1
|
Singh S, Praveen A, Bhadrecha P. Genome-wide identification and analysis of SPL gene family in chickpea (Cicer arietinum L.). PROTOPLASMA 2024; 261:799-818. [PMID: 38378886 DOI: 10.1007/s00709-024-01936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
A transcription factor in plants encodes SQUAMOSA promoter binding protein-like (SPL) serves a broad spectrum of important roles for the plant, like, growth, flowering, and signal transduction. A gene family that encodes SPL proteins is documented in various model plant species, including Arabidopsis thaliana and Oryza sativa. Chickpea (Cicer arietinum), a leguminous crop, has not been thoroughly explored with regard to the SPL protein-encoding gene family. Chickpea SPL family genes were located and characterized computationally using a genomic database. Gene data of chickpea were obtained from the phytozome repository and was examined using bioinformatics methods. For investigating the possible roles of SPLs in chickpea, genome-wide characterization, expression, as well as structural analyses of this SPL gene family were performed. Cicer arietinum genome had 19 SPL genes, whereas, according to phylogenetic analysis, the SPLs in chickpea are segregated among four categories: Group-I has 2 introns, Group-II and IV have 1-2 introns (except CaSPL13 and CaSPL15 having 3 introns), and Group-III has 9 introns (except CaSPL1 and CaSPL11 with 1 and 8 introns, respectively). The SBP domain revealed that SPL proteins featured two zinc-binding sites, i.e., C3H and C2HC and one nuclear localization signal. All CaSPL proteins are found to contain highly conserved motifs, i.e., Motifs 1, 2, and 4, except CaSPL10 in which Motifs 1 and 4 were absent. Following analysis, it was found that Motifs 1 and 2 of the chickpea SBP domain are Zinc finger motifs, and Motif 4 includes a nuclear localization signal. All pairs of CaSPL paralogs developed by purifying selection. The CaSPL promoter investigation discovered cis-elements that are responsive to stress, light, and phytohormones. Examination of their expression patterns highlighted major CaSPLs to be evinced primarily among younger pods and flowers. Indicating their involvement in the plant's growth as well as development, along with their capacity to react as per different situations by handling the regulation of target gene's expression, several CaSPL genes are also expressed under certain stress conditions, namely, cold, salt, and drought. The majority of the CaSPL genes are widely expressed and play crucial roles in terms of the plant's growth, development, and responses to the environmental-stress conditions. Our work provides extensive insight into the gene family CaSPL, which might facilitate further studies related to the evolution and functions of the SPL genes for chickpea and other plant species.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, U.P., India.
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 67, India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Song H, Zhao K, Jiang G, Sun S, Li J, Tu M, Wang L, Xie H, Chen D. Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development. Genes (Basel) 2023; 15:23. [PMID: 38254913 PMCID: PMC10815216 DOI: 10.3390/genes15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The loquat (Eriobotrya japonica L.) is a special evergreen tree, and its fruit is of high medical and health value as well as having stable market demand around the world. In recent years, research on the accumulation of nutrients in loquat fruit, such as carotenoids, flavonoids, and terpenoids, has become a hotspot. The SBP-box gene family encodes transcription factors involved in plant growth and development. However, there has been no report on the SBP-box gene family in the loquat genome and their functions in carotenoid biosynthesis and fruit ripening. In this study, we identified 28 EjSBP genes in the loquat genome, which were unevenly distributed on 12 chromosomes. We also systematically investigated the phylogenetic relationship, collinearity, gene structure, conserved motifs, and cis-elements of EjSBP proteins. Most EjSBP genes showed high expression in the root, stem, leaf, and inflorescence, while only five EjSBP genes were highly expressed in the fruit. Gene expression analysis revealed eight differentially expressed EjSBP genes between yellow- and white-fleshed fruits, suggesting that the EjSBP genes play important roles in loquat fruit development at the breaker stage. Notably, EjSBP01 and EjSBP19 exhibited completely opposite expression patterns between white- and yellow-fleshed fruits during fruit development, and showed a close relationship with SlCnr involved in carotenoid biosynthesis and fruit ripening, indicating that these two genes may participate in the synthesis and accumulation of carotenoids in loquat fruit. In summary, this study provides comprehensive information about the SBP-box gene family in the loquat, and identified two EjSBP genes as candidates involved in carotenoid synthesis and accumulation during loquat fruit development.
Collapse
Affiliation(s)
- Haiyan Song
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Ke Zhao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Guoliang Jiang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Shuxia Sun
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Jing Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Meiyan Tu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Lingli Wang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Hongjiang Xie
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Dong Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (G.J.); (S.S.); (J.L.); (M.T.); (L.W.); (H.X.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
3
|
Jiang GG, Wan QQ, Zou W, Hu GT, Yang LY, Zhu L, Ning HJ. Genome-wide identification and analysis of the evolution and expression pattern of the SBP gene family in two Chimonanthus species. Mol Biol Rep 2023; 50:9107-9119. [PMID: 37749345 DOI: 10.1007/s11033-023-08799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae. METHODS AND RESULTS We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius. CONCLUSION Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.
Collapse
Affiliation(s)
- Ge-Ge Jiang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311100, China
| | - Qian-Qian Wan
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311100, China
| | - Wei Zou
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311100, China
| | - Gui-Ting Hu
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311100, China
| | - Li-Yuan Yang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311100, China.
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China.
| | - Li Zhu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China.
| | - Hui-Juan Ning
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311100, China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Ren Y, Ma R, Fan Y, Zhao B, Cheng P, Fan Y, Wang B. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Quinoa (Chenopodium quinoa). BMC Genomics 2022; 23:773. [PMID: 36434504 PMCID: PMC9701020 DOI: 10.1186/s12864-022-08977-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Squamous promoter binding protein-like (SPL) proteins are a class of transcription factors that play essential roles in plant growth and development, signal transduction, and responses to biotic and abiotic stresses. The rapid development of whole genome sequencing has enabled the identification and characterization of SPL gene families in many plant species, but to date this has not been performed in quinoa (Chenopodium quinoa). RESULTS This study identified 23 SPL genes in quinoa, which were unevenly distributed on 18 quinoa chromosomes. Quinoa SPL genes were then classified into eight subfamilies based on homology to Arabidopsis thaliana SPL genes. We selected three dicotyledonous and monocotyledonous representative species, each associated with C. quinoa, for comparative sympatric mapping to better understand the evolution of the developmental mechanisms of the CqSPL family. Furthermore, we also used 15 representative genes from eight subfamilies to characterize CqSPLs gene expression in different tissues and at different fruit developmental stages under six different abiotic stress conditions. CONCLUSIONS This study, the first to identify and characterize SPL genes in quinoa, reported that CqSPL genes, especially CqSPL1, play a critical role in quinoa development and in its response to various abiotic stresses.
Collapse
Affiliation(s)
- Yanyan Ren
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Rui Ma
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, 843100 Aksu, P.R. China
| | - Bingjie Zhao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Peng Cheng
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yu Fan
- grid.411292.d0000 0004 1798 8975School of Food and Biological Engineering, Chengdu University, Longquanyi District, 610106 Chengdu, P.R. China
| | - Baotong Wang
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
5
|
Yang J, Guo Z, Wang W, Cao X, Yang X. Genome-Wide Characterization of SPL Gene Family in Codonopsis pilosula Reveals the Functions of CpSPL2 and CpSPL10 in Promoting the Accumulation of Secondary Metabolites and Growth of C. pilosula Hairy Root. Genes (Basel) 2021; 12:genes12101588. [PMID: 34680983 PMCID: PMC8535611 DOI: 10.3390/genes12101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play critical roles in regulating diverse aspects of plant growth and development, including vegetative phase change, plant architecture, anthocyanin accumulation, lateral root growth, etc. In the present study, 15 SPL genes were identified based on the genome data of Codonopsis pilosula, a well-known medicinal plant. Phylogenetic analysis clustered CpSPLs into eight groups (G1-G8) along with SPLs from Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa and Physcomitrella patens. CpSPLs in the same group share similar gene structure and conserved motif composition. Cis-acting elements responding to light, stress and phytohormone widely exist in their promoter regions. Our qRT-PCR results indicated that 15 CpSPLs were differentially expressed in different tissues (root, stem, leaf, flower and calyx), different developmental periods (1, 2 and 3 months after germination) and various conditions (NaCl, MeJA and ABA treatment). Compared with the control, overexpression of CpSPL2 or CpSPL10 significantly promoted not only the growth of hairy roots, but also the accumulation of total saponins and lobetyolin. Our results established a foundation for further investigation of CpSPLs and provided novel insights into their biological functions. As far as we know, this is the first experimental research on gene function in C. pilosula.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shanxi Normal University, Xi’an 710062, China; (J.Y.); (W.W.)
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Wentao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shanxi Normal University, Xi’an 710062, China; (J.Y.); (W.W.)
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shanxi Normal University, Xi’an 710062, China; (J.Y.); (W.W.)
- Correspondence: (X.C.); (X.Y.)
| | - Xiaozeng Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (X.C.); (X.Y.)
| |
Collapse
|
6
|
Song N, Cheng Y, Peng W, Peng E, Zhao Z, Liu T, Yi T, Dai L, Wang B, Hong Y. Genome-Wide Characterization and Expression Analysis of the SBP-Box Gene Family in Sweet Orange ( Citrus sinensis). Int J Mol Sci 2021; 22:ijms22168918. [PMID: 34445624 PMCID: PMC8396319 DOI: 10.3390/ijms22168918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
SBP-box is an important plant-specific transcription factor family and is involved in diverse biological processes. Here, we identified a total of 15 SBP-BOX genes in the important fruit crop sweet orange (Citrus sinensis) and characterized their gene structures, conserved domain and motif, chromosomal location, and cis-acting regulatory elements. SBP genes were classified into four subfamilies based on the amino acid sequence homology, and the classification is equally strongly supported by the gene and protein structures. Our analysis revealed that segmental duplication events were the main driving force in the evolution of CsSBP genes, and gene pairs might undergo extensive purifying selection. Further synteny analysis of the SBP members among sweet orange and other plant species provides valuable information for clarifying the CsSBP family evolutionary relationship. According to publicly available RNA-seq data and qRT-PCR analysis from various sweet orange tissues, CsSBP genes may be expressed in different tissues and developmental stages. Gene expression analysis showed variable expression profiles of CsSBP genes under various abiotic stresses, such as high and low-temperature, salt, and wound treatments, demonstrating the potential role of SBP members in sweet orange response to abiotic stress. Noticeably, all CsSBP genes were also downregulated in sweet orange upon the infection of an important fungal pathogen Diaporthe citri. Our results provide valuable information for exploring the role of SBP-Box in sweet orange.
Collapse
Affiliation(s)
- Na Song
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
| | - Yulin Cheng
- School of Life Sciences, Chongqing University, Chongqing 401331, China;
| | - Weiye Peng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
| | - ErPing Peng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
| | - Zengling Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
| | - Tiantian Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
| | - Tuyong Yi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (B.W.); (Y.H.)
| | - Yanyun Hong
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (N.S.); (W.P.); (E.P.); (Z.Z.); (T.L.); (T.Y.); (L.D.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (B.W.); (Y.H.)
| |
Collapse
|
7
|
Zhang HX, Feng XH, Jin JH, Khan A, Guo WL, Du XH, Gong ZH. CaSBP11 Participates in the Defense Response of Pepper to Phytophthora capsici through Regulating the Expression of Defense-Related Genes. Int J Mol Sci 2020; 21:E9065. [PMID: 33260627 PMCID: PMC7729508 DOI: 10.3390/ijms21239065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Squamosa promoter binding protein (SBP)-box genes are plant-specific transcription factors involved in plant growth and development, morphogenesis and biotic and abiotic stress responses. However, these genes have been understudied in pepper, especially with respect to defense responses to Phytophthora capsici infection. CaSBP11 is a SBP-box family gene in pepper that was identified in our previous research. Silencing CaSBP11 enhanced the defense response of pepper plants to Phytophthora capsici. Without treatment, the expression of defense-related genes (CaBPR1, CaPO1, CaSAR8.2 and CaDEF1) increased in CaSBP11-silenced plants. However, the expression levels of these genes were inhibited under transient CaSBP11 expression. CaSBP11 overexpression in transgenic Nicotiana benthamiana decreased defense responses, while in Arabidopsis, it induced or inhibited the expression of genes in the salicylic acid and jasmonic acid signaling pathways. CaSBP11 overexpression in sid2-2 mutants induced AtNPR1, AtNPR3, AtNPR4, AtPAD4, AtEDS1, AtEDS5, AtMPK4 and AtNDR1 expression, while AtSARD1 and AtTGA6 expression was inhibited. CaSBP11 overexpression in coi1-21 and coi1-22 mutants, respectively, inhibited AtPDF1.2 expression and induced AtPR1 expression. These results indicate CaSBP11 has a negative regulatory effect on defense responses to Phytophthora capsici. Moreover, it may participate in the defense response of pepper to Phytophthora capsici by regulating defense-related genes and the salicylic and jasmonic acid-mediated disease resistance signaling pathways.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (W.-L.G.); (X.-H.D.)
| | - Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Wei-Li Guo
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (W.-L.G.); (X.-H.D.)
| | - Xiao-Hua Du
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (W.-L.G.); (X.-H.D.)
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| |
Collapse
|
8
|
Li J, Gao X, Sang S, Liu C. Genome-wide identification, phylogeny, and expression analysis of the SBP-box gene family in Euphorbiaceae. BMC Genomics 2019; 20:912. [PMID: 31874634 PMCID: PMC6929338 DOI: 10.1186/s12864-019-6319-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023] Open
Abstract
Background Euphorbiaceae is one of the largest families of flowering plants. Due to its exceptional growth form diversity and near-cosmopolitan distribution, it has attracted much interest since ancient times. SBP-box (SBP) genes encode plant-specific transcription factors that play critical roles in numerous biological processes, especially flower development. We performed genome-wide identification and characterization of SBP genes from four economically important Euphorbiaceae species. Results In total, 77 SBP genes were identified in four Euphorbiaceae genomes. The SBP proteins were divided into three length ranges and 10 groups. Group-6 was absent in Arabidopsis thaliana but conserved in Euphorbiaceae. Segmental duplication played the most important role in the expansion processes of Euphorbiaceae SBP genes, and all the duplicated genes were subjected to purify selection. In addition, about two-thirds of the Euphorbiaceae SBP genes are potential targets of miR156, and some miR-regulated SBP genes exhibited high intensity expression and differential expression in different tissues. The expression profiles related to different stress treatments demonstrated broad involvement of Euphorbiaceae SBP genes in response to various abiotic factors and hormonal treatments. Conclusions In this study, 77 SBP genes were identified in four Euphorbiaceae species, and their phylogenetic relationships, protein physicochemical characteristics, duplication, tissue and stress response expression, and potential roles in Euphorbiaceae development were studied. This study lays a foundation for further studies of Euphorbiaceae SBP genes, providing valuable information for future functional exploration of Euphorbiaceae SBP genes.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Shiye Sang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
9
|
Liu M, Sun W, Ma Z, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide identification of the SPL gene family in Tartary Buckwheat (Fagopyrum tataricum) and expression analysis during fruit development stages. BMC PLANT BIOLOGY 2019; 19:299. [PMID: 31286919 PMCID: PMC6615263 DOI: 10.1186/s12870-019-1916-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/02/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND SPL (SQUAMOSA promoter binding protein-like) is a class of plant-specific transcription factors that play important roles in many growth and developmental processes, including shoot and inflorescence branching, embryonic development, signal transduction, leaf initiation, phase transition, and flower and fruit development. The SPL gene family has been identified and characterized in many species but has not been well studied in tartary buckwheat, which is an important edible and medicinal crop. RESULTS In this study, 24 Fagopyrum tataricum SPL (FtSPL) genes were identified and renamed according to the chromosomal distribution of the FtSPL genes. According to the amino acid sequence of the SBP domain and gene structure, the SPL genes were divided into eight groups (group I to group VII) by phylogenetic tree analysis. A total of 10 motifs were detected in the tartary buckwheat SPL genes. The expression patterns of 23 SPL genes in different tissues and fruits at different developmental stages (green fruit stage, discoloration stage and initial maturity stage) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS The tartary buckwheat genome contained 24 SPL genes, and most of the genes were expressed in different tissues. qRT-PCR showed that FtSPLs played important roles in the growth and development of tartary buckwheat, and genes that might regulate flower and fruit development were preliminarily identified. This work provides a comprehensive understanding of the SBP-box gene family in tartary buckwheat and lays a significant foundation for further studies on the functional characteristics of FtSPL genes and improvement of tartary buckwheat crops.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- School of Agriculture and Biolog, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
10
|
Nanda S, Hussain S. Genome-wide identification of the SPL gene family in Dichanthelium oligosanthes. Bioinformation 2019; 15:165-171. [PMID: 31354191 PMCID: PMC6637398 DOI: 10.6026/97320630015165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 11/23/2022] Open
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play vital roles in various plant physiological processes. Although, the identification of the SPL gene family has been done in C4 grass plants, including rice and maize, the same has not been characterized in the C3 grass species Dichanthelium oligosanthes. In this study, 14 SPL genes were identified in the genome of D. oligosanthes. Gene structure analysis of the identified DoSPLs revealed the similarity and redundancy in their exon/intron organizations. Sequence comparisons within the DoSPLs and along with rice SPLs revealed the putative paralogs and orthologs in D. oligosanthes SPL genes. Phylogenetic analysis clustered the DoSPLs into eight groups along with other plant SPLs. Identification of the conserved SBP motifs in all 14 DoSPLs suggested them to be putative SPLs. In addition, the prediction of sub-cellular localization and associated functions for DoSPLs further supported to be SPL genes. The outcome of this study can serve as a framework for the isolation and functional validation of SPL genes in D. oligosanthes.
Collapse
Affiliation(s)
- Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 311440, China
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 311440, China
| |
Collapse
|
11
|
Zhong H, Kong W, Gong Z, Fang X, Deng X, Liu C, Li Y. Evolutionary Analyses Reveal Diverged Patterns of SQUAMOSA Promoter Binding Protein-Like ( SPL) Gene Family in Oryza Genus. FRONTIERS IN PLANT SCIENCE 2019; 10:565. [PMID: 31139200 PMCID: PMC6517846 DOI: 10.3389/fpls.2019.00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/15/2019] [Indexed: 05/07/2023]
Abstract
The SPL (SQUAMOSA promoter binding protein-like) gene family is one of the plant-specific transcription factor families and controls a considerable number of biological functions, including floral development, phytohormone signaling, and toxin resistance. However, the evolutionary patterns and driving forces of SPL genes in the Oryza genus are still not well-characterized. In this study, we investigated a total of 105 SPL genes from six AA genome Oryza representative species (O. barthii, O. glumipatula, O. nivara, O. rufipogon, O. glaberrima, and O. sativa). Phylogenetic and motif analyses indicated that SPL proteins could be divided into two distinct lineages (I and II), and further studies showed lineage II consisted of three clades (IIA, IIB, and IIC). We found that clade I had comparable structural features with clade IIA, whereas genes in clade IIC displayed intrinsic differences, such as lower exon numbers and the presence of miR156 regulation elements. Nineteen orthologous groups of OsSPLs in Oryza were also identified, and most exons within those genes maintained constant length, whereas length of intron changed relatively. All groups were constrained by stronger purifying selection and diversified continually including alterative gene number, intron length, and miR156 regulation. Subsequently, cis-acting element analyses revealed the potential role of SPLs in wild rice, which might participate in light-responsive, phytohormone response, and plant growth and development. Our results shed light on that different evolutionary rates and duplication events might result in divergent evolutionary patterns in each lineage of SPL genes, providing a guide in exploring diverse function in the rice gene family among six closely related Oryza species.
Collapse
|
12
|
Constitutive Expression of Aechmea fasciata SPL14 (AfSPL14) Accelerates Flowering and Changes the Plant Architecture in Arabidopsis. Int J Mol Sci 2018; 19:ijms19072085. [PMID: 30021946 PMCID: PMC6073119 DOI: 10.3390/ijms19072085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 11/16/2022] Open
Abstract
Variations in flowering time and plant architecture have a crucial impact on crop biomass and yield, as well as the aesthetic value of ornamental plants. Aechmea fasciata, a member of the Bromeliaceae family, is a bromeliad variety that is commonly cultivated worldwide. Here, we report the characterization of AfSPL14, a squamosa promoter binding protein-like gene in A. fasciata. AfSPL14 was predominantly expressed in the young vegetative organs of adult plants. The expression of AfSPL14 could be upregulated within 1 h by exogenous ethephon treatment. The constitutive expression of AfSPL14 in Arabidopsis thaliana caused early flowering and variations in plant architecture, including smaller rosette leaves and thicker and increased numbers of main inflorescences. Our findings suggest that AfSPL14 may help facilitate the molecular breeding of A. fasciata, other ornamental and edible bromeliads (e.g., pineapple), and even cereal crops.
Collapse
|
13
|
Zhou Q, Zhang S, Chen F, Liu B, Wu L, Li F, Zhang J, Bao M, Liu G. Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genomics 2018; 19:193. [PMID: 29703141 PMCID: PMC6389188 DOI: 10.1186/s12864-018-4537-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/08/2018] [Indexed: 11/29/2022] Open
Abstract
Background SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. Results We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3’-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative-to-reproductive phase transition. Conclusion Petunia genome contains at least 21 SPL genes, and most of the genes are expressed in different tissues. The PhSPL genes may play conserved and diverse roles in plant growth and development, including flowering regulation, leaf initiation, axillary bud and inflorescence development. This work provides a comprehensive understanding of the SBP-box gene family in Petunia and lays a significant foundation for future studies on the function and evolution of SPL genes in petunia. Electronic supplementary material The online version of this article (10.1186/s12864-018-4537-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Sisi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China.,Wuhan Institute of Landscape Architecture, Peace Avenue No. 1240, Wuhan, 430081, China
| | - Feng Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Baojun Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Lan Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Fei Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Guofeng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China.
| |
Collapse
|
14
|
Genome-wide identification and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cotton. Sci Rep 2018; 8:762. [PMID: 29335584 PMCID: PMC5768680 DOI: 10.1038/s41598-017-18673-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/04/2017] [Indexed: 12/01/2022] Open
Abstract
Plant specific transcription factors, SQUAMOSA promoter-binding protein-like (SPL), are involved in many biological processes. However, no systematical study has been reported in cotton. In this study, a total of 177 SPL genes were identified, including 29, 30, 59 and 59 SPLs in Gossypium arboreum, G. raimondii, G. barbadense, and G. hirsutum, respectively. These SPL genes were classified into eight phylogenetical groups. The gene structure, conserved motif, and clustering were highly conserved within each orthologs. Two zinc finger-like structures (Cys3His and Cys2HisCys) and NLS segments were existed in all GrSPLs. Segmental duplications play important roles in SPL family expansion, with 20 genes involved in segmental duplications and 2 in tandem duplications, and ten ortholog pairs in syntenic regions between G. raimondii and A. thaliana. Several putative cis-elements, involved in light, stresses and phytohormones response, were found in the promoter regions of GhSPLs, suggesting that plant responses to those environmental changes may be induced through targeting SPL transcription factors. RNA-seq analysis shows that SPL genes were differentially expressed in cotton; some were highly expressed during fiber initiation and early development. Comparing with other plants, SPL genes show subfunctionalization, lost and/or gain functions in cotton during long-term domestication and evolution.
Collapse
|
15
|
Pan F, Wang Y, Liu H, Wu M, Chu W, Chen D, Xiang Y. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis). BMC Genomics 2017; 18:486. [PMID: 28655295 PMCID: PMC5488377 DOI: 10.1186/s12864-017-3882-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. RESULTS We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event ~15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and leaves. CONCLUSIONS The PeSPL genes play important roles in plant growth and development, including responses to stresses, and most of the genes are expressed in different tissues. Our study provides a comprehensive understanding of the PeSPL gene family and may enable future studies on the function and evolution of SPL genes in moso bamboo.
Collapse
Affiliation(s)
- Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huanglong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wenyuan Chu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Danmei Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China. .,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
16
|
Cheng H, Hao M, Wang W, Mei D, Tong C, Wang H, Liu J, Fu L, Hu Q. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus. BMC PLANT BIOLOGY 2016; 16:196. [PMID: 27608922 PMCID: PMC5017063 DOI: 10.1186/s12870-016-0852-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/11/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. RESULTS In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. CONCLUSIONS Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for understanding the crucial roles of BnaSBP genes in plant development and other biological processes.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Chaobo Tong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,, No.2 Xudong 2nd Road, Wuhan, 430062 People’s Republic of China
| |
Collapse
|
17
|
Tan HW, Song XM, Duan WK, Wang Y, Hou XL. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis). Genome 2016; 58:463-77. [PMID: 26599708 DOI: 10.1139/gen-2015-0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.
Collapse
Affiliation(s)
- Hua-Wei Tan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Song
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,b Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Wei-Ke Duan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi-Lin Hou
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Song A, Gao T, Wu D, Xin J, Chen S, Guan Z, Wang H, Jin L, Chen F. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:10-6. [PMID: 26897115 DOI: 10.1016/j.plaphy.2016.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 05/09/2023]
Abstract
SQUAMOSA promoter-binding protein (SBP) transcription factors are known to function in a number of processes in plants. Here, we have characterized twelve SBP-like (SPL) genes in the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of twelve distinct sequences were isolated and amplified based on transcriptomic sequences. Phylogenetic analysis identified two pairs of orthologous proteins for Arabidopsis and chrysanthemum and two pairs of paralogous proteins in chrysanthemum. Conserved motifs in the SPL proteins shared by Arabidopsis and chrysanthemum were scanned using MEME. A bioinformatics analysis revealed that six of these genes contained a miR156 target site, while five CmSPLs were targeted by miR157. Moreover, we used 5' RLM-RACE to map the cleavage sites in CmSPL2 and CmSPL3. The expression of these twelve genes in response to a variety of phytohormone treatments and abiotic stresses was characterized. This work improves our understanding of the various functions of SPL gene family members in the stress response.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China.
| | - Tianwei Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lili Jin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China.
| |
Collapse
|
19
|
Zhang HX, Jin JH, He YM, Lu BY, Li DW, Chai WG, Khan A, Gong ZH. Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:504. [PMID: 27148327 PMCID: PMC4832253 DOI: 10.3389/fpls.2016.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/29/2016] [Indexed: 05/05/2023]
Abstract
SQUAMOSA promoter binding protein (SBP)-box genes encode plant-specific transcription factors that are extensively involved in many physiological and biochemical processes, including growth, development, and signal transduction. However, pepper (Capsicum annuum L.) SBP-box family genes have not been well characterized. We investigated SBP-box family genes in the pepper genome and characterized these genes across both compatible and incompatible strain of Phytophthora capsici, and also under different hormone treatments. The results indicated that total 15 members were identified and distributed on seven chromosomes of pepper. Phylogenetic analysis showed that SBP-box genes of pepper can be classified into six groups. In addition, duplication analysis within pepper genome, as well as between pepper and Arabidopsis genomes demonstrated that there are four pairs of homology of SBP-box genes in the pepper genome and 10 pairs between pepper and Arabidopsis genomes. Tissue-specific expression analysis of the CaSBP genes demonstrated their diverse spatiotemporal expression patterns. The expression profiles were similarly analyzed following exposure to P. capsici inoculation and hormone treatments. It was shown that nine of the CaSBP genes (CaSBP01, 02, 03, 04, 05, 06, 11, 12, and 13) exhibited a dramatic up-regulation after compatible HX-9 strain (P. capsici) inoculation, while CaSBP09 and CaSBP15 were down-regulated. In case of PC strain (P. capsici) infection six of the CaSBP genes (CaSBP02, 05, 06, 11, 12, and 13) were arose while CaSBP14 was down regulated. Furthermore, Salicylic acid, Methyl jasmonate and their biosynthesis inhibitors treatment indicated that some of the CaSBP genes are potentially involved in these hormone regulation pathways. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles of the pepper CaSBP genes, will help to improve pepper stress tolerance in the future.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yu-Mei He
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Bo-Ya Lu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Da-Wei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Wei-Guo Chai
- Institute of Vegetables, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Abid Khan
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
Zhang SD, Ling LZ, Yi TS. Evolution and divergence of SBP-box genes in land plants. BMC Genomics 2015; 16:787. [PMID: 26467431 PMCID: PMC4606839 DOI: 10.1186/s12864-015-1998-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/03/2015] [Indexed: 01/24/2023] Open
Abstract
Background Squamosa promoter binding protein (SBP)-box family genes encode plant-specific transcription factors that control many important biological functions, including phase transition, inflorescence branching, fruit ripening, and copper homeostasis. Nevertheless, the evolutionary patterns of SBP-box genes and evolutionary forces driving them are still not well understood. Methods 104 SBP-box gene candidates of five representative land plants were obtained from Phytozome database (v10.3). Phylogenetic combined with gene structure analyses were used to identify SBP-box gene lineages in land plants. Gene copy number and the sequence and structure features were then compared among these different SBP-box lineages. Selection analysis, relative rate tests and expression divergence were finally used to interpret the evolutionary relationships and divergence of SBP-box genes in land plants. Results We investigated 104 SBP-box genes from moss, Arabidopsis, poplar, rice, and maize. These genes are divided into group I and II, and the latter is further divided into two subgroups (subgroup II-1 and II-2) based on phylogenetic analysis. Interestingly, subgroup II-1 genes have similar sequence and structural features to group I genes, whereas subgroup II-2 genes exhibit intrinsic differences on these features, including high copy numbers and the presence of miR156/miR529 regulation. Further analyses indicate that subgroup II-1 genes are constrained by stronger purifying selection and evolve at a lower substitution rate than II-2 genes, just as group I genes do when compared to II genes. Among subgroup II-2 genes, miR156 targets evolve more rapidly than miR529 targets and experience comparatively relaxed purifying selection. These results suggest that group I and subgroup II-1 genes under strong selective constraint are conserved. By contrast, subgroup II-2 genes evolve under relaxed purifying selection and have diversified through gene copy duplications and changes in miR156/529 regulation, which might contribute to morphological diversifications of land plants. Conclusions Our results indicate that different evolutionary rates and selection strengths lead to differing evolutionary patterns in SBP-box genes in land plants, providing a guide for future functional diversity analyses of these genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1998-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shu-Dong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China.
| | - Li-Zhen Ling
- BGI-Yunnan, BGI-Shenzhen, Kunming, 650106, China.
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
21
|
Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume. Mol Genet Genomics 2015; 290:1701-15. [PMID: 25810323 DOI: 10.1007/s00438-015-1029-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.
Collapse
|