1
|
Wang J, Xin L, Wang H, Xu L, Zhao F, Li W, Yang Y, Wang W, Shan L. Forsythiaside A alleviates acute lung injury via the RNF99/TRAF6/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112814. [PMID: 39094364 DOI: 10.1016/j.intimp.2024.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The aim of this study was to investigated the effects of forsythiaside A (FA) on acute lung injury (ALI). The lung tissue pathological was detected by hematoxylin-eosin staining (HE) staining. Wet weight/dry weight (w/d) of the lung in mice was measured. Cytokine such as interleukin 1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) were also detected. Compared with the vector group, the protein expression levels of TRAF6 and TAK1 the RNF99 group were significantly reduced. Ubiquitinated TRAF6 protein was increased after knockdown of RNF99. Finally, it was found that FA significantly ameliorated ALI via regulation of RNF99/TRAF6/NF-κB signal pathway. In conclusion, RNF99 was an important biomarker in ALI and FA alleviated ALI via RNF99/ TRAF6/NF-κB signal pathway.
Collapse
Affiliation(s)
- Jing Wang
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China.
| | - Linyan Xin
- Yancheng First People's Hospital Pharmacy Department, China
| | - Haichao Wang
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China
| | - Lisheng Xu
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China
| | - Fang Zhao
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China
| | - Wanrong Li
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China
| | - Yang Yang
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China
| | - Weiwei Wang
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China.
| | - Lingling Shan
- School of Biology and Food Engineering, Institute of Pharmaceutical Pharmacology Research Center, Suzhou University, Suzhou, Anhui, China.
| |
Collapse
|
2
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Wu YC, Hsu SP, Hu MC, Lan YT, Yeh ETH, Yang FM. PEP-sNASP Peptide Alleviates LPS-Induced Acute Lung Injury Through the TLR4/TRAF6 Axis. Front Med (Lausanne) 2022; 9:832713. [PMID: 35386914 PMCID: PMC8977741 DOI: 10.3389/fmed.2022.832713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease associated with macrophages. Somatic nuclear autoantigenic sperm protein (sNASP) is a negative regulator of Toll-like receptor (TLR) signaling that targets tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) in macrophages, which is required to maintain homeostasis of the innate immune response. In the present study, we generated a cell permeable PEP-sNASP peptide using the sNASP protein N-terminal domain, and examined its potential therapeutic effect in a mouse model of ALI induced by the intranasal administration of lipopolysaccharide (LPS) and elucidated the underlying molecular mechanisms in RAW 264.7 cells. In vivo, PEP-sNASP peptide treatment markedly ameliorated pathological injury, reduced the wet/dry (W/D) weight ratio of the lungs and the production of proinflammatory cytokines (interleukin (IL)-1β, IL-6, and TNF-α). In vitro, we demonstrated that when the PEP-sNASP peptide was transduced into RAW 264.7 cells, it bound to TRAF6, which markedly decreased LPS-induced proinflammatory cytokines by inhibiting TRAF6 autoubiquitination, nuclear factor (NF)-κB activation, reactive oxygen species (ROS) and cellular nitric oxide (NO) levels. Furthermore, the PEP-sNASP peptide also inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. Our results therefore suggest that the PEP-sNASP may provide a potential protein therapy against oxidative stress and pulmonary inflammation via selective TRAF6 signaling.
Collapse
Affiliation(s)
- Yu-Chih Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ting Lan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Edward T H Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AK, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Feng-Ming Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Study of the Radiosensitizing and Radioprotective Efficacy of Bromelain (a Pineapple Extract): In Vitro and In Vivo. Integr Cancer Ther 2021; 19:1534735420950468. [PMID: 32783540 PMCID: PMC7425266 DOI: 10.1177/1534735420950468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study hypothesizes that, bromelain (BL) acts as radiosensitizer of tumor cells and that it protects normal cells from radiation effects. In vitro and in vivo studies have been carried out to prove that assumption. In vitro MTT cell proliferation assay has shown that the irradiated Ehrlich ascites carcinoma (EAC) cell line could be sensitized by BL pretreatment. In vivo: animals were randomly divided into 5 groups, Group 1: control (PBS i.p for 10 days), Group 2: Ehrlich solid tumor (EST) bearing mice, Group 3: EST + γ-radiation (fractionated dose, 1 Gy × 5), Group 4: EST + BL (6 mg/kg, i.p), daily for 10 days, Group 5: EST + BL for 10 days followed by γ-irradiation (1 Gy × 5). The size and weight of tumors in gamma-irradiated EST bearing mice treated with BL decreased significantly with a significant amelioration in the histopathological examination. Besides, BL mitigated the effect of γ-irradiation on the liver relative gene expression of poly ADP ribose polymerase-1 (PARP1), nuclear factor kappa activated B cells (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α), and it restored liver function via amelioration of paraoxonase1 (PON1) activity, reactive oxygen species (ROS) content, lipid peroxidation (LPO) and serum aspartate transaminase (AST), alanine transaminase (ALT), and albumin (ALB). It is concluded that BL can be considered as a radio-sensitizer and radio-protector, suggesting a possible role in reducing radiation exposure dose during radiotherapy.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Biochemistry Department, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Ravi R, Ragavachetty Nagaraj N, Subramaniam Rajesh B. Effect of advanced glycation end product on paraoxonase 2 expression: Its impact on endoplasmic reticulum stress and inflammation in HUVECs. Life Sci 2020; 246:117397. [DOI: 10.1016/j.lfs.2020.117397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
|
7
|
Shin MJ, Kim DW, Choi YJ, Cha HJ, Lee SH, Lee S, Park J, Han KH, Eum WS, Choi SY. PEP-1-GLRX1 Protein Exhibits Anti-Inflammatory Effects by Inhibiting the Activation of MAPK and NF-κB Pathways in Raw 264.7 Cells. BMB Rep 2020. [PMID: 31964467 PMCID: PMC7061214 DOI: 10.5483/bmbrep.2020.53.2.180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutaredoxin 1 (GLRX1) has been recognized as an important regulator of redox signaling. Although GLRX1 plays an essential role in cell survival as an antioxidant protein, the function of GLRX1 protein in inflammatory response is still under investigation. Therefore, we wanted to know whether transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), activation of mitogen activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-βB) expression levels. In a TPA-induced mouse-ear edema model, topically applied PEP-1-GLRX1 transduced into ear tissues and significantly ameliorated ear edema. Our data reveal that PEP-1-GLRX1 attenuates inflammation in vitro and in vivo, suggesting that PEP-1-GLRX1 may be a potential therapeutic protein for inflammatory diseases.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Genesen Inc., Seoul 06181, Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
8
|
Kim DW, Shin MJ, Choi YJ, Kwon HJ, Lee SH, Lee S, Park J, Han KH, Eum WS, Choi SY. Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways. BMB Rep 2019. [PMID: 30545441 PMCID: PMC6330941 DOI: 10.5483/bmbrep.2018.51.12.248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antioxidant 1 (ATOX1) protein has been reported to exhibit various protective functions, including antioxidant and chaperone. However, the effects of ATOX1 on the inflammatory response has not been fully elucidated. Thus, we prepared cell permeable Tat-ATOX1 and studied the effects on lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. Experimental results showed that transduced Tat-ATOX1 protein significantly suppressed LPS-induced intracellular reactive oxygen species (ROS). Also, Tat-ATOX1 protein markedly inhibited LPS- and TPA-induced inflammatory responses by decreasing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) and further inhibited phosphorylation of mitogen activated protein kinases (MAPKs; JNK, ERK and p38) and the nuclear factor-kappaB (NF-κB) signaling pathway. These results indicate that the Tat-ATOX1 protein has a pivotal role in inflammation via inhibition of inflammatory responses, suggesting Tat-ATOX1 protein may offer a therapeutic strategy for inflammation.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Sung Ho Lee
- R&D Center, Lumieye Genetics Co., Ltd., Seoul 06198, Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
9
|
Lee SJ, Kang HK, Choi YJ, Eum WS, Park J, Choi SY, Kwon HY. PEP-1-paraoxonase 1 fusion protein prevents cytokine-induced cell destruction and impaired insulin secretion in rat insulinoma cells. BMB Rep 2019. [PMID: 30269741 PMCID: PMC6235087 DOI: 10.5483/bmbrep.2018.51.10.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pancreatic beta cell destruction and dysfunction induced by cytokines is a major cause of type 1 diabetes. Paraoxonase 1 (PON1), an arylesterase with antioxidant activity, has been shown to play an important role in preventing the development of diabetes in transgenic mice. However, no studies have examined the anti-diabetic effect of PON1 delivered to beta cells using protein transduction. In this study, we expressed the cell-permeable PON1 fused with PEP-1 protein transduction domain (PEP-1-PON1) to investigate whether transduced PEP-1-PON1 protects beta cells against cytokine-induced cytotoxicity. PEP-1-PON1 was effectively delivered to INS-1 cells and prevented cytokine-induced cell destruction in a dose-dependent manner. Transduced PEP-1-PON1 significantly reduced the levels of reactive oxygen species (ROS) and nitric oxide (NO), DNA fragmentation, and expression of inflammatory mediators, endoplasmic reticulum (ER) stress proteins, and apoptosis-related proteins in cytokine-treated cells. Moreover, transduced PEP-1-PON1 restored the decrease in basal and glucose-stimulated insulin secretion induced by cytokines. These data indicate that PEP-1-PON1 protects beta cells from cytokine-induced cytotoxicity by alleviating oxidative/nitrosative stress, ER stress, and inflammation. Thus, PEP-1-mediated PON1 transduction might be an effective method to reduce the extent of destruction and dysfunction of pancreatic beta cells in autoimmune diabetes. [BMB Reports 2018; 51(10): 539-544].
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hyung Kyung Kang
- Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
10
|
A Comparison of [ 99mTc]Duramycin and [ 99mTc]Annexin V in SPECT/CT Imaging Atherosclerotic Plaques. Mol Imaging Biol 2019; 20:249-259. [PMID: 28785938 DOI: 10.1007/s11307-017-1111-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Apoptosis is a key factor in unstable plaques. The aim of this study is to evaluate the utility of visualizing atherosclerotic plaques with radiolabeled duramycin and Annexin V. PROCEDURES ApoE-/- mice were fed with a high-fat diet to develop atherosclerosis, C57 mice as a control. Using a routine conjugation protocol, highly pure [99mTc]duramycin and [99mTc]Annexin V were obtained, which were applied for in vitro cell assays of apoptosis and in vivo imaging of atherosclerotic plaques in the animal model. Oil Red O staining, TUNEL, hematoxylin-eosin (HE), and CD68 immunostaining were used to evaluate the deposition of lipids and presence of apoptotic macrophages in the lesions where focal intensity positively correlated with the uptake of both tracers. RESULTS [99mTc]duramycin and [99mTc]Annexin V with a high radiochemical purity (97.13 ± 1.52 and 94.94 ± 0.65 %, respectively) and a well stability at room temperature were used. Apoptotic cells binding activity to [99mTc]duramycin (Kd, 6.92 nM and Bmax, 56.04 mol/1019 cells) was significantly greater than [99mTc]Annexin V (Kd, 12.63 nM and Bmax, 31.55 mol/1019 cells). Compared with [99mTc]Annexin V, [99mTc]duramycin bound avidly to atherosclerotic lesions with a higher plaque-to-background ratio (P/B was 8.23 ± 0.91 and 5.45 ± 0.48 at 20 weeks, 15.02 ± 0.23 and 12.14 ± 0.22 at 30 weeks). No plaques were found in C57 control mice. Furthermore, Oil Red O staining showed lipid deposition areas were significantly increased in ApoE-/- mice at 20 and 30 weeks, and TUNEL and CD68 staining confirmed that the focal uptake of both tracers contained abundant apoptotic macrophages. CONCLUSIONS This stable, fast clearing, and highly specific [99mTc]duramycin, therefore, can be useful for the quantification of vulnerable atherosclerotic plaques.
Collapse
|
11
|
PEP-1-PEA15 suppresses inflammatory responses by regulation of MAPK in macrophages and animal models. Immunobiology 2018; 223:709-717. [DOI: 10.1016/j.imbio.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
|
12
|
Baghaiee B, Karimi P, Ebrahimi K, Dabagh Nikoo Kheslat S, Sadeghi Zali MH, Daneshian Moghaddam AM, Sadaghian M. Effects of a 12-week aerobic exercise on markers of hypertension in men. J Cardiovasc Thorac Res 2018; 10:162-168. [PMID: 30386537 PMCID: PMC6203869 DOI: 10.15171/jcvtr.2018.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
Introduction: This study was aimed at determining the effects of a 12-week aerobic exercise
program on markers of hypertension in men.
Methods: The study was of a semi-experimental design featuring repeated measurements. A total
of 40 men (age range=37.9 ± 2.68) with primary hypertension were divided into two groups,
namely, the exercise group (n=20) and the control group (n=20) (systolic blood pressure [SBP]:
140.531 ± 0.23, diastolic blood pressure [DBP]: 90.71 ± 0.05). The exercise group participated in
a 12-week aerobic exercise program (55% to 70% of HRmax). Blood samples were taken from
both groups at the baseline and at the 4th, 8th, and 12th weeks of the training program for the
assessment of adiponectin, paraoxonase-1 (PON-1), and hydrogen peroxide (H2
O2
) levels as the
markers for investigation. A linear mixed model was also used to evaluate the association among
the markers.
Results: In the exercise group, exercise reduced the SBP and DBP at week 12 (P=0.031 and 0.023, respectively), and adiponectin increased at weeks 8 and 12 (P=0.014 and 0.001, respectively). The plasma PON-1 level showed a significant increase in all the three stages of measurement (P=0.007, 0.004, and 0.002 at weeks 4, 8, and 12, respectively), whereas the H2 O2 levels showed a significant decrease at weeks 8 and 12 (P=0.013 and 0.011, respectively). The control group exhibited significantly decreased PON-1 (P=0.003) and adiponectin (P=0.025) levels but significantly increased SBP at week 12 (P=0.032).
Conclusion: The exercise-induced reduction of oxidative stress exerts a considerable effect on the reduction of blood pressure in hypertensive patients. According to our results increase in oxidative stress has the great impact on the of blood pressure.
Collapse
Affiliation(s)
- Behrouz Baghaiee
- Department of Physical Education and Sports Science, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Pouran Karimi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadije Ebrahimi
- Department of Physical Education and Sports Science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Saeed Dabagh Nikoo Kheslat
- Department of Exercise Physiology, Faculty of Sport Sciences and Physical Education, University of Tabriz, Tabriz, Iran
| | | | | | - Mohammad Sadaghian
- Department of Pathobiology, Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| |
Collapse
|
13
|
Chen WQ, Xie ZZ, Wang X, Zhao JH, Hu Q, Chen YH, Gao WY, Liu Y. Influences of PON1 on airway inflammation and remodeling in bronchial asthma. J Cell Biochem 2017; 119:793-805. [PMID: 28657647 DOI: 10.1002/jcb.26242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/27/2017] [Indexed: 01/31/2023]
Abstract
This study aims to explore the influences of Paraoxonase-1 (PON1) involved in airway inflammation and remodeling in asthma. Mice were divided into control, asthma, asthma + PON1 and asthma + NC groups, and asthma models were established via aerosol inhalation of ovalbumin (OVA). HE, Masson, and PAS stains were used to observe airway inflammation and remodeling, Giemsa staining to assess inflammatory cells in bronchoalveolar lavage fluid (BALF), qRT-PCR and Western blot to detect PON1 expression, lipid peroxidation and glutathione assays to quantify malondialdehyde (MDA) activity and glutathione peroxidase (GSH) levels, ELISA to determine inflammatory cytokines and immunoglobulin, and colorimetry to detect PON1 activities. Additionally, mice lung macrophages and fibroblasts were transfected with PON1 plasmid in vitro; ELISA and qRT-PCR were performed to understand the effects of PON1 on inflammatory cytokines secreted by lung macrophages, MTT assay for lung fibroblasts proliferation and qRT-PCR and Western blot for the expressions of PON1, COL1A1, and fibronectin. After overexpression of PON1, the asthma mice had decreased inflammatory cell infiltration, fibrosis degree, and airway wall thickness; inflammatory cells and inflammatory cytokines in BALF were also reduced, expressions of OVA-IgE and IgG1, and MDA activity were decreased, but the expressions of OVA-IgG2a and INF-γ and GSH levels were increased. Besides, PON1 significantly inhibited microphage expression of LPS-induced inflammatory cytokines, lung fibroblast proliferation, and COL1A1 and fibronectin expression. Thus, PON1 could relieve airway inflammation and airway remodeling in asthmatic mice and inhibit the secretion of LPS-induced macrophage inflammatory cytokines and the proliferation of lung fibroblasts.
Collapse
Affiliation(s)
- Wei-Qiang Chen
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Zuo-Zhou Xie
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Xiang Wang
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Jin-Hong Zhao
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Qin Hu
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Ying-Hua Chen
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Wen-Yong Gao
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
14
|
Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188:38-45. [DOI: 10.1016/j.imlet.2017.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022]
|
15
|
Jo HS, Yeo HJ, Cha HJ, Kim SJ, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Eum WS, Choi SY. Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death. BMB Rep 2017; 49:297-302. [PMID: 26996344 PMCID: PMC5070711 DOI: 10.5483/bmbrep.2016.49.5.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302]
Collapse
Affiliation(s)
- Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
16
|
Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury. Molecules 2016; 21:molecules21111490. [PMID: 27834881 PMCID: PMC6272831 DOI: 10.3390/molecules21111490] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023] Open
Abstract
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.
Collapse
|
17
|
Eom SA, Kim DW, Shin MJ, Ahn EH, Chung SY, Sohn EJ, Jo HS, Jeon SJ, Kim DS, Kwon HY, Cho SW, Han KH, Park J, Eum WS, Choi SY. Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson's disease. BMB Rep 2016; 48:395-400. [PMID: 25322954 PMCID: PMC4577289 DOI: 10.5483/bmbrep.2015.48.7.197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl- 4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases.
Collapse
Affiliation(s)
- Seon Ae Eom
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 210-702, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Seok Young Chung
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Su-Jeong Jeon
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 330-090, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 330-090, Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
18
|
Chang JC, Wu SL, Liu KH, Chen YH, Chuang CS, Cheng FC, Su HL, Wei YH, Kuo SJ, Liu CS. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res 2016; 170:40-56.e3. [PMID: 26730494 DOI: 10.1016/j.trsl.2015.12.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ko-Hung Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Hui Chen
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chieh-Sen Chuang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Fu-Chou Cheng
- Department of Medical Research, Stem Cell Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Shou-Jen Kuo
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan; Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Luo XG, Ma DY, Wang Y, Li W, Wang CX, He YY, Gu XC, Li XM, Zhou H, Zhang TC. Fusion with pep-1, a cell-penetrating peptide, enhances the transmembrane ability of human epidermal growth factor. Biosci Biotechnol Biochem 2016; 80:584-90. [DOI: 10.1080/09168451.2015.1091714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Administration of macromolecule compositions in medicine and cosmetics always exhibited low bioavailability due to the limitation of transmembrane transport. Here, human epidermal growth factor (hEGF) was fused with glutathione S-transferase (GST) and Pep-1, the first commercial cell-penetrating peptide, in Escherichia coli. The fusion protein was firstly purified with the affinity chromatography, and then the GST tag was released by TEV protease. Final purification was achieved by the ion exchange chromatography. The biological activities and the transmembrane ability of the obtained products were determined using scratch wound-healing assay, MTT analysis, and immunofluorescence assay. The results showed that both rhEGF and Pep-1-fused hEGF were soluble expressed in E. coli. The fusion of Pep-1 could markedly increase the transmembrane ability of EGF, whereas it did not interfere with the growth-stimulating and migration-promoting functions of hEGF on fibroblasts. This research provided a novel strategy for the transmembrane transport of protein-derived cosmetics or drugs.
Collapse
Affiliation(s)
- Xue-Gang Luo
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - De-Yun Ma
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Yue Wang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Wen Li
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chong-Xi Wang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Ying-Ying He
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xiang-Chao Gu
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xiu-Mei Li
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hao Zhou
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Tong-Cun Zhang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P.R. China
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
20
|
Wu Y, Xie G, Xu Y, Ma L, Tong C, Fan D, Du F, Yu H. PEP-1-MsrA ameliorates inflammation and reduces atherosclerosis in apolipoprotein E deficient mice. J Transl Med 2015; 13:316. [PMID: 26410585 PMCID: PMC4584131 DOI: 10.1186/s12967-015-0677-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methionine sulfoxide reductase A (MsrA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. However, therapeutic use of exogenous MsrA in oxidative stress-induced diseases is limited, because it cannot enter the cells. The aim of this study is to investigate whether MsrA with PEP-1, a cell penetrating peptide, fused to its N-terminus can protect against oxidative stress in macrophages and can attenuate atherosclerosis in apolipoprotein E deficient (apoE(-/-)) mice. METHODS MsrA and the fusion protein PEP-1-MsrA were expressed and purified using a pET28a expression system. Transduction of the fusion protein into macrophages was confirmed by Western blot and immunofluorescence staining. Intracellular reactive oxygen species (ROS) and apoptosis levels were measured by flow cytometry. In in vivo study, MsrA or PEP-1-MsrA proteins were intraperitoneally injected into apoE(-/-) mice fed a Western diet for 12 weeks. Plasma lipids levels, inflammatory gene expression, and paraoxonase-1 (PON1) and superoxide dismutase (SOD) activities were assessed. Atherosclerotic lesions were analyzed by Oil Red O staining and immunohistochemistry. RESULTS PEP-1-MsrA could penetrate the cells and significantly reduced intracellular ROS levels and apoptosis in H2O2-treated macrophages. It also decreased TNFα and IL-1β mRNA levels and increased the IL-10 mRNA level in lipopolysaccharide-treated macrophages. In in vivo study, PEP-1-MsrA injection significantly increased plasma PON1 and SOD activities and decreased plasma monocyte chemoattractant protein 1 (MCP-1) level compared to the injection of vehicle control or MsrA. In PEP-1-MsrA injected mice, hepatic PON1 levels were increased, while the expression of TNFα and IL-6 mRNA in the liver was suppressed. Although plasma total cholesterol and triglyceride levels did not change, the aortic atherosclerosis in PEP-1-MsrA treated mice was significantly reduced. This was accompanied by a reduction of total and apoptotic macrophages in the lesions. CONCLUSION Our study provides evidence that PEP-1-MsrA may be a potential therapeutic agent for atherosclerosis-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Wu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Guanghui Xie
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Yanyong Xu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Li Ma
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Chuanfeng Tong
- Cardiology Division of Wuhan University Zhongnan Hospital, Wuhan, China.
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA.
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Bldg. 2, 2-209, Wuhan, 430071, Hubei, China.
| |
Collapse
|
21
|
Kim MJ, Park M, Kim DW, Shin MJ, Son O, Jo HS, Yeo HJ, Cho SB, Park JH, Lee CH, Kim DS, Kwon OS, Kim J, Han KH, Park J, Eum WS, Choi SY. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model. Biomaterials 2015; 64:45-56. [DOI: 10.1016/j.biomaterials.2015.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023]
|
22
|
Brinholi FF, Noto C, Maes M, Bonifácio KL, Brietzke E, Ota VK, Gadelha A, Cordeiro Q, Belangero SI, Bressan RA, Vargas HO, Higachi L, de Farias CC, Moreira EG, Barbosa DS. Lowered paraoxonase 1 (PON1) activity is associated with increased cytokine levels in drug naïve first episode psychosis. Schizophr Res 2015; 166:225-30. [PMID: 26123170 DOI: 10.1016/j.schres.2015.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/29/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Activated immune-inflammatory pathways play an important role in the pathophysiology of schizophrenia. Paraoxonase 1 (PON1) activity is inversely associated with inflammatory responses in numerous clinical conditions. The aims of this study were to delineate serum arylesterase PON1 activity in drug-naïve first episode psychosis (FEP) patients and a healthy control group, and to assess whether there are inverse relationships between PON1 activity and cytokine levels. METHODS A total of 51 drug-naïve FEP patients and 61 healthy controls were enrolled in this study. Levels of interleukin (IL)-4, IL-10, IL-6, tumor necrosis factor (TNF)-α and activity of PON1 were quantified. RESULTS Compared to healthy controls, FEP patients showed lower serum PON1 activity and higher levels of IL-4, IL-10 and TNF-α. A significant inverse relationship between PON1 activity and IL-4, IL-6 and IL-10 levels was detected, but not for TNF-α. Subjects with very low PON1 activity (25th quartile) presented significantly higher levels of IL-6, IL-10 and IL-4 than those with higher PON1 activity (75th quartile). CONCLUSION The present study provides evidence that FEP is characterized by an inverse relationship between lowered activity of the anti-inflammatory/antioxidant enzyme PON1 and increased cytokine levels, including IL-6, IL-4 and IL-10. It is hypothesized that lowered PON1 activity may play a role in the immune-inflammatory response that accompanies FEP and that increased cytokine levels may further modulate PON1 activity.
Collapse
Affiliation(s)
| | - Cristiano Noto
- LiNC-Interdisciplinary Laboratory of Clinical Neuroscience, Universidade Federal de Sao Paulo, SP, Brazil; First Episode Psychosis Program, Faculdade de Ciências Médicas da Santa Casa de São Paulo (FCMSCSP), São Paulo, SP,Brazil.
| | - Michael Maes
- Graduation Program in Health Sciences, Universidade Estadual de Londrina, Londrina, PR, Brazil; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | | - Elisa Brietzke
- LiNC-Interdisciplinary Laboratory of Clinical Neuroscience, Universidade Federal de Sao Paulo, SP, Brazil
| | - Vanessa Kiyomi Ota
- LiNC-Interdisciplinary Laboratory of Clinical Neuroscience, Universidade Federal de Sao Paulo, SP, Brazil
| | - Ary Gadelha
- LiNC-Interdisciplinary Laboratory of Clinical Neuroscience, Universidade Federal de Sao Paulo, SP, Brazil
| | - Quirino Cordeiro
- LiNC-Interdisciplinary Laboratory of Clinical Neuroscience, Universidade Federal de Sao Paulo, SP, Brazil; First Episode Psychosis Program, Faculdade de Ciências Médicas da Santa Casa de São Paulo (FCMSCSP), São Paulo, SP,Brazil
| | - Sintia Iole Belangero
- LiNC-Interdisciplinary Laboratory of Clinical Neuroscience, Universidade Federal de Sao Paulo, SP, Brazil
| | - Rodrigo Affonseca Bressan
- LiNC-Interdisciplinary Laboratory of Clinical Neuroscience, Universidade Federal de Sao Paulo, SP, Brazil
| | - Heber Odebrecht Vargas
- Graduation Program in Health Sciences, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Luciana Higachi
- Graduation Program in Health Sciences, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | | - Décio Sabbatini Barbosa
- Graduation Program in Health Sciences, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
23
|
Ke Z, Gao A, Xu P, Wang J, Ji L, Yang J. Preconditioning with PEP-1-SOD1 fusion protein attenuates ischemia/reperfusion-induced ventricular arrhythmia in isolated rat hearts. Exp Ther Med 2015; 10:352-356. [PMID: 26170961 DOI: 10.3892/etm.2015.2440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
PEP 1-Cu/Zn superoxide dismutase (PEP-1-SOD1) fusion protein preconditioning has been reported to protect the myocardium from ischemia/reperfusion (I/R)-induced injury by decreasing the infarct size, reducing levels of cardiomyocyte apoptosis and reducing the release of myocardial-specific biomarkers. The aim of the present study was to examine the effects of PEP-1-SOD1 pretreatment on I/R-induced ventricular arrhythmias in Langendorff-perfused rat hearts. The isolated rat hearts were pretreated with PEP-1-SOD1 prior to I/R, and the I/R-induced hemodynamic parameters, infarct size and ventricular arrhythmias were then assessed. Compared with the unprotected hearts, PEP-1-SOD1 preconditioning significantly improved the hemodynamic parameters, decreased the cardiac lactate dehydrogenase and creatine kinase-MB (CK-MB) levels, reduced the infarct size and attenuated the ventricular arrhythmia. Further investigation showed that PEP-1-SOD1 preconditioning reduced both the incidence and duration of ventricular tachycardia/ventricular fibrillation. In addition, the intracellular reactive oxygen species (ROS) levels were decreased. The results of the present study suggest that PEP-1-SOD1 preconditioning can protect the heart against I/R injury and attenuate I/R-induced arrhythmia by downregulating the generation of ROS.
Collapse
Affiliation(s)
- Zunping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200040, P.R. China
| | - Aimei Gao
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200040, P.R. China
| | - Peng Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200040, P.R. China
| | - Jianing Wang
- Institute of Clinical Medicine and Department of Cardiology, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Lijuan Ji
- Department of Rehabilitation, The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223001, P.R. China
| | - Jianye Yang
- Institute of Clinical Medicine and Department of Cardiology, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
24
|
Kim YN, Kim DW, Jo HS, Shin MJ, Ahn EH, Ryu EJ, Yong JI, Cha HJ, Kim SJ, Yeo HJ, Youn JK, Hwang JH, Jeong JH, Kim DS, Cho SW, Park J, Eum WS, Choi SY. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activation in macrophages and TPA-induced ear edema in mice. Toxicol Appl Pharmacol 2015; 286:124-34. [PMID: 25818598 DOI: 10.1016/j.taap.2015.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022]
Abstract
Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E2 (PGE2) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB) and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases.
Collapse
Affiliation(s)
- Young Nam Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Kangneung 210-702, Republic of Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Ji In Yong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Jong Kyu Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Jae Hyeok Hwang
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Ji-Heon Jeong
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea.
| |
Collapse
|