1
|
Mudgal S, Goyal N, Kasi M, Saginela R, Singhal A, Nandi S, Mahmud AKMF, Muniyappa K, Sinha KM. Cyclic di-AMP regulates genome stability and drug resistance in Mycobacterium through RecA-dependent and RecA-independent recombination. PNAS NEXUS 2024; 3:pgae555. [PMID: 39697181 PMCID: PMC11653572 DOI: 10.1093/pnasnexus/pgae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
In Escherichia coli, RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability. Along these lines, we previously demonstrated that the second messenger cyclic di-AMP (c-di-AMP) binds to mycobacterial RecA proteins, but not to E. coli RecA, and inhibits its DNA strand exchange activity in vitro via the disassembly of RecA nucleoprotein filaments. Herein, we demonstrate that Mycobacterium smegmatis ΔdisA cells, which lack c-di-AMP, exhibit increased DNA recombination, higher frequency of mutation, and gene duplications during RecA-dependent and RecA-independent DSB repair. We also found that c-di-AMP regulates SOS response by inhibiting RecA-mediated self-cleavage of LexA repressor and its absence enhances drug resistance in M. smegmatis ΔdisA cells. Together, our results uncover a role of c-di-AMP in the maintenance of genomic stability through modulation of DSB repair in M. smegmatis.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Nisha Goyal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Manikandan Kasi
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Saginela
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Anusha Singhal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Soumyadeep Nandi
- Department of Plant Physiology, Umeå Plant Science Centre, Umea University, Umeå 901 87, Sweden
| | - A K M Firoj Mahmud
- CLINTEC, Karolinska Institutet, Alfred Nobels alle 8, 141 52 Huddinge, Stockholm, Sweden
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| |
Collapse
|
2
|
Myers TM, Ingle S, Weiss CA, Sondermann H, Lee V, Bechhofer D, Winkler W. Bacillus subtilis NrnB is expressed during sporulation and acts as a unique 3'-5' exonuclease. Nucleic Acids Res 2023; 51:9804-9820. [PMID: 37650646 PMCID: PMC10570053 DOI: 10.1093/nar/gkad662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
All cells employ a combination of endo- and exoribonucleases to degrade long RNA polymers to fragments 2-5 nucleotides in length. These short RNA fragments are processed to monoribonucleotides by nanoRNases. Genetic depletion of nanoRNases has been shown to increase abundance of short RNAs. This deleteriously affects viability, virulence, and fitness, indicating that short RNAs are a metabolic burden. Previously, we provided evidence that NrnA is the housekeeping nanoRNase for Bacillus subtilis. Herein, we investigate the biological and biochemical functions of the evolutionarily related protein, B. subtilis NrnB (NrnBBs). These experiments show that NrnB is surprisingly different from NrnA. While NrnA acts at the 5' terminus of RNA substrates, NrnB acts at the 3' terminus. Additionally, NrnA is expressed constitutively under standard growth conditions, yet NrnB is selectively expressed during endospore formation. Furthermore, NrnA processes only short RNAs, while NrnB unexpectedly processes both short RNAs and longer RNAs. Indeed, inducible expression of NrnB can even complement the loss of the known global 3'-5' exoribonucleases, indicating that it acts as a general exonuclease. Together, these data demonstrate that NrnB proteins, which are widely found in Firmicutes, Epsilonproteobacteria and Archaea, are fundamentally different than NrnA proteins and may be used for specialized purposes.
Collapse
Affiliation(s)
- Tanner M Myers
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, MD 20742, USA
| | - Shakti Ingle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cordelia A Weiss
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - David H Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wade C Winkler
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, MD 20742, USA
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Chaudhary V, Pal AK, Singla M, Ghosh A. Elucidating the role of c-di-AMP in Mycobacterium smegmatis: Phenotypic characterization and functional analysis. Heliyon 2023; 9:e15686. [PMID: 37305508 PMCID: PMC10256829 DOI: 10.1016/j.heliyon.2023.e15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Cyclic-di-AMP (c-di-AMP) is an important secondary messenger molecule that plays a critical role in monitoring several important cellular processes, especially in several Gram-positive bacteria. In this study, we seek to unravel the physiological significance of the molecule c-di-AMP in Mycobacterium smegmatis under different conditions, using strains with altered c-di-AMP levels: c-di-AMP null mutant (ΔdisA) and a c-di-AMP over-expression mutant (Δpde). Our thorough analysis of the mutants revealed that the intracellular concentration of c-di-AMP could determine many basic phenotypes such as colony architecture, cell shape, cell size, membrane permeability etc. Additionally, it was shown to play a significant role in multiple stress adaptation pathways in the case of different DNA and membrane stresses. Our study also revealed how the biofilm phenotypes of M. smegmatis cells are altered with high intracellular c-di-AMP concentration. Next, we checked how c-di-AMP contributes to antibiotic resistance or susceptibility characteristics of M. smegmatis, which was followed by a detailed transcriptome profile analysis to reveal key genes and pathways such as translation, arginine biosynthesis, cell wall and plasma membrane are regulated by c-di-AMP in mycobacteria.
Collapse
|
4
|
Gautam S, Mahapa A, Yeramala L, Gandhi A, Krishnan S, Kutti R. V, Chatterji D. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: Function analysis. Protein Sci 2023; 32:e4568. [PMID: 36660887 PMCID: PMC9926474 DOI: 10.1002/pro.4568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Cyclic-di-nucleotide-based secondary messengers regulate various physiological functions, including stress responses in bacteria. Cyclic diadenosine monophosphate (c-di-AMP) has recently emerged as a crucial second messenger with implications in processes including osmoregulation, antibiotic resistance, biofilm formation, virulence, DNA repair, ion homeostasis, and sporulation, and has potential therapeutic applications. The contrasting activities of the enzymes diadenylate cyclase (DAC) and phosphodiesterase (PDE) determine the equilibrium levels of c-di-AMP. Although c-di-AMP is suspected of playing an essential role in the pathophysiology of bacterial infections and in regulating host-pathogen interactions, the mechanisms of its regulation remain relatively unexplored in mycobacteria. In this report, we biochemically and structurally characterize the c-di-AMP synthase (MsDisA) from Mycobacterium smegmatis. The enzyme activity is regulated by pH and substrate concentration; conditions of significance in the homoeostasis of c-di-AMP levels. Substrate binding stimulates conformational changes in the protein, and pApA and ppApA are synthetic intermediates detectable when enzyme efficiency is low. Unlike the orthologous Bacillus subtilis enzyme, MsDisA does not bind to, and its activity is not influenced in the presence of DNA. Furthermore, we have determined the cryo-EM structure of MsDisA, revealing asymmetry in its structure in contrast to the symmetric crystal structure of Thermotoga maritima DisA. We also demonstrate that the N-terminal minimal region alone is sufficient and essential for oligomerization and catalytic activity. Our data shed light on the regulation of mycobacterial DisA and possible future directions to pursue.
Collapse
Affiliation(s)
- Sudhanshu Gautam
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Avisek Mahapa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Lahari Yeramala
- National Center for Biological SciencesTata Institute of Fundamental Research, GKVK PostBengaluruIndia
| | - Apoorv Gandhi
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Sushma Krishnan
- Electron Microscopy Facility, Division of Biological SciencesIndian Institute of ScienceBangaloreIndia
| | - Vinothkumar Kutti R.
- National Center for Biological SciencesTata Institute of Fundamental Research, GKVK PostBengaluruIndia
| | | |
Collapse
|
5
|
Reich SJ, Goldbeck O, Lkhaasuren T, Weixler D, Weiß T, Eikmanns BJ. C-di-AMP Is a Second Messenger in Corynebacterium glutamicum That Regulates Expression of a Cell Wall-Related Peptidase via a Riboswitch. Microorganisms 2023; 11:296. [PMID: 36838266 PMCID: PMC9960051 DOI: 10.3390/microorganisms11020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger discovered in Bacillus subtilis and involved in potassium homeostasis, cell wall maintenance and/or DNA stress response. As the role of c-di-AMP has been mostly studied in Firmicutes, we sought to increase the understanding of its role in Actinobacteria, namely in Corynebacterium glutamicum. This organism is a well-known industrial production host and a model organism for pathogens, such as C. diphtheriae or Mycobacterium tuberculosis. Here, we identify and analyze the minimal set of two C. glutamicum enzymes, the diadenylate cyclase DisA and the phosphodiesterase PdeA, responsible for c-di-AMP metabolism. DisA synthesizes c-di-AMP from two molecules of ATP, whereas PdeA degrades c-di-AMP, as well as the linear degradation intermediate phosphoadenylyl-(3'→5')-adenosine (pApA) to two molecules of AMP. Here, we show that a ydaO/kimA-type c-di-AMP-dependent riboswitch controls the expression of the strictly regulated cell wall peptidase gene nlpC in C. glutamicum. In contrast to previously described members of the ydaO/kimA-type riboswitches, our results suggest that the C. glutamicum nlpC riboswitch likely affects the translation instead of the transcription of its downstream gene. Although strongly regulated by different mechanisms, we show that the absence of nlpC, the first known regulatory target of c-di-AMP in C. glutamicum, is not detrimental for this organism under the tested conditions.
Collapse
Affiliation(s)
- Sebastian J. Reich
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | | | - Dominik Weixler
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Tamara Weiß
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
6
|
Weiss CA, Myers TM, Wu CH, Jenkins C, Sondermann H, Lee V, Winkler WC. NrnA is a 5'-3' exonuclease that processes short RNA substrates in vivo and in vitro. Nucleic Acids Res 2022; 50:12369-12388. [PMID: 36478094 PMCID: PMC9757072 DOI: 10.1093/nar/gkac1091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial RNases process RNAs until only short oligomers (2-5 nucleotides) remain, which are then processed by one or more specialized enzymes until only nucleoside monophosphates remain. Oligoribonuclease (Orn) is an essential enzyme that acts in this capacity. However, many bacteria do not encode for Orn and instead encode for NanoRNase A (NrnA). Yet, the catalytic mechanism, cellular roles and physiologically relevant substrates have not been fully resolved for NrnA proteins. We herein utilized a common set of reaction assays to directly compare substrate preferences exhibited by NrnA-like proteins from Bacillus subtilis, Enterococcus faecalis, Streptococcus pyogenes and Mycobacterium tuberculosis. While the M. tuberculosis protein specifically cleaved cyclic di-adenosine monophosphate, the B. subtilis, E. faecalis and S. pyogenes NrnA-like proteins uniformly exhibited striking preference for short RNAs between 2-4 nucleotides in length, all of which were processed from their 5' terminus. Correspondingly, deletion of B. subtilis nrnA led to accumulation of RNAs between 2 and 4 nucleotides in length in cellular extracts. Together, these data suggest that many Firmicutes NrnA-like proteins are likely to resemble B. subtilis NrnA to act as a housekeeping enzyme for processing of RNAs between 2 and 4 nucleotides in length.
Collapse
Affiliation(s)
| | | | - Chih Hao Wu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Conor Jenkins
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Holger Sondermann
- CSSB – Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany,Christian-Albrechts-Universität, 24118 Kiel, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- To whom correspondence should be addressed. Tel: +1 301 405 7780;
| |
Collapse
|
7
|
Pal AK, Ghosh A. c-di-AMP signaling plays important role in determining antibiotic tolerance phenotypes of Mycobacterium smegmatis. Sci Rep 2022; 12:13127. [PMID: 35907936 PMCID: PMC9338955 DOI: 10.1038/s41598-022-17051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we probe the role of secondary messenger c-di-AMP in drug tolerance, which includes both persister and resistant mutant characterization of Mycobacterium smegmatis. Specifically, with the use of c-di-AMP null and overproducing mutants, we showed how c-di-AMP plays a significant role in resistance mutagenesis against antibiotics with different mechanisms of action. We elucidated the specific molecular mechanism linking the elevated intracellular c-di-AMP level and high mutant generation and highlighted the significance of non-homology-based DNA repair. Further investigation enabled us to identify the unique mutational landscape of target and non-target mutation categories linked to intracellular c-di-AMP levels. Overall fitness cost of unique target mutations was estimated in different strain backgrounds, and then we showed the critical role of c-di-AMP in driving epistatic interactions between resistance genes, resulting in the evolution of multi-drug tolerance. Finally, we identified the role of c-di-AMP in persister cells regrowth and mutant enrichment upon cessation of antibiotic treatment.
Collapse
Affiliation(s)
- Aditya Kumar Pal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
Cabezas A, Costas MJ, Canales J, Pinto RM, Rodrigues JR, Ribeiro JM, Cameselle JC. Enzyme Characterization of Pro-virulent SntA, a Cell Wall-Anchored Protein of Streptococcus suis, With Phosphodiesterase Activity on cyclic-di-AMP at a Level Suited to Limit the Innate Immune System. Front Microbiol 2022; 13:843068. [PMID: 35391727 PMCID: PMC8981391 DOI: 10.3389/fmicb.2022.843068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus suis and Streptococcus agalactiae evade the innate immune system of the infected host by mechanisms mediated by cell wall-anchored proteins: SntA and CdnP, respectively. The former has been reported to interfere with complement responses, and the latter dampens STING-dependent type-I interferon (IFN) response by hydrolysis of bacterial cyclic-di-AMP (c-di-AMP). Both proteins are homologous but, while CdnP has been studied as a phosphohydrolase, the enzyme activities of SntA have not been investigated. The core structure of SntA was expressed in Escherichia coli as a GST-tagged protein that, after affinity purification, was characterized as phosphohydrolase with a large series of substrates. This included 3′-nucleotides, 2′,3′-cyclic nucleotides, cyclic and linear dinucleotides, and a variety of phosphoanhydride or phosphodiester compounds, most of them previously considered as substrates of E. coli CpdB, a periplasmic protein homologous to SntA and CdnP. Catalytic efficiency was determined for each SntA substrate, either by dividing parameters kcat/KM obtained from saturation curves or directly from initial rates at low substrate concentrations when saturation curves could not be obtained. SntA is concluded to act as phosphohydrolase on two groups of substrates with efficiencies higher or lower than ≈ 105 M–1 s–1 (average value of the enzyme universe). The group with kcat/KM ≥ 105 M–1 s–1 (good substrates) includes 3′-nucleotides, 2′,3′-cyclic nucleotides, and linear and cyclic dinucleotides (notably c-di-AMP). Compounds showing efficiencies <104 M–1 s–1 are considered poor substrates. Compared with CpdB, SntA is more efficient with its good substrates and less efficient with its poor substrates; therefore, the specificity of SntA is more restrictive. The efficiency of the SntA activity on c-di-AMP is comparable with the activity of CdnP that dampens type-I IFN response, suggesting that this virulence mechanism is also functional in S. suis. SntA modeling revealed that Y530 and Y633 form a sandwich with the nitrogen base of nucleotidic ligands in the substrate-binding site. Mutants Y530A-SntA, Y633A-SntA, and Y530A+Y633A-SntA were obtained and kinetically characterized. For orientation toward the catalytic site, one tyrosine is enough, although this may depend on the substrate being attacked. On the other hand, both tyrosines are required for the efficient binding of good SntA substrates.
Collapse
Affiliation(s)
- Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Joaquim Rui Rodrigues
- Laboratório Associado Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
9
|
Mudgal S, Manikandan K, Mukherjee A, Krishnan A, Sinha KM. Cyclic di-AMP: Small molecule with big roles in bacteria. Microb Pathog 2021; 161:105264. [PMID: 34715302 DOI: 10.1016/j.micpath.2021.105264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023]
Abstract
Cyclic dinucleotides are second messengers that are present in all the three domains of life, bacteria, archaea, and eukaryotes. These dinucleotides have important physiological and pathophysiological roles in bacteria. Cyclic di-AMP (cdA) is one of the recently discovered cyclic dinucleotides present predominantly in gram-positive bacteria. cdA is synthesized through diadenylate cyclase (DAC) activity from ATP in a two-step process and hydrolyzed to linear dinucleotide pApA (and to 5' AMP in certain cases) by specific phosphodiesterases. cdA regulates various physiological processes like K+ transport and osmotic balance, DNA repair, cell wall homeostasis, drug resistance, central metabolism either by binding directly to the target protein or regulating its expression. It also participates in host-pathogen interaction by binding to host immune receptors ERAdP, RECON, and STING.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Kasi Manikandan
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Ahana Mukherjee
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India.
| | | |
Collapse
|
10
|
López-Villamizar I, Cabezas A, Pinto RM, Canales J, Ribeiro JM, Rodrigues JR, Costas MJ, Cameselle JC. Molecular Dissection of Escherichia coli CpdB: Roles of the N Domain in Catalysis and Phosphate Inhibition, and of the C Domain in Substrate Specificity and Adenosine Inhibition. Int J Mol Sci 2021; 22:ijms22041977. [PMID: 33671286 PMCID: PMC7922932 DOI: 10.3390/ijms22041977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
CpdB is a 3′-nucleotidase/2′3′-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3′,5′-cyclic diadenosine monophosphate) and c-di-GMP (3′,5′-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-β response in infected hosts. The cpdB gene of Gram-negative and its homologs of gram-positive bacteria are virulence factors. Their protein products are extracytoplasmic enzymes (either periplasmic or cell–wall anchored) and can hydrolyze extracellular cyclic dinucleotides, thus reducing the innate immune responses of infected hosts. This makes CpdB(-like) enzymes potential targets for novel therapeutic strategies in infectious diseases, bringing about the necessity to gain insight into the molecular bases of their catalytic behavior. We have dissected the two-domain structure of Escherichia coli CpdB to study the role of its N-terminal and C-terminal domains (CpdB_Ndom and CpdB_Cdom). The specificity, kinetics and inhibitor sensitivity of point mutants of CpdB, and truncated proteins CpdB_Ndom and CpdB_Cdom were investigated. CpdB_Ndom contains the catalytic site, is inhibited by phosphate but not by adenosine, while CpdB_Cdom is inactive but contains a substrate-binding site that determines substrate specificity and adenosine inhibition of CpdB. Among CpdB substrates, 3′-AMP, cyclic dinucleotides and linear dinucleotides are strongly dependent on the CpdB_Cdom binding site for activity, as the isolated CpdB_Ndom showed much-diminished activity on them. In contrast, 2′,3′-cyclic mononucleotides and bis-4-nitrophenylphosphate were actively hydrolyzed by CpdB_Ndom, indicating that they are rather independent of the CpdB_Cdom binding site.
Collapse
Affiliation(s)
- Iralis López-Villamizar
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - Joaquim Rui Rodrigues
- Laboratório Associado LSRE-LCM, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, 2411-901 Leiria, Portugal;
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
- Correspondence: ; Tel.: +34-924-289-470
| |
Collapse
|
11
|
The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. J Bacteriol 2020; 203:JB.00348-20. [PMID: 32839175 DOI: 10.1128/jb.00348-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria respond to changes in environmental conditions through adaptation to external cues. Frequently, bacteria employ nucleotide signaling molecules to mediate a specific, rapid response. Cyclic di-AMP (c-di-AMP) was recently discovered to be a bacterial second messenger that is essential for viability in many species. In this review, we highlight recent work that has described the roles of c-di-AMP in bacterial responses to various stress conditions. These studies show that depending on the lifestyle and environmental niche of the bacterial species, the c-di-AMP signaling network results in diverse outcomes, such as regulating osmolyte transport, controlling plant attachment, or providing a checkpoint for spore formation. c-di-AMP achieves this signaling specificity through expression of different classes of synthesis and catabolic enzymes as well as receptor proteins and RNAs, which will be summarized.
Collapse
|
12
|
Zaver SA, Pollock AJ, Boradia VM, Woodward JJ. A Luminescence-Based Coupled Enzyme Assay Enables High-Throughput Quantification of the Bacterial Second Messenger 3'3'-Cyclic-Di-AMP. Chembiochem 2020; 22:1030-1041. [PMID: 33142009 DOI: 10.1002/cbic.202000667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/02/2020] [Indexed: 11/12/2022]
Abstract
Cyclic dinucleotide signaling systems, which are found ubiquitously throughout nature, allow organisms to rapidly and dynamically sense and respond to alterations in their environments. In recent years, the second messenger, cyclic di-(3',5')-adenosine monophosphate (c-di-AMP), has been identified as an essential signaling molecule in a diverse array of bacterial genera. We and others have shown that defects in c-di-AMP homeostasis result in severe physiological defects and virulence attenuation in many bacterial species. Despite significant advancements in the field, there is still a major gap in the understanding of the environmental and cellular factors that influence c-di-AMP dynamics due to a lack of tools to sensitively and rapidly monitor changes in c-di-AMP levels. To address this limitation, we describe here the development of a luciferase-based coupled enzyme assay that leverages the cyclic nucleotide phosphodiesterase, CnpB, for the sensitive and high-throughput quantification of 3'3'-c-di-AMP. We also demonstrate the utility of this approach for the quantification of the cyclic oligonucleotide-based anti-phage signaling system (CBASS) effector, 3'3'-cGAMP. These findings establish CDA-Luc as a more affordable and sensitive alternative to conventional c-di-AMP detection tools with broad utility for the study of bacterial cyclic dinucleotide physiology.
Collapse
Affiliation(s)
- Shivam A Zaver
- Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
| | - Alex J Pollock
- Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
| | | | - Joshua J Woodward
- Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
| |
Collapse
|
13
|
Rørvik GH, Liskiewicz KA, Kryuchkov F, Naemi AO, Aasheim HC, Petersen FC, Küntziger TM, Simm R. Cyclic Di-adenosine Monophosphate Regulates Metabolism and Growth in the Oral Commensal Streptococcus mitis. Microorganisms 2020; 8:microorganisms8091269. [PMID: 32825526 PMCID: PMC7570391 DOI: 10.3390/microorganisms8091269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the c-di-AMP concentration in the oral commensal and opportunistic pathogen Streptococcusmitis (S. mitis). We identified three known types of c-di-AMP turnover proteins in the genome of S. mitis CCUG31611: a CdaA-type diadenylate cyclase as well as GdpP-, and DhhP-type phosphodiesterases. Biochemical analyses of purified proteins demonstrated that CdaA synthesizes c-di-AMP from ATP whereas both phosphodiesterases can utilize c-di-AMP as well as the intermediary metabolite of c-di-AMP hydrolysis 5'-phosphadenylyl-adenosine (pApA) as substrate to generate AMP, albeit at different catalytic efficiency. Using deletion mutants of each of the genes encoding c-di-AMP turnover proteins, we show by high resolution MS/MS that the intracellular concentration of c-di-AMP is increased in deletion mutants of the phosphodiesterases and non-detectable in the cdaA-mutant. We also detected pApA in mutants of the DhhP-type phosphodiesterase. Low and high levels of c-di-AMP were associated with longer and shorter chains of S. mitis, respectively indicating a role in regulation of cell division. The deletion mutant of the DhhP-type phosphodiesterase displayed slow growth and reduced rate of glucose metabolism.
Collapse
Affiliation(s)
- Gro Herredsvela Rørvik
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Krystyna Anna Liskiewicz
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Fedor Kryuchkov
- Norwegian Veterinary Institute, Pb 750 Sentrum, 0106 Oslo, Norway;
| | - Ali-Oddin Naemi
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Hans-Christian Aasheim
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Fernanda C. Petersen
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Thomas M. Küntziger
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
- Correspondence:
| |
Collapse
|
14
|
Safi H, Lingaraju S, Ma S, Husain S, Hoque M, Soteropoulos P, Rustad T, Sherman DR, Alland D. Rapidly Correcting Frameshift Mutations in the Mycobacterium tuberculosis orn Gene Produce Reversible Ethambutol Resistance and Small-Colony-Variant Morphology. Antimicrob Agents Chemother 2020; 64:e00213-20. [PMID: 32571828 PMCID: PMC7449195 DOI: 10.1128/aac.00213-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022] Open
Abstract
We have identified a previously unknown mechanism of reversible high-level ethambutol (EMB) resistance in Mycobacterium tuberculosis that is caused by a reversible frameshift mutation in the M. tuberculosisorn gene. A frameshift mutation in orn produces the small-colony-variant (SCV) phenotype, but this mutation does not change the MICs of any drug for wild-type M. tuberculosis However, the same orn mutation in a low-level EMB-resistant double embB-aftA mutant (MIC = 8 μg/ml) produces an SCV with an EMB MIC of 32 μg/ml. Reversible resistance is indistinguishable from a drug-persistent phenotype, because further culture of these orn-embB-aftA SCV mutants results in rapid reversion of the orn frameshifts, reestablishing the correct orn open reading frame, returning the culture to normal colony size, and reversing the EMB MIC back to that (8 μg/ml) of the parental strain. Transcriptomic analysis of orn-embB-aftA mutants compared to wild-type M. tuberculosis identified a 27-fold relative increase in the expression of embC, which is a cellular target for EMB. Expression of embC in orn-embB-aftA mutants was also increased 5-fold compared to that in the parental embB-aftA mutant, whereas large-colony orn frameshift revertants of the orn-embB-aftA mutant had levels of embC expression similar to that of the parental embB-aftA strain. Reversible frameshift mutants may contribute to a reversible form of microbiological drug resistance in human tuberculosis.
Collapse
Affiliation(s)
- Hassan Safi
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Subramanya Lingaraju
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Seema Husain
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Mainul Hoque
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Patricia Soteropoulos
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Tige Rustad
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David Alland
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
15
|
He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020; 48:2807-2829. [PMID: 32095817 DOI: 10.1093/nar/gkaa112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclic diadenylate (c-di-AMP) is a widespread second messenger in bacteria and archaea that is involved in the maintenance of osmotic pressure, response to DNA damage, and control of central metabolism, biofilm formation, acid stress resistance, and other functions. The primary importance of c-di AMP stems from its essentiality for many bacteria under standard growth conditions and the ability of several eukaryotic proteins to sense its presence in the cell cytoplasm and trigger an immune response by the host cells. We review here the tertiary structures of the domains that regulate c-di-AMP synthesis and signaling, and the mechanisms of c-di-AMP binding, including the principal conformations of c-di-AMP, observed in various crystal structures. We discuss how these c-di-AMP molecules are bound to the protein and riboswitch receptors and what kinds of interactions account for the specific high-affinity binding of the c-di-AMP ligand. We describe seven kinds of non-covalent-π interactions between c-di-AMP and its receptor proteins, including π-π, C-H-π, cation-π, polar-π, hydrophobic-π, anion-π and the lone pair-π interactions. We also compare the mechanisms of c-di-AMP and c-di-GMP binding by the respective receptors that allow these two cyclic dinucleotides to control very different biological functions.
Collapse
Affiliation(s)
- Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China.,Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
16
|
He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020. [PMID: 32095817 DOI: 10.1093/nar/gkaa112"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclic diadenylate (c-di-AMP) is a widespread second messenger in bacteria and archaea that is involved in the maintenance of osmotic pressure, response to DNA damage, and control of central metabolism, biofilm formation, acid stress resistance, and other functions. The primary importance of c-di AMP stems from its essentiality for many bacteria under standard growth conditions and the ability of several eukaryotic proteins to sense its presence in the cell cytoplasm and trigger an immune response by the host cells. We review here the tertiary structures of the domains that regulate c-di-AMP synthesis and signaling, and the mechanisms of c-di-AMP binding, including the principal conformations of c-di-AMP, observed in various crystal structures. We discuss how these c-di-AMP molecules are bound to the protein and riboswitch receptors and what kinds of interactions account for the specific high-affinity binding of the c-di-AMP ligand. We describe seven kinds of non-covalent-π interactions between c-di-AMP and its receptor proteins, including π-π, C-H-π, cation-π, polar-π, hydrophobic-π, anion-π and the lone pair-π interactions. We also compare the mechanisms of c-di-AMP and c-di-GMP binding by the respective receptors that allow these two cyclic dinucleotides to control very different biological functions.
Collapse
Affiliation(s)
- Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China.,Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
17
|
Heidemann JL, Neumann P, Dickmanns A, Ficner R. Crystal structures of the c-di-AMP-synthesizing enzyme CdaA. J Biol Chem 2019; 294:10463-10470. [PMID: 31118276 DOI: 10.1074/jbc.ra119.009246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 11/06/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is the only second messenger known to be essential for bacterial growth. It has been found mainly in Gram-positive bacteria, including pathogenic bacteria like Listeria monocytogenes CdaA is the sole diadenylate cyclase in L. monocytogenes, making this enzyme an attractive target for the development of novel antibiotic compounds. Here we report crystal structures of CdaA from L. monocytogenes in the apo state, in the post-catalytic state with bound c-di-AMP and catalytic Co2+ ions, as well as in a complex with AMP. These structures reveal the flexibility of a tyrosine side chain involved in locking the adenine ring after ATP binding. The essential role of this tyrosine was confirmed by mutation to Ala, leading to drastic loss of enzymatic activity.
Collapse
Affiliation(s)
- Jana L Heidemann
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Achim Dickmanns
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Ralf Ficner
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
18
|
The Second Messenger c-di-AMP Regulates Diverse Cellular Pathways Involved in Stress Response, Biofilm Formation, Cell Wall Homeostasis, SpeB Expression, and Virulence in Streptococcus pyogenes. Infect Immun 2019; 87:IAI.00147-19. [PMID: 30936159 DOI: 10.1128/iai.00147-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. The cellular level of c-di-AMP in Streptococcus pyogenes is predicted to be controlled by the synthase DacA and two putative phosphodiesterases, GdpP and Pde2. To investigate the role of c-di-AMP in S. pyogenes, we generated null mutants in each of these proteins by gene deletion. Unlike those in other Gram-positive pathogens such as Staphylococcus aureus and Listeria monocytogenes, DacA in S. pyogenes was not essential for growth in rich media. The DacA null mutant presented a growth defect that manifested through an increased lag time, produced no detectable biofilm, and displayed increased susceptibility toward environmental stressors such as high salt, low pH, reactive oxygen radicals, and cell wall-targeting antibiotics, suggesting that c-di-AMP plays significant roles in crucial cellular processes involved in stress management. The Pde2 null mutant exhibited a lower growth rate and increased biofilm formation, and interestingly, these phenotypes were distinct from those of the null mutant of GdpP, suggesting that Pde2 and GdpP play distinctive roles in c-di-AMP signaling. DacA and Pde2 were critical to the production of the virulence factor SpeB and to the overall virulence of S. pyogenes, as both DacA and Pde2 null mutants were highly attenuated in a mouse model of subcutaneous infection. Collectively, these results show that c-di-AMP is an important global regulator and is required for a proper response to stress and for virulence in S. pyogenes, suggesting that its signaling pathway could be an attractive antivirulence drug target against S. pyogenes infections.
Collapse
|
19
|
Braun F, Thomalla L, van der Does C, Quax TEF, Allers T, Kaever V, Albers SV. Cyclic nucleotides in archaea: Cyclic di-AMP in the archaeon Haloferax volcanii and its putative role. Microbiologyopen 2019; 8:e00829. [PMID: 30884174 PMCID: PMC6741144 DOI: 10.1002/mbo3.829] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
The role of cyclic nucleotides as second messengers for intracellular signal transduction has been well described in bacteria. One recently discovered bacterial second messenger is cyclic di‐adenylate monophosphate (c‐di‐AMP), which has been demonstrated to be essential in bacteria. Compared to bacteria, significantly less is known about second messengers in archaea. This study presents the first evidence of in vivo presence of c‐di‐AMP in an archaeon. The model organism Haloferax volcanii was demonstrated to produce c‐di‐AMP. Its genome encodes one diadenylate cyclase (DacZ) which was shown to produce c‐di‐AMP in vitro. Similar to bacteria, the dacZ gene is essential and homologous overexpression of DacZ leads to cell death, suggesting the need for tight regulation of c‐di‐AMP levels. Such tight regulation often indicates the control of important regulatory processes. A central target of c‐di‐AMP signaling in bacteria is cellular osmohomeostasis. The results presented here suggest a comparable function in H. volcanii. A strain with decreased c‐di‐AMP levels exhibited an increased cell area in hypo‐salt medium, implying impaired osmoregulation. In summary, this study expands the field of research on c‐di‐AMP and its physiological function to archaea and indicates that osmoregulation is likely to be a common function of c‐di‐AMP in bacteria and archaea.
Collapse
Affiliation(s)
- Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Thomalla
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Tessa E F Quax
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Allers
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Johnson RM, McDonough KA. Cyclic nucleotide signaling in Mycobacterium tuberculosis: an expanding repertoire. Pathog Dis 2019; 76:4995197. [PMID: 29905867 DOI: 10.1093/femspd/fty048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful microbial pathogens, and currently infects over a quarter of the world's population. Mtb's success depends on the ability of the bacterium to sense and respond to dynamic and hostile environments within the host, including the ability to regulate bacterial metabolism and interactions with the host immune system. One of the ways Mtb senses and responds to conditions it faces during infection is through the concerted action of multiple cyclic nucleotide signaling pathways. This review will describe how Mtb uses cyclic AMP, cyclic di-AMP and cyclic di-GMP to regulate important physiological processes, and how these signaling pathways can be exploited for the development of novel thereapeutics and vaccines.
Collapse
Affiliation(s)
- Richard M Johnson
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201-2002, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| |
Collapse
|
21
|
Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. J Bacteriol 2018; 201:JB.00462-18. [PMID: 30224435 DOI: 10.1128/jb.00462-18] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP is a second-messenger nucleotide that is produced by many bacteria and some archaea. Recent work has shown that c-di-AMP is unique among the signaling nucleotides, as this molecule is in many bacteria both essential on one hand and toxic upon accumulation on the other. Moreover, in bacteria, like Bacillus subtilis, c-di-AMP controls a biological process, potassium homeostasis, by binding both potassium transporters and riboswitch molecules in the mRNAs that encode the potassium transporters. In addition to the control of potassium homeostasis, c-di-AMP has been implicated in many cellular activities, including DNA repair, cell wall homeostasis, osmotic adaptation, biofilm formation, central metabolism, and virulence. c-di-AMP is synthesized and degraded by diadenylate cyclases and phosphodiesterases, respectively. In the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. The phosphodiesterases have a catalytic core that consists either of a DHH/DHHA1 or of an HD domain. Recent findings on the occurrence, domain organization, activity control, and structural features of diadenylate cyclases and phosphodiesterases are discussed in this review.
Collapse
|
22
|
Zhang Y, Yang J, Bai G. Cyclic di-AMP-mediated interaction between Mycobacterium tuberculosis ΔcnpB and macrophages implicates a novel strategy for improving BCG vaccination. Pathog Dis 2018; 76:4831477. [PMID: 29394352 DOI: 10.1093/femspd/fty008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/30/2018] [Indexed: 11/14/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) has been shown to play an important role in bacterial physiology and pathogen-host interactions. We previously reported that deletion of the sole c-di-AMP phosphodiesterase-encoding gene (cnpB) in Mycobacterium tuberculosis (Mtb) led to significant virulence attenuation. In this study, we found that ΔcnpB of M. bovisbacillus Calmette-Guerin (BCG) was unable to secrete c-di-AMP, which differs from Mtb ΔcnpB. We infected bone marrow-derived macrophages (BMDMs) with c-di-AMP-associated mutants generated from both Mtb and BCG. Our results showed that upon infection with Mtb ΔcnpB, BMDMs of wildtype mice secreted a large amount of interferon-β (IFN-β) post-infection similarly as we reported previously. In contrast, the response was less pronounced with BMDMs isolated from cGAS-/- mice and was nearly abolished with BMDMs prepared from STING-/- mice. Deletion of the region of difference 1 (RD1) locus in Mtb ΔcnpB did not alter the c-di-AMP secretion of ΔcnpB but eliminated the IFN-β production in the infected cells. In contrast, neither BCG ΔcnpB nor a recombinant BCG ΔcnpB with a pRD1 cosmid induced a type I interferon response. Interestingly, multiple studies have demonstrated that type I IFN enhances BCG's immunity. Thus, amending BCG based on our findings might improve BCG vaccination.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Immunology and Microbial Disease, MC-151, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| | - Jun Yang
- Department of Immunology and Microbial Disease, MC-151, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, MC-151, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| |
Collapse
|
23
|
Manikandan K, Prasad D, Srivastava A, Singh N, Dabeer S, Krishnan A, Muniyappa K, Sinha KM. The second messenger cyclic di-AMP negatively regulates the expression of Mycobacterium smegmatis recA and attenuates DNA strand exchange through binding to the C-terminal motif of mycobacterial RecA proteins. Mol Microbiol 2018; 109:600-614. [PMID: 29873124 DOI: 10.1111/mmi.13991] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
Cyclic di-GMP and cyclic di-AMP are second messengers produced by a wide variety of bacteria. They influence bacterial cell survival, biofilm formation, virulence and bacteria-host interactions. However, many of their cellular targets and biological effects are yet to be determined. A chemical proteomics approach revealed that Mycobacterium smegmatis RecA (MsRecA) possesses a high-affinity cyclic di-AMP binding activity. We further demonstrate that both cyclic di-AMP and cyclic di-GMP bind specifically to the C-terminal motif of MsRecA and Mycobacterium tuberculosis RecA (MtRecA). Escherichia coli RecA (EcRecA) was devoid of cyclic di-AMP binding but have cyclic di-GMP binding activity. Notably, cyclic di-AMP attenuates the DNA strand exchange promoted by MsRecA as well as MtRecA through the disassembly of RecA nucleoprotein filaments. However, the structure and DNA strand exchange activity of EcRecA nucleoprotein filaments remain largely unaffected. Furthermore, M. smegmatis ΔdisA cells were found to have undetectable RecA levels due to the translational repression of recA mRNA. Consequently, the ΔdisA mutant exhibited enhanced sensitivity to DNA-damaging agents. Altogether, this study points out the importance of sequence diversity among recA genes, the role(s) of cyclic di-AMP and reveals a new mode of negative regulation of recA gene expression, DNA repair and homologous recombination in mycobacteria.
Collapse
Affiliation(s)
- Kasi Manikandan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ankita Srivastava
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Nirpendra Singh
- Central Instrument Facility, University of Delhi South Campus, New Delhi, India
| | - Sadaf Dabeer
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Anuja Krishnan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Krishna Murari Sinha
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| |
Collapse
|
24
|
Li L. Host-Pathogen interactions: Nucleotide circles of life and death. Nat Chem Biol 2018; 13:130-131. [PMID: 28103224 DOI: 10.1038/nchembio.2289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, California, USA
| |
Collapse
|
25
|
Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase. Biochem J 2018; 475:191-205. [PMID: 29203646 DOI: 10.1042/bcj20170739] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
The Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterases (PDEs) that catalyze degradation of cyclic di-adenosine monophosphate (c-di-AMP) could be subdivided into two subfamilies based on the final product [5'-phosphadenylyl-adenosine (5'-pApA) or AMP]. In a previous study, we revealed that Rv2837c, a stand-alone DHH/DHHA1 PDE, employs a 5'-pApA internal flipping mechanism to produce AMPs. However, why the membrane-bound DHH/DHHA1 PDE can only degrade c-di-AMP to 5'-pApA remains obscure. Here, we report the crystal structure of the DHH/DHHA1 domain of GdpP (GdpP-C), and structures in complex with c-di-AMP, cyclic di-guanosine monophosphate (c-di-GMP), and 5'-pApA. Structural analysis reveals that GdpP-C binds nucleotide substrates quite differently from how Rv2837c does in terms of substrate-binding position. Accordingly, the nucleotide-binding site of the DHH/DHHA1 PDEs is organized into three (C, G, and R) subsites. For GdpP-C, in the C and G sites c-di-AMP binds and degrades into 5'-pApA, and its G site determines nucleotide specificity. To further degrade into AMPs, 5'-pApA must slide into the C and R sites for flipping and hydrolysis as in Rv2837c. Subsequent mutagenesis and enzymatic studies of GdpP-C and Rv2837c uncover the complete flipping process and reveal a unified catalytic mechanism for members of both DHH/DHHA1 PDE subfamilies.
Collapse
|
26
|
Fahmi T, Port GC, Cho KH. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria. Genes (Basel) 2017; 8:E197. [PMID: 28783096 PMCID: PMC5575661 DOI: 10.3390/genes8080197] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens.
Collapse
Affiliation(s)
- Tazin Fahmi
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | - Gary C Port
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
- Elanco Animal Health, Natural Products Fermentation, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| |
Collapse
|
27
|
Blötz C, Treffon K, Kaever V, Schwede F, Hammer E, Stülke J. Identification of the Components Involved in Cyclic Di-AMP Signaling in Mycoplasma pneumoniae. Front Microbiol 2017; 8:1328. [PMID: 28751888 PMCID: PMC5508000 DOI: 10.3389/fmicb.2017.01328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria often use cyclic dinucleotides as second messengers for signal transduction. While the classical molecule c-di-GMP is involved in lifestyle selection, the functions of the more recently discovered signaling nucleotide cyclic di-AMP are less defined. For many Gram-positive bacteria, c-di-AMP is essential for growth suggesting its involvement in a key cellular function. We have analyzed c-di-AMP signaling in the genome-reduced pathogenic bacterium Mycoplasma pneumoniae. Our results demonstrate that these bacteria produce c-di-AMP, and we could identify the diadenylate cyclase CdaM (MPN244). This enzyme is the founding member of a novel family of diadenylate cyclases. Of two potential c-di-AMP degrading phosphodiesterases, only PdeM (MPN549) is active in c-di-AMP degradation, whereas NrnA (MPN140) was reported to degrade short oligoribonucleotides. As observed in other bacteria, both the c-di-AMP synthesizing and the degrading enzymes are essential for M. pneumoniae suggesting control of a major homeostatic process. To obtain more insights into the nature of this process, we have identified a c-di-AMP-binding protein from M. pneumoniae, KtrC. KtrC is the cytoplasmic regulatory subunit of the low affinity potassium transporter KtrCD. It is established that binding of c-di-AMP inhibits the KtrCD activity resulting in a limitation of potassium uptake. Our results suggest that the control of potassium homeostasis is the essential function of c-di-AMP in M. pneumoniae.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Katrin Treffon
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical SchoolHannover, Germany
| | | | - Elke Hammer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine GreifswaldGreifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| |
Collapse
|
28
|
Li Y, Wilson HL, Kiss-Toth E. Regulating STING in health and disease. J Inflamm (Lond) 2017; 14:11. [PMID: 28596706 PMCID: PMC5463399 DOI: 10.1186/s12950-017-0159-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
The presence of cytosolic double-stranded DNA molecules can trigger multiple innate immune signalling pathways which converge on the activation of an ER-resident innate immune adaptor named "STimulator of INterferon Genes (STING)". STING has been found to mediate type I interferon response downstream of cyclic dinucleotides and a number of DNA and RNA inducing signalling pathway. In addition to its physiological function, a rapidly increasing body of literature highlights the role for STING in human disease where variants of the STING proteins, as well as dysregulated STING signalling, have been implicated in a number of inflammatory diseases. This review will summarise the recent structural and functional findings of STING, and discuss how STING research has promoted the development of novel therapeutic approaches and experimental tools to improve treatment of tumour and autoimmune diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Infection; Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| | - Heather L. Wilson
- Department of Infection; Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| | - Endre Kiss-Toth
- Department of Infection; Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| |
Collapse
|
29
|
Zhou J, Zheng Y, Roembke BT, Robinson S, Opoku-Temeng C, Sayre DA, Sintim HO. Fluorescent analogs of cyclic and linear dinucleotides as phosphodiesterase and oligoribonuclease activity probes. RSC Adv 2017. [DOI: 10.1039/c6ra25394f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2-Aminopurine or etheno adenosine cyclic dinucleotide probes can report the activity of cyclic dinucleotide PDEs or oligoribonucleases.
Collapse
Affiliation(s)
- Jie Zhou
- Purdue Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
- Department of Chemistry
| | - Yue Zheng
- Purdue Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
- Department of Chemistry and Biochemistry
| | - Benjamin T. Roembke
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Sarah M. Robinson
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Clement Opoku-Temeng
- Purdue Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
- Department of Chemistry and Biochemistry
| | - David A. Sayre
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Herman O. Sintim
- Purdue Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
- Department of Chemistry
| |
Collapse
|
30
|
Bowman L, Zeden MS, Schuster CF, Kaever V, Gründling A. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus. J Biol Chem 2016; 291:26970-26986. [PMID: 27834680 PMCID: PMC5207132 DOI: 10.1074/jbc.m116.747709] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/09/2016] [Indexed: 12/02/2022] Open
Abstract
Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism.
Collapse
Affiliation(s)
- Lisa Bowman
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Merve S Zeden
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Christopher F Schuster
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Volkhard Kaever
- the Research Core Unit Metabolomics, Hannover Medical School, Hannover D-306625, Germany
| | - Angelika Gründling
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| |
Collapse
|
31
|
Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nat Chem Biol 2016; 13:210-217. [PMID: 28106876 DOI: 10.1038/nchembio.2254] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis infection leads to cytosolic release of the bacterial cyclic dinucleotide (CDN) c-di-AMP and a host-generated CDN, cGAMP, both of which trigger type I interferon (IFN) expression in a STING-dependent manner. Here we report that M. tuberculosis has developed a mechanism to inhibit STING activation and the type I IFN response via the bacterial phosphodiesterase (PDE) CdnP, which mediates hydrolysis of both bacterial-derived c-di-AMP and host-derived cGAMP. Mutation of cdnP attenuates M. tuberculosis virulence, as does loss of a host CDN PDE known as ENPP1. CdnP is inhibited by both US Food and Drug Administration (FDA)-approved PDE inhibitors and nonhydrolyzable dinucleotide mimetics specifically designed to target the enzyme. These findings reveal a crucial role of CDN homeostasis in governing the outcome of M. tuberculosis infection as well as a unique mechanism of subversion of the host's cytosolic surveillance pathway (CSP) by a bacterial PDE that may serve as an attractive antimicrobial target.
Collapse
|
32
|
Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 2016; 52:9327-42. [PMID: 27339003 DOI: 10.1039/c6cc03439j] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria utilize nucleotide-based second messengers to regulate a myriad of physiological processes. Cyclic dinucleotides have emerged as central regulators of bacterial physiology, controlling processes ranging from cell wall homeostasis to virulence production, and so far over thousands of manuscripts have provided biological insights into c-di-NMP signaling. The development of small molecule inhibitors of c-di-NMP signaling has significantly lagged behind. Recent developments in assays that allow for high-throughput screening of inhibitors suggest that the time is right for a concerted effort to identify inhibitors of these fascinating second messengers. Herein, we review c-di-NMP signaling and small molecules that have been developed to inhibit cyclic dinucleotide-related enzymes.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Department of Chemistry, Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
33
|
López-Villamizar I, Cabezas A, Pinto RM, Canales J, Ribeiro JM, Cameselle JC, Costas MJ. The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase. PLoS One 2016; 11:e0157308. [PMID: 27294396 PMCID: PMC4905662 DOI: 10.1371/journal.pone.0157308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed.
Collapse
Affiliation(s)
- Iralis López-Villamizar
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- * E-mail:
| |
Collapse
|
34
|
Structure–activity relationship studies of c-di-AMP synthase inhibitor, bromophenol-thiohydantoin. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.10.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Malhotra N, Chakraborti PK. Eukaryotic-Type Ser/Thr Protein Kinase Mediated Phosphorylation of Mycobacterial Phosphodiesterase Affects its Localization to the Cell Wall. Front Microbiol 2016; 7:123. [PMID: 26904001 PMCID: PMC4746578 DOI: 10.3389/fmicb.2016.00123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Phosphodiesterase enzymes, involved in cAMP hydrolysis reaction, are present throughout phylogeny and their phosphorylation mediated regulation remains elusive in prokaryotes. In this context, we focused on this enzyme from Mycobacterium tuberculosis. The gene encoded by Rv0805 was PCR amplified and expressed as a histidine-tagged protein (mPDE) utilizing Escherichia coli based expression system. In kinase assays, upon incubation with mycobacterial Clade I eukaryotic-type Ser/Thr kinases (PknA, PknB, and PknL), Ni-NTA purified mPDE protein exhibited transphosphorylation ability albeit with varying degree. When mPDE was co-expressed one at a time with these kinases in E. coli, it was also recognized by an anti-phosphothreonine antibody, which further indicates its phosphorylating ability. Mass spectrometric analysis identified Thr-309 of mPDE as a phosphosite. In concordance with this observation, anti-phosphothreonine antibody marginally recognized mPDE-T309A mutant protein; however, such alteration did not affect the enzymatic activity. Interestingly, mPDE expressed in Mycobacterium smegmatis yielded a phosphorylated protein that preferentially localized to cell wall. In contrast, mPDE-T309A, the phosphoablative variant of mPDE, did not show such behavior. On the other hand, phosphomimics of mPDE (T309D or T309E), exhibited similar cell wall anchorage as was observed with the wild-type. Thus, our results provide credence to the fact that eukaryotic-type Ser/Thr kinase mediated phosphorylation of mPDE renders negative charge to the protein, promoting its localization on cell wall. Furthermore, multiple sequence alignment revealed that Thr-309 is conserved among mPDE orthologs of M. tuberculosis complex, which presumably emphasizes evolutionary significance of phosphorylation at this residue.
Collapse
Affiliation(s)
- Neha Malhotra
- CSIR-Institute of Microbial Technology Chandigarh, India
| | | |
Collapse
|
36
|
Huynh TN, Woodward JJ. Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Curr Opin Microbiol 2016; 30:22-29. [PMID: 26773214 DOI: 10.1016/j.mib.2015.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
Bacteria that synthesize c-di-AMP also encode several mechanisms for controlling c-di-AMP levels within the cytoplasm. One major class of phosphodiesterases comprises GdpP and DhhP homologs, which degrade c-di-AMP into the linear molecule 5'-pApA or AMP by the DHH-DHHA1 domain. The other major class comprises PgpH homologs, which degrade c-di-AMP by the HD domain. Both GdpP and PgpH harbor sensory domains, likely to regulate c-di-AMP hydrolysis activity in response to signal input. As another possible mechanism for controlling cytoplasmic c-di-AMP levels, bacteria also secrete c-di-AMP via multidrug resistance transporters, as demonstrated for Listeria monocytogenes. Mutants that accumulate high c-di-AMP levels, by deletion of phosphodiesterases or multidrug resistance transporters, exhibit aberrant physiology, growth defects, and attenuated virulence in infection.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
37
|
He Q, Wang F, Liu S, Zhu D, Cong H, Gao F, Li B, Wang H, Lin Z, Liao J, Gu L. Structural and Biochemical Insight into the Mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP Phosphodiesterase. J Biol Chem 2015; 291:3668-81. [PMID: 26668313 DOI: 10.1074/jbc.m115.699801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 12/18/2022] Open
Abstract
The intracellular infections of Mycobacterium tuberculosis, which is the causative agent of tuberculosis, are regulated by many cyclic dinucleotide signaling. Rv2837c from M. tuberculosis is a soluble, stand-alone DHH-DHHA1 domain phosphodiesterase that down-regulates c-di-AMP through catalytic degradation and plays an important role in M. tuberculosis infections. Here, we report the crystal structure of Rv2837c (2.0 Å), and its complex with hydrolysis intermediate 5'-pApA (2.35 Å). Our structures indicate that both DHH and DHHA1 domains are essential for c-di-AMP degradation. Further structural analysis shows that Rv2837c does not distinguish adenine from guanine, which explains why Rv2837c hydrolyzes all linear dinucleotides with almost the same efficiency. We observed that Rv2837c degraded other c-di-NMPs at a lower rate than it did on c-di-AMP. Nevertheless, our data also showed that Rv2837c significantly decreases concentrations of both c-di-AMP and c-di-GMP in vivo. Our results suggest that beside its major role in c-di-AMP degradation Rv2837c could also regulate c-di-GMP signaling pathways in bacterial cell.
Collapse
Affiliation(s)
- Qing He
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Feng Wang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Shiheng Liu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Deyu Zhu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hengjiang Cong
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Gao
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Bingqing Li
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hongwei Wang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Zong Lin
- the Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China, and
| | - Jun Liao
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Lichuan Gu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China,
| |
Collapse
|
38
|
Cheng X, Zheng X, Zhou X, Zeng J, Ren Z, Xu X, Cheng L, Li M, Li J, Li Y. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol 2015; 18:904-22. [PMID: 26548332 DOI: 10.1111/1462-2920.13123] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 02/05/2023]
Abstract
Cyclic diadenosine monophosphate (c-di-AMP) has been implicated in the control of many important bacterial activities. However, the function of this molecule in Streptococcus mutans, the primary aetiological agent of human dental caries, is unknown. In this study, we identified and characterized a diadenylate cyclase, named CdaA, in S. mutans. Furthermore, we showed that in-frame deletion of the cdaA gene in S. mutans causes decreased c-di-AMP levels, increased sensitivity to hydrogen peroxide and increased production of extracellular polysaccharides. Global gene expression profiling revealed that more than 200 genes were significantly upregulated or downregulated (> 2.0-fold) in the cdaA mutant. Interestingly, genes with increased or decreased expression were clustered in cellular polysaccharide biosynthetic processes and oxidoreductase activity respectively. Notably, the expression of several genomic islands, such as GTF-B/C, TnSmu, CRISPR1-Cas and CRISPR2-Cas, was found to be altered in the cdaA mutant, indicating a possible link between these genomic islands and c-di-AMP signalling. Collectively, the results reported here show that CdaA is an important global modulator in S. mutans and is required for optimal growth and environmental adaption. This report also paves the way to unveil further the roles of c-di-AMP signalling networks in the biology and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhi Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Zheng C, Ma Y, Wang X, Xie Y, Ali MK, He J. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis. Front Microbiol 2015; 6:908. [PMID: 26441857 PMCID: PMC4568413 DOI: 10.3389/fmicb.2015.00908] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/19/2015] [Indexed: 01/03/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently discovered bacterial secondary messenger molecule, which is associated with various physiological functions. In the genus Bacillus, the intracellular level and turnover of c-di-AMP are mainly regulated by three diadenylate cyclases (DACs), including DisA, CdaA and CdaS, and two c-di-AMP-specific phosphodiesterases (GdpP and PgpH). In this study, we demonstrated that CdaS protein from B. thuringiensis is a hexameric DAC protein that can convert ATP or ADP to c-di-AMP in vitro and the N-terminal YojJ domain is essential for the DAC activity. Based on the markerless gene knock-out method, we demonstrated that the transcription of cdaS was initiated by the sporulation-specific sigma factor σ(H) and the deletion of cdaS significantly delayed sporulation and parasporal crystal formation. These findings contrast with similar experiments conducted using B. subtilis, wherein transcription of its cdaS was initiated by the sigma factor σ(G). Deletion of all the three DAC genes from a single strain was unsuccessful, suggesting that c-di-AMP is an indispensable molecule in B. thuringiensis. Phylogenetic analysis indicated increased diversity of CdaS in the B. cereus and B. subtilis Bacillus subgroups. In summary, this study identifies important aspects in the regulation of c-di-AMP in the genus Bacillus.
Collapse
Affiliation(s)
- Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yang Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yuqun Xie
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology Wuhan, China
| | - Maria K Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
40
|
Tang Q, Luo Y, Zheng C, Yin K, Ali MK, Li X, He J. Functional Analysis of a c-di-AMP-specific Phosphodiesterase MsPDE from Mycobacterium smegmatis. Int J Biol Sci 2015; 11:813-24. [PMID: 26078723 PMCID: PMC4466462 DOI: 10.7150/ijbs.11797] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022] Open
Abstract
Cyclic di‑AMP (c-di-AMP) is a second signaling molecule involved in the regulation of bacterial physiological processes and interaction between pathogen and host. However, the regulatory network mediated by c-di-AMP in Mycobacterium remains obscure. In M. smegmatis, a diadenylate cyclase (DAC) was reported recently, but there is still no investigation on c-di-AMP phosphodiesterase (PDE). Here, we provide a systematic study on signaling mechanism of c-di-AMP PDE in M. smegmatis. Based on our enzymatic analysis, MsPDE (MSMEG_2630), which contained a DHH-DHHA1 domain, displayed a 200-fold higher hydrolytic efficiency (kcat/Km) to c-di-AMP than to c-di-GMP. MsPDE was capable of converting c-di-AMP to pApA and AMP, and hydrolyzing pApA to AMP. Site-directed mutations in DHH and DHHA1 revealed that DHH domain was critical for the phosphodiesterase activity. To explore the regulatory role of c-di-AMP in vivo, we constructed the mspde mutant (Δmspde) and found that deficiency of MsPDE significantly enhanced intracellular C12-C20 fatty acid accumulation. Deficiency of DAC in many bacteria results in cell death. However, we acquired the M. smegmatis strain with DAC gene disrupted (ΔmsdisA) by homologous recombination approach. Deletion of msdisA reduced bacterial C12-C20 fatty acids production but scarcely affected bacterial survival. We also provided evidences that superfluous c-di-AMP in M. smegmatis could lead to abnormal colonial morphology. Collectively, our results indicate that MsPDE is a functional c-di-AMP-specific phosphodiesterase both in vitro and in vivo. Our study also expands the regulatory network mediated by c-di-AMP in M. smegmatis.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yunchao Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kang Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Maria Kanwal Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
41
|
Zheng Y, Zhou J, Sayre DA, Sintim HO. Identification of bromophenol thiohydantoin as an inhibitor of DisA, a c-di-AMP synthase, from a 1000 compound library, using the coralyne assay. Chem Commun (Camb) 2015; 50:11234-7. [PMID: 25116237 DOI: 10.1039/c4cc02916j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
c-di-AMP is an important bacterial second messenger found in Gram-positive and mycobacteria. c-di-AMP regulates myriads of processes in bacteria as well as immune response in higher organisms so interest in small molecules that would attenuate the activity of c-di-AMP metabolism enzymes is high. Herein, we report the first small molecule inhibitor of a c-di-AMP synthase, DisA, using a coralyne-based assay.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|
42
|
Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 2015; 97:189-204. [PMID: 25869574 DOI: 10.1111/mmi.13026] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 12/28/2022]
Abstract
Second messengers are key components of many signal transduction pathways. In addition to cyclic AMP, ppGpp and cyclic di-GMP, many bacteria use also cyclic di-AMP as a second messenger. This molecule is synthesized by distinct classes of diadenylate cyclases and degraded by phosphodiesterases. The control of the intracellular c-di-AMP pool is very important since both a lack of this molecule and its accumulation can inhibit growth of the bacteria. In many firmicutes, c-di-AMP is essential, making it the only known essential second messenger. Cyclic di-AMP is implicated in a variety of functions in the cell, including cell wall metabolism, potassium homeostasis, DNA repair and the control of gene expression. To understand the molecular mechanisms behind these functions, targets of c-di-AMP have been identified and characterized. Interestingly, c-di-AMP can bind both proteins and RNA molecules. Several proteins that interact with c-di-AMP are required to control the intracellular potassium concentration. In Bacillus subtilis, c-di-AMP also binds a riboswitch that controls the expression of a potassium transporter. Thus, c-di-AMP is the only known second messenger that controls a biological process by interacting with both a protein and the riboswitch that regulates its expression. Moreover, in Listeria monocytogenes c-di-AMP controls the activity of pyruvate carboxylase, an enzyme that is required to replenish the citric acid cycle. Here, we review the components of the c-di-AMP signaling system.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Jan Gundlach
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| |
Collapse
|
43
|
Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J, Kaever V, Stülke J, Ficner R, Commichau FM. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. J Biol Chem 2015; 290:6596-606. [PMID: 25605729 DOI: 10.1074/jbc.m114.630418] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement.
Collapse
Affiliation(s)
| | - Achim Dickmanns
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | - Piotr Neumann
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | - Katrin Gunka
- From the Departments of General Microbiology and
| | - Johannes Arens
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | - Volkhard Kaever
- the Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany
| | - Jörg Stülke
- From the Departments of General Microbiology and
| | - Ralf Ficner
- Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany and
| | | |
Collapse
|
44
|
An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci U S A 2015; 112:E747-56. [PMID: 25583510 DOI: 10.1073/pnas.1416485112] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide cyclic di-3',5'- adenosine monophosphate (c-di-AMP) was recently identified as an essential and widespread second messenger in bacterial signaling. Among c-di-AMP-producing bacteria, altered nucleotide levels result in several physiological defects and attenuated virulence. Thus, a detailed molecular understanding of c-di-AMP metabolism is of both fundamental and practical interest. Currently, c-di-AMP degradation is recognized solely among DHH-DHHA1 domain-containing phosphodiesterases. Using chemical proteomics, we identified the Listeria monocytogenes protein PgpH as a molecular target of c-di-AMP. Biochemical and structural studies revealed that the PgpH His-Asp (HD) domain bound c-di-AMP with high affinity and specifically hydrolyzed this nucleotide to 5'-pApA. PgpH hydrolysis activity was inhibited by ppGpp, indicating a cross-talk between c-di-AMP signaling and the stringent response. Genetic analyses supported coordinated regulation of c-di-AMP levels in and out of the host. Intriguingly, a L. monocytogenes mutant that lacks c-di-AMP phosphodiesterases exhibited elevated c-di-AMP levels, hyperinduced a host type-I IFN response, and was significantly attenuated for infection. Furthermore, PgpH homologs, which belong to the 7TMR-HD family, are widespread among hundreds of c-di-AMP synthesizing microorganisms. Thus, PgpH represents a broadly conserved class of c-di-AMP phosphodiesterase with possibly other physiological functions in this crucial signaling network.
Collapse
|
45
|
Yang J, Bai Y, Zhang Y, Gabrielle VD, Jin L, Bai G. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Mol Microbiol 2014; 93:65-79. [PMID: 24806618 DOI: 10.1111/mmi.12641] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 12/26/2022]
Abstract
Tuberculosis (TB) remains a major cause of morbidity and mortality worldwide. The pathogenesis by the causative agent, Mycobacterium tuberculosis, is still not fully understood. We have previously reported that M. tuberculosis Rv3586 (disA) encodes a diadenylate cyclase, which converts ATP to cyclic di-AMP (c-di-AMP). In this study, we demonstrated that a protein encoded by Rv2837c (cnpB) possesses c-di-AMP phosphodiesterase activity and cleaves c-di-AMP exclusively to AMP. Our results showed that in M. tuberculosis, deletion of disA abolished bacterial c-di-AMP production, whereas deletion of cnpB significantly enhanced the bacterial c-di-AMP accumulation and secretion. The c-di-AMP levels in both mutants could be corrected by expressing the respective gene. We also found that macrophages infected with ΔcnpB secreted much higher levels of IFN-β than those infected with the wild type (WT) or the complemented mutant. Interestingly, mice infected with M. tuberculosis ΔcnpB displayed significantly reduced inflammation, less bacterial burden in the lungs and spleens, and extended survival compared with those infected with the WT or the complemented mutant. These results indicate that deletion of cnpB results in attenuated virulence, which is correlated with elevated c-di-AMP levels.
Collapse
Affiliation(s)
- Jun Yang
- Center for Immunology and Microbial Disease, MC-151, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208-3479, USA
| | | | | | | | | | | |
Collapse
|