 166:1283-1296. [PMID: 33606110 PMCID: PMC7892713 DOI: 10.1007/s00705-021-04984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022]
Abstract
The lack of progress in finding an efficient vaccine for a human immunodeficiency virus (HIV) is daunting. In fact, this search has spanned nearly four decades without much success. There are several objective reasons for such a failure, which include the highly glycosylated nature of HIV-1, the presence of neotopes, and high mutation rates. This article argues that the presence of highly flexible and intrinsically disordered regions in both human anti-HIV-1 antibodies and the major HIV-1immunogen, its surface glycoprotein gp120, represent one of the major causes for the lack of success in utilization of structure-based reverse vaccinology.
Collapse
|
13
|
Yadav S, Pandey V, Kumar Tiwari R, Ojha RP, Dubey KD. Does Antibody Stabilize the Ligand Binding in GP120 of HIV-1 Envelope Protein? Evidence from MD Simulation. Molecules 2021; 26:E239. [PMID: 33466381 PMCID: PMC7796314 DOI: 10.3390/molecules26010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
CD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility, in gp120, to the CD4 receptor. However, the mechanism of the conformational flexibility instigated by these small sized inhibitors is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows the functional importance of Asn425 in substrate induced conformational dynamics in gp120. The MD simulations of Asn425Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complexes with the antibody clearly show the enhanced affinity of NBD-557 due to the presence of the antibody, which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry2006, 45, 10973-10980).
Collapse
Affiliation(s)
- Shalini Yadav
- Center of Informatics and Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314, India;
| | - Vishnudatt Pandey
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Uttar Pradesh 273009, India; (V.P.); (R.K.T.); (R.P.O.)
| | - Rakesh Kumar Tiwari
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Uttar Pradesh 273009, India; (V.P.); (R.K.T.); (R.P.O.)
| | - Rajendra Prasad Ojha
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Uttar Pradesh 273009, India; (V.P.); (R.K.T.); (R.P.O.)
| | - Kshatresh Dutta Dubey
- Center of Informatics and Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314, India;
| |
Collapse
|
14
|
Opening the HIV envelope: potential of CD4 mimics as multifunctional HIV entry inhibitors. Curr Opin HIV AIDS 2020; 15:300-308. [PMID: 32769632 DOI: 10.1097/coh.0000000000000637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Close to 2 million individuals globally become infected with HIV-1 each year and just over two-thirds will have access to life-prolonging antivirals. However, the rapid development of drug resistance creates challenges, such that generation of more effective therapies is not only warranted but a necessary endeavour. This review discusses a group of HIV-1 entry inhibitors known as CD4 mimics which exploit the highly conserved relationship between the HIV-1 envelope glycoprotein and the receptor, CD4. RECENT FINDINGS We review the structure/function guided evolution of these inhibitors, vital mechanistic insights that underpin broad and potent functional antagonism, recent evidence of utility demonstrated in animal and physiologically relevant in-vitro models, and current progress towards effective new-generation inhibitors. SUMMARY The current review highlights the promising potential of CD4 mimetics as multifunctional therapeutics.
Collapse
|
15
|
Abstract
Many proteins are intrinsically disordered or contain one or more disordered domains. These domains can participate in binding interactions with other proteins or small ligands. Binding to intrinsically disordered protein domains requires the folding or structuring of those regions such that they can establish well-defined stoichiometric interactions. Since, in such a situation binding is coupled to folding, the energetics of those two events is reflected in the measured binding thermodynamics. In this protocol, we illustrate the thermodynamic differences between binding coupled to folding and binding independent of folding for the same protein. As an example, we use the HIV-1 envelope glycoprotein gp120 that contains structured as well as disordered domains. In the experiments presented, the binding of gp120 to molecules that bind to disordered regions and trigger structuring (CD4 or MAb 17b) and to molecules that bind to structured regions and do not induce conformational structuring (MAb b12) is discussed.
Collapse
|
16
|
Prévost J, Tolbert WD, Medjahed H, Sherburn RT, Madani N, Zoubchenok D, Gendron-Lepage G, Gaffney AE, Grenier MC, Kirk S, Vergara N, Han C, Mann BT, Chénine AL, Ahmed A, Chaiken I, Kirchhoff F, Hahn BH, Haim H, Abrams CF, Smith AB, Sodroski J, Pazgier M, Finzi A. The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. mBio 2020; 11:e00280-20. [PMID: 32457241 PMCID: PMC7251204 DOI: 10.1128/mbio.00280-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity ("the Phe43 cavity") located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc.IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Rebekah T Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daria Zoubchenok
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Althea E Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa C Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sharon Kirk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Changze Han
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brendan T Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Agnès L Chénine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Belov DS, Markov PO, Kurkin AV, Altieri A, Debnath AK. Preclinical Optimization of gp120 Entry Antagonists as anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J Med Chem 2020; 63:1724-1749. [PMID: 32031803 DOI: 10.1021/acs.jmedchem.9b02149] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported a milestone in the optimization of NBD-11021, an HIV-1 gp120 antagonist, by developing a new and novel analogue, NBD-14189 (Ref1), which showed antiviral activity against HIV-1HXB2, with a half maximal inhibitory concentration of 89 nM. However, cytotoxicity remained high, and the absorption, distribution, metabolism, and excretion (ADME) data showed relatively poor aqueous solubility. To optimize these properties, we replaced the phenyl ring in the compound with a pyridine ring and synthesized a set of 48 novel compounds. One of the new analogues, NBD-14270 (8), showed a marked improvement in cytotoxicity, with 3-fold and 58-fold improvements in selectivity index value compared with that of Ref1 and NBD-11021, respectively. Furthermore, the in vitro ADME data clearly showed improvements in aqueous solubility and other properties compared with those for Ref1. The data for 8 indicated that the pyridine scaffold is a good bioisostere for phenyl, allowing the further optimization of this molecule.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Pavel O Markov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| |
Collapse
|
18
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
19
|
Zhao C, Princiotto AM, Nguyen HT, Zou S, Zhao ML, Zhang S, Herschhorn A, Farrell M, Pahil K, Melillo B, Sambasivarao SV, Abrams C, Smith AB, Madani N, Sodroski J. Strain-Dependent Activation and Inhibition of Human Immunodeficiency Virus Entry by a Specific PF-68742 Stereoisomer. J Virol 2019; 93:e01197-19. [PMID: 31391272 PMCID: PMC6803283 DOI: 10.1128/jvi.01197-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy M Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shitao Zou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Meiqing Lily Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Farrell
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karanbir Pahil
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Somisetti V Sambasivarao
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Andrianov AM, Nikolaev GI, Kornoushenko YV, Xu W, Jiang S, Tuzikov AV. In Silico Identification of Novel Aromatic Compounds as Potential HIV-1 Entry Inhibitors Mimicking Cellular Receptor CD4. Viruses 2019; 11:v11080746. [PMID: 31412617 PMCID: PMC6723994 DOI: 10.3390/v11080746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Despite recent progress in the development of novel potent HIV-1 entry/fusion inhibitors, there are currently no licensed antiviral drugs based on inhibiting the critical interactions of the HIV-1 envelope gp120 protein with cellular receptor CD4. In this connection, studies on the design of new small-molecule compounds able to block the gp120-CD4 binding are still of great value. In this work, in silico design of drug-like compounds containing the moieties that make the ligand active towards gp120 was performed within the concept of click chemistry. Complexes of the designed molecules bound to gp120 were then generated by molecular docking and optimized using semiempirical quantum chemical method PM7. Finally, the binding affinity analysis of these ligand/gp120 complexes was performed by molecular dynamic simulations and binding free energy calculations. As a result, five top-ranking compounds that mimic the key interactions of CD4 with gp120 and show the high binding affinity were identified as the most promising CD4-mimemic candidates. Taken together, the data obtained suggest that these compounds may serve as promising scaffolds for the development of novel, highly potent and broad anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus.
| | - Grigory I Nikolaev
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus
| | - Yuri V Kornoushenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Fuxing Building, Shanghai 200032, China.
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus.
| |
Collapse
|
21
|
Worachartcheewan A, Songtawee N, Siriwong S, Prachayasittikul S, Nantasenamat C, Prachayasittikul V. Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking. Med Chem 2019; 15:328-340. [PMID: 30251609 DOI: 10.2174/1573406414666180924163756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) is an infective agent that causes an acquired immunodeficiency syndrome (AIDS). Therefore, the rational design of inhibitors for preventing the progression of the disease is required. OBJECTIVE This study aims to construct quantitative structure-activity relationship (QSAR) models, molecular docking and newly rational design of colchicine and derivatives with anti-HIV activity. METHODS A data set of 24 colchicine and derivatives with anti-HIV activity were employed to develop the QSAR models using machine learning methods (e.g. multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM)), and to study a molecular docking. RESULTS The significant descriptors relating to the anti-HIV activity included JGI2, Mor24u, Gm and R8p+ descriptors. The predictive performance of the models gave acceptable statistical qualities as observed by correlation coefficient (Q2) and root mean square error (RMSE) of leave-one out cross-validation (LOO-CV) and external sets. Particularly, the ANN method outperformed MLR and SVM methods that displayed LOO-CV 2 Q and RMSELOO-CV of 0.7548 and 0.5735 for LOOCV set, and Ext 2 Q of 0.8553 and RMSEExt of 0.6999 for external validation. In addition, the molecular docking of virus-entry molecule (gp120 envelope glycoprotein) revealed the key interacting residues of the protein (cellular receptor, CD4) and the site-moiety preferences of colchicine derivatives as HIV entry inhibitors for binding to HIV structure. Furthermore, newly rational design of colchicine derivatives using informative QSAR and molecular docking was proposed. CONCLUSION These findings serve as a guideline for the rational drug design as well as potential development of novel anti-HIV agents.
Collapse
Affiliation(s)
- Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Suphakit Siriwong
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
22
|
Yang E, Gardner MR, Zhou AS, Farzan M, Arvin AM, Oliver SL. HIV-1 inhibitory properties of eCD4-Igmim2 determined using an Env-mediated membrane fusion assay. PLoS One 2018; 13:e0206365. [PMID: 30359435 PMCID: PMC6201953 DOI: 10.1371/journal.pone.0206365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1) entry is dependent on the envelope glycoprotein (Env) that is present on the virion and facilitates fusion between the envelope and the cellular membrane. The protein consists of two subunits, gp120 and gp41, with the former required for binding the CD4 receptor and either the CXCR4 or CCR5 coreceptor, and the latter for mediating fusion. The requirement of fusion for infection has made Env an attractive target for HIV therapy development and led to the FDA approval of enfuvirtide, a fusion inhibitor. Continued development of entry inhibitors is warranted because enfuvirtide resistant HIV-1 strains have emerged. In this study, a novel HIV-1 fusion assay was validated using neutralizing antibodies and then used to investigate the mechanism of action of eCD4-Igmim2, an HIV-1 inhibitor proposed to cooperatively bind the CD4 binding site and the sulfotyrosine-binding pocket of gp120. Greater reduction in fusion levels was observed with eCD4-Igmim2 in the fusion assay than all of the gp120 antibodies evaluated. Lab adapted isolates, HIV-1HXB2 and HIV-1YU2, were sensitive to eCD4-Igmim2 in the fusion assay, while primary isolates, HIV-1BG505 and HIV-1ZM651 were resistant. These results correlated with greater IC50 values for primary isolates compared to the lab adapted isolates observed in a virus neutralization assay. Analysis of gp120 models identified differences in the V1 and V2 domains that are associated with eCD4-Igmim2 sensitivity. This study highlights the use of a fusion assay to identify key areas for improving the potency of eCD4-Igmim2.
Collapse
Affiliation(s)
- Edward Yang
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Matthew R. Gardner
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Amber S. Zhou
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Michael Farzan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ann M. Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stefan L. Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
23
|
Princiotto AM, Vrbanac VD, Melillo B, Park J, Tager AM, Smith AB, Sodroski J, Madani N. A Small-Molecule CD4-Mimetic Compound Protects Bone Marrow-Liver-Thymus Humanized Mice From HIV-1 Infection. J Infect Dis 2018; 218:471-475. [PMID: 29617845 PMCID: PMC6049021 DOI: 10.1093/infdis/jiy174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Background Small-molecule CD4-mimetic compounds (CD4mc) inhibit human immunodeficiency virus (HIV-1) entry by blocking binding to the CD4 receptor and by premature triggering of the viral envelope glycoprotein (Env) spike. Methods The efficacy of a CD4mc in protecting bone marrow-liver-thymus (BLT) humanized mice from vaginal HIV-1 challenge was evaluated. Results Intravaginal application of the CD4mc JP-III-48, either before or simultaneously with virus challenge, protected BLT humanized mice from HIV-1JR-CSF infection in a dose- dependent manner. Conclusion The direct antiviral effects of a CD4mc prevent HIV-1 infection in a murine model of sexual transmission.
Collapse
Affiliation(s)
- Amy M Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vladimir D Vrbanac
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts
| | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania, Philadelphia
| | - Jongwoo Park
- Department of Chemistry, University of Pennsylvania, Philadelphia
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Curreli F, Belov DS, Kwon YD, Ramesh R, Furimsky AM, O'Loughlin K, Byrge PC, Iyer LV, Mirsalis JC, Kurkin AV, Altieri A, Debnath AK. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur J Med Chem 2018; 154:367-391. [PMID: 29860061 PMCID: PMC5993640 DOI: 10.1016/j.ejmech.2018.04.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
Abstract
We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ranjith Ramesh
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Anna M Furimsky
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Kathleen O'Loughlin
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Patricia C Byrge
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Lalitha V Iyer
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Jon C Mirsalis
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
25
|
Madani N, Princiotto AM, Mach L, Ding S, Prevost J, Richard J, Hora B, Sutherland L, Zhao CA, Conn BP, Bradley T, Moody MA, Melillo B, Finzi A, Haynes BF, Smith Iii AB, Santra S, Sodroski J. A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nat Commun 2018; 9:2363. [PMID: 29915222 PMCID: PMC6006336 DOI: 10.1038/s41467-018-04758-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/23/2018] [Indexed: 11/09/2022] Open
Abstract
The envelope glycoprotein (Env) trimer ((gp120/gp41)3) mediates human immunodeficiency virus (HIV-1) entry into cells. The “closed,” antibody-resistant Env trimer is driven to more open conformations by binding the host receptor, CD4. Broadly neutralizing antibodies that recognize conserved elements of the closed Env are potentially protective, but are elicited inefficiently. HIV-1 has evolved multiple mechanisms to evade readily elicited antibodies against more open Env conformations. Small-molecule CD4-mimetic compounds (CD4mc) bind the HIV-1 gp120 Env and promote conformational changes similar to those induced by CD4, exposing conserved Env elements to antibodies. Here, we show that a CD4mc synergizes with antibodies elicited by monomeric HIV-1 gp120 to protect monkeys from multiple high-dose intrarectal challenges with a heterologous simian-human immunodeficiency virus (SHIV). The protective immune response persists for at least six months after vaccination. CD4mc should increase the protective efficacy of any HIV-1 Env vaccine that elicits antibodies against CD4-induced conformations of Env. The HIV Env trimer exhibits a closed confirmation and restricts access to known antibody binding sites. Here the authors show that a small-molecule CD4-mimetic compound binds the HIV Env trimer and enhances antibody-mediated protection in a non-human primate model of infection.
Collapse
Affiliation(s)
- Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Amy M Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Linh Mach
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Jérémie Prevost
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Bhavna Hora
- Department of Medicine, Department of Immunology, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Laura Sutherland
- Department of Medicine, Department of Immunology, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Connie A Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Brandon P Conn
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Todd Bradley
- Department of Medicine, Department of Immunology, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - M Anthony Moody
- Department of Medicine, Department of Immunology, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Barton F Haynes
- Department of Medicine, Department of Immunology, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Amos B Smith Iii
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nat Commun 2017; 8:1732. [PMID: 29170366 PMCID: PMC5701043 DOI: 10.1038/s41467-017-01336-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
A strategy for HIV-1 vaccine development is to define envelope (Env) evolution of broadly neutralizing antibodies (bnAbs) in infection and to recreate those events by vaccination. Here, we report host tolerance mechanisms that limit the development of CD4-binding site (CD4bs), HCDR3-binder bnAbs via sequential HIV-1 Env vaccination. Vaccine-induced macaque CD4bs antibodies neutralize 7% of HIV-1 strains, recognize open Env trimers, and accumulate relatively modest somatic mutations. In naive CD4bs, unmutated common ancestor knock-in mice Env+B cell clones develop anergy and partial deletion at the transitional to mature B cell stage, but become Env- upon receptor editing. In comparison with repetitive Env immunizations, sequential Env administration rescue anergic Env+ (non-edited) precursor B cells. Thus, stepwise immunization initiates CD4bs-bnAb responses, but immune tolerance mechanisms restrict their development, suggesting that sequential immunogen-based vaccine regimens will likely need to incorporate strategies to expand bnAb precursor pools.
Collapse
|
27
|
Harada S, Yoshimura K. Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution. Front Microbiol 2017; 8:390. [PMID: 28360890 PMCID: PMC5352695 DOI: 10.3389/fmicb.2017.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-retroviral therapy (ART) is crucial for controlling human immunodeficiency virus type-1 (HIV-1) infection. Recently, progress in identifying and characterizing highly potent broadly neutralizing antibodies has provided valuable templates for HIV-1 therapy and vaccine design. Nevertheless, HIV-1, like many RNA viruses, exhibits genetically diverse populations known as quasispecies. Evolution of quasispecies can occur rapidly in response to selective pressures, such as that exerted by ART and the immune system. Hence, rapid viral evolution leading to drug resistance and/or immune evasion is a significant barrier to the development of effective HIV-1 treatments and vaccines. Here, we describe our recent investigations into evolutionary pressure exerted by anti-retroviral drugs and monoclonal neutralizing antibodies (NAbs) on HIV-1 envelope sequences. We also discuss sensitivities of HIV-1 escape mutants to maraviroc, a CCR5 inhibitor, and HIV-1 sensitized to NAbs by small-molecule CD4-mimetic compounds. These studies help to develop an understanding of viral evolution and escape from both anti-retroviral drugs and the immune system, and also provide fundamental insights into the combined use of NAbs and entry inhibitors. These findings of the adaptation and evolution of HIV in response to drug and immune pressure will inform the development of more effective antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
28
|
Curreli F, Kwon YD, Belov DS, Ramesh RR, Kurkin AV, Altieri A, Kwong PD, Debnath AK. Synthesis, Antiviral Potency, in Vitro ADMET, and X-ray Structure of Potent CD4 Mimics as Entry Inhibitors That Target the Phe43 Cavity of HIV-1 gp120. J Med Chem 2017; 60:3124-3153. [PMID: 28266845 DOI: 10.1021/acs.jmedchem.7b00179] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In our attempt to optimize the lead HIV-1 entry antagonist, NBD-11021, we present in this study the rational design and synthesis of 60 new analogues and determination of their antiviral activity in a single-cycle and a multicycle infection assay to derive a comprehensive structure-activity relationship (SAR). Two of these compounds, NBD-14088 and NBD-14107, showed significant improvement in antiviral activity compared to the lead entry antagonist in a single-cycle assay against a large panel of Env-pseudotyped viruses. The X-ray structure of a similar compound, NBD-14010, confirmed the binding mode of the newly designed compounds. The in vitro ADMET profiles of these compounds are comparable to that of the most potent attachment inhibitor BMS-626529, a prodrug of which is currently undergoing phase III clinical trials. The systematic study presented here is expected to pave the way for improving the potency, toxicity, and ADMET profile of this series of compounds with the potential to be moved to the early preclinical development.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Ranjith R Ramesh
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University , Leninskie Gory, Bld. 75, 77-101b; 119992 Moscow, Russia
| | - Peter D Kwong
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Asim K Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center , 310 E 67th Street, New York, New York 10065, United States
| |
Collapse
|
29
|
Li W, Lu L, Li W, Jiang S. Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010-2015). Expert Opin Ther Pat 2017; 27:707-719. [PMID: 28076686 DOI: 10.1080/13543776.2017.1281249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION It is essential to discover and develop small-molecule HIV-1 entry inhibitors with suitable pharmaceutical properties. Areas covered: We review the development of small-molecule HIV-1 entry inhibitors as evidenced in patents, patent applications, and related research articles published between 2010 and 2015. Expert opinion: HIV-1 Env gp120 and gp41 are important targets for development of HIV-1 entry inhibitors. The Phe43 pocket in gp120 and the highly conserved hydrophobic pocket on gp41 NHR-trimer are important targets for identification of HIV-1 attachment and fusion inhibitors, respectively. Compounds that bind to Phe43 pocket can block viral gp120 binding to CD4 on T cells, thus inhibiting HIV-1 attachment. However, most compounds targeting Phe43 pocket identified so far are HIV-1 entry agonists with the ability to enhance infectivity of HIV-1 in CD4-negative cells. Therefore, it is essential to identify HIV-1 entry antagonist-based HIV-1 attachment/entry inhibitors. Compounds binding to the gp41 hydrophobic pocket may inhibit CHR binding to the gp41 NHR trimer, thus blocking six-helix bundle formation and gp41-mediated virus-cell fusion. However, most lead compounds targeting this pocket have low potency, possibly because the pocket is too big or too deep. Therefore, it is necessary to identify other pockets in gp41 for developing HIV-1 fusion/entry inhibitors.
Collapse
Affiliation(s)
- Wen Li
- a Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science , Fudan University , Shanghai , China
| | - Lu Lu
- a Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science , Fudan University , Shanghai , China
| | - Weihua Li
- b Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD , Fudan University , Shanghai , China
| | - Shibo Jiang
- a Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science , Fudan University , Shanghai , China.,b Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD , Fudan University , Shanghai , China.,c Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA
| |
Collapse
|
30
|
Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds. J Virol 2017; 91:JVI.01880-16. [PMID: 27881646 DOI: 10.1128/jvi.01880-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important for virus entry. Small-molecule CD4-mimetic compounds inhibit HIV-1 infection by multiple mechanisms: (i) direct blockade of the interaction between the gp120 exterior envelope glycoprotein and CD4; (ii) premature triggering of conformational changes in the envelope glycoproteins, leading to irreversible inactivation; and (iii) exposure of cryptic epitopes to antibodies, allowing virus neutralization. The consequences of the binding of the CD4-mimetic compound to the HIV-1 envelope glycoproteins depends upon how many of the three subunits of the trimer are bound and upon the propensity of the envelope glycoproteins to undergo conformational changes. Understanding the mechanistic factors that influence the activity of CD4-mimetic compounds can help to improve their potency and coverage of diverse HIV-1 strains.
Collapse
|
31
|
Curreli F, Belov DS, Ramesh RR, Patel N, Altieri A, Kurkin AV, Debnath AK. Design, synthesis and evaluation of small molecule CD4-mimics as entry inhibitors possessing broad spectrum anti-HIV-1 activity. Bioorg Med Chem 2016; 24:5988-6003. [PMID: 27707628 DOI: 10.1016/j.bmc.2016.09.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
Since our first discovery of a CD4-mimic, NBD-556, which targets the Phe43 cavity of HIV-1 gp120, we and other groups made considerable progress in designing new CD4-mimics with viral entry-antagonist property. In our continued effort to make further progress we have synthesized twenty five new analogs based on our earlier reported viral entry antagonist, NBD-11021. These compounds were tested first in HIV-1 Env-pseudovirus based single-cycle infection assay as well as in a multi-cycle infection assay. Four of these new compounds showed much improved antiviral potency as well as cytotoxicity. We selected two of the best compounds 45A (NBD-14009) and 46A (NBD-14010) to test against a panel of 51 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates. These compounds showed noticeable breadth of antiviral potency with IC50 of as low as 150nM. These compounds also inhibited cell-to-cell fusion and cell-to-cell HIV-1 transmission. The study is expected to pave the way of designing more potent and selective HIV-1 entry inhibitors targeted to the Phe43 cavity of HIV-1 gp120.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Ranjith R Ramesh
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Naisargi Patel
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
32
|
Woodham AW, Skeate JG, Sanna AM, Taylor JR, Da Silva DM, Cannon PM, Kast WM. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDS 2016; 30:291-306. [PMID: 27410493 DOI: 10.1089/apc.2016.0100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.
Collapse
Affiliation(s)
- Andrew W. Woodham
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Joseph G. Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Adriana M. Sanna
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Julia R. Taylor
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Berinyuy E, Soliman MES. Identification of Novel Potential gp120 of HIV-1 Antagonist Using Per-Residue Energy Contribution-Based Pharmacophore modelling. Interdiscip Sci 2016; 9:406-418. [PMID: 27165479 DOI: 10.1007/s12539-016-0174-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
Inhibition of HIV-1 target cell entry, by targeting gp120, has been identified as a promising approach for the identification and development of prophylactic and salvage HIV infection inhibitors. A small molecule compound 18A is an important chemotype in the development of novel and diverse viral cell entry inhibitors, as it inhibits a wide variety of HIV strains by disrupting allosteric structuring on gp120. This study combines residue energy contribution (REC) pharmacophore mapping of 18A and in silico molecular docking in a virtual screening campaign to identify novel and diverse antagonists of gp120. The binding free energy of a validated docked complex of gp120-18A and the quantitative contribution of interacting residues were obtained with a more accurate molecular mechanics/generalised born surface area (MM/GBSA) method followed by mapping the energetically favourable residue contributions onto atom centres in 18A to obtain a pharmacophore model. The generated pharmacophore hypothesis was used to search the ZINC database for 3D structures that match the pharmacophore. Further, molecular docking, molecular dynamics simulations and binding free energy analysis were performed on retrieved hits in order to rank hits based on their affinity and interactions in the CD4 binding cavity of a gp120. Interestingly, the top scoring compound designated with ZINC database ID as ZINC64700951 (docking score = -8.8 kcal/mol, ∆G = -43.77 kcal/mol) showed higher affinity compared to compound 18A docking score = -7.3 kcal/mol, ∆G = -31.97 kcal/mol) and interaction of ZN64700951 with validated allosteric hot spot residues, Asp368 and Met426, and binding hot spot residues, Asn425, Glu370, Gly473, Trp427 and Met475 in gp120, suggest that ZN64700951 is a promising antagonist of gp120. Thus, ZN64700951 could serve as an additional prototype for further optimisation as an HIV target cell viral entry inhibitor.
Collapse
Affiliation(s)
- Emiliene Berinyuy
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mahmoud E S Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
34
|
Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. J Virol 2016; 90:5031-5046. [PMID: 26962221 DOI: 10.1128/jvi.03211-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.
Collapse
|
35
|
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41. Curr Top Med Chem 2016; 16:1074-90. [PMID: 26324044 PMCID: PMC4775441 DOI: 10.2174/1568026615666150901114527] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.
Collapse
Affiliation(s)
| | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Building #13, Shanghai 200032, China.
| |
Collapse
|
36
|
Core chemotype diversification in the HIV-1 entry inhibitor class using field-based bioisosteric replacement. Bioorg Med Chem Lett 2015; 26:228-34. [PMID: 26531151 DOI: 10.1016/j.bmcl.2015.10.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
Abstract
Demand remains for new inhibitors of HIV-1 replication and the inhibition of HIV-1 entry is an extremely attractive therapeutic approach. Using field-based bioisosteric replacements, we have further extended the chemotypes available for development in the HIV-1 entry inhibitor class. Moreover, using field-based disparity analysis of the compounds, 3D structure-activity relationships were derived that will be useful in the further development of these inhibitors towards clinical utility.
Collapse
|
37
|
Berinyuy E, Soliman MES. A broad spectrum anti-HIV inhibitor significantly disturbs V1/V2 domain rearrangements of HIV-1 gp120 and inhibits virus entry. J Recept Signal Transduct Res 2015; 36:119-29. [PMID: 26446906 DOI: 10.3109/10799893.2015.1056307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inhibition of human immunodeficiency virus (HIV) entry into target human cells is considered as a critical strategy for preventing HIV infection. Conformational shifts of the HIV-1 envelope glycoprotein (gp120) facilitates the attachment of the virus to target cells, therefore gp120 remains an attractive target for antiretroviral therapy development. Compound 18A has been recently identified as a broad-spectrum anti-HIV inhibitor. It was proposed that 18A disrupts rearrangements of V1/V2 region in gp120; however, the precise mechanism by which 18A interferes with the inherent motion of V1/V2 domain remains obscure. In this report, we elaborate on the binding mode of compound 18A to the closed conformation of a soluble cleaved gp120 and further examine the dynamic motion of V1/V2 region in both gp120 and the gp120-18A complex via all-atom molecular dynamics simulations. In this work, comparative molecular dynamic analyses revealed that 18A makes contact with Leu179, Ile194, Ile424, Met426 W427, E370 and Met475 in the main hydrophobic cavity of the unliganded gp120 and disrupts the restructuring of V1/V2 domain observed in apo gp120. The unwinding of α1 and slight inversion of β2 in gp120 leads to the shift of VI/V2 domain away from the V3 N-terminal regions and toward the outer domain. Stronger contacts between Trp425 and Trp112 rings may contribute to the reduced flexibility of α1 observed upon 18A binding thereby inhibiting the shifts of the V1/V2 region. Binding of 18A to gp120: (1) decreases the overall flexibility of the protein and (2) inhibits the formation a gp120 conformation that closely ressembles a CD4-bound-like conformation. Information gained from this report not only elaborates on important dynamic features of gp120, but will also assist with the future designs of potent gp120 inhibitors as anti-HIV.
Collapse
Affiliation(s)
- Emiliene Berinyuy
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| | - Mahmoud E S Soliman
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| |
Collapse
|
38
|
Discovery and optimization of novel small-molecule HIV-1 entry inhibitors using field-based virtual screening and bioisosteric replacement. Bioorg Med Chem Lett 2015; 24:5439-45. [PMID: 25454268 DOI: 10.1016/j.bmcl.2014.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022]
Abstract
With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.
Collapse
|
39
|
Curreli F, Kwon YD, Zhang H, Scacalossi D, Belov DS, Tikhonov AA, Andreev IA, Altieri A, Kurkin AV, Kwong PD, Debnath AK. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity. J Med Chem 2015; 58:6909-6927. [PMID: 26301736 PMCID: PMC4676410 DOI: 10.1021/acs.jmedchem.5b00709] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates (IC50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongtao Zhang
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Daniel Scacalossi
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Dmitry S. Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Artur A. Tikhonov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Ivan A. Andreev
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Alexander V. Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Asim K. Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| |
Collapse
|
40
|
Aneja R, Rashad AA, Li H, Kalyana Sundaram RV, Duffy C, Bailey LD, Chaiken I. Peptide Triazole Inactivators of HIV-1 Utilize a Conserved Two-Cavity Binding Site at the Junction of the Inner and Outer Domains of Env gp120. J Med Chem 2015; 58:3843-58. [PMID: 25860784 DOI: 10.1021/acs.jmedchem.5b00073] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We used coordinated mutagenesis, synthetic design, and flexible docking to investigate the structural mechanism of Env gp120 encounter by peptide triazole (PT) inactivators of HIV-1. Prior results demonstrated that the PT class of inhibitors suppresses binding at both CD4 and coreceptor sites on Env and triggers gp120 shedding, leading to cell-independent irreversible virus inactivation. Despite these enticing anti-HIV-1 phenotypes, structural understanding of the PT-gp120 binding mechanism has been incomplete. Here we found that PT engages two inhibitor ring moieties at the junction between the inner and outer domains of the gp120 protein. The results demonstrate how combined occupancy of two gp120 cavities can coordinately suppress both receptor and coreceptor binding and conformationally entrap the protein in a destabilized state. The two-cavity model has common features with small molecule gp120 inhibitor binding sites and provides a guide for further design of peptidomimetic HIV-1 inactivators based on the PT pharmacophore.
Collapse
Affiliation(s)
- Rachna Aneja
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adel A Rashad
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Huiyuan Li
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ramalingam Venkat Kalyana Sundaram
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,‡School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Caitlin Duffy
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Lauren D Bailey
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
41
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|
42
|
Binding mode characterization of NBD series CD4-mimetic HIV-1 entry inhibitors by X-ray structure and resistance study. Antimicrob Agents Chemother 2014; 58:5478-91. [PMID: 25001301 DOI: 10.1128/aac.03339-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously identified two small-molecule CD4 mimetics--NBD-556 and NBD-557--and synthesized a series of NBD compounds that resulted in improved neutralization activity in a single-cycle HIV-1 infectivity assay. For the current investigation, we selected several of the most active compounds and assessed their antiviral activity on a panel of 53 reference HIV-1 Env pseudoviruses representing diverse clades of clinical isolates. The selected compounds inhibited tested clades with low-micromolar potencies. Mechanism studies indicated that they act as CD4 agonists, a potentially unfavorable therapeutic trait, in that they can bind to the gp120 envelope glycoprotein and initiate a similar physiological response as CD4. However, one of the compounds, NBD-09027, exhibited reduced agonist properties, in both functional and biophysical studies. To understand the binding mode of these inhibitors, we first generated HIV-1-resistant mutants, assessed their behavior with NBD compounds, and determined the X-ray structures of two inhibitors, NBD-09027 and NBD-10007, in complex with the HIV-1 gp120 core at ∼2-Å resolution. Both studies confirmed that the NBD compounds bind similarly to NBD-556 and NBD-557 by inserting their hydrophobic groups into the Phe43 cavity of gp120. The basic nitrogen of the piperidine ring is located in close proximity to D368 of gp120 but it does not form any H-bond or salt bridge, a likely explanation for their nonoptimal antagonist properties. The results reveal the structural and biological character of the NBD series of CD4 mimetics and identify ways to reduce their agonist properties and convert them to antagonists.
Collapse
|