1
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
3
|
Ghaly M, Proulx J, Borgmann K, Park IW. Novel role of HIV-1 Nef in regulating the ubiquitination of cellular proteins. Front Cell Infect Microbiol 2023; 13:1106591. [PMID: 36968110 PMCID: PMC10031067 DOI: 10.3389/fcimb.2023.1106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 03/10/2023] Open
Abstract
Our recent data established that HIV-1 Nef is pivotal in determining the fate of cellular proteins by modulating ubiquitination. However, it is unknown which proteins are ubiquitinated in the presence of Nef, a question critical for understanding the proliferation/restriction strategies of HIV-1 in infected cells. To identify cellular proteins ubiquitinated by Nef, we conducted a proteomic analysis of cellular proteins in the presence and absence of Nef. Proteomic analysis in HEK293T cells indicated that 93 proteins were upregulated and 232 were downregulated in their ubiquitination status by Nef. Computational analysis classified these proteins based on molecular function, biological process, subcellular localization, and biological pathway. Of those proteins, we found a majority of molecular functions to be involved in binding and catalytic activity. With respect to biological processes, a significant portion of the proteins identified were related to cellular and metabolic processes. Subcellular localization analysis showed the bulk of proteins to be localized to the cytosol and cytosolic compartments, which is consistent with the known function and location of Nef during HIV-1 infection. As for biological pathways, the wide range of affected proteins was denoted by the multiple modes to fulfill function, as distinguished from a strictly singular means, which was not detected. Among these ubiquitinated proteins, six were found to directly interact with Nef, wherein two were upregulated and four downregulated. We also identified 14 proteins involved in protein stability through directly participating in the Ubiquitin Proteasome System (UPS)-mediated proteasomal degradation pathway. Of those proteins, we found six upregulated and eight downregulated. Taken together, these analyses indicate that HIV-1 Nef is integral to regulating the stability of various cellular proteins via modulating ubiquitination. The molecular mechanisms directing Nef-triggered regulation of cellular protein ubiquitination are currently under investigation.
Collapse
|
4
|
Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R, Banerjea AC. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun 2020; 529:1038-1044. [PMID: 32819562 DOI: 10.1016/j.bbrc.2020.05.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
Abstract
Human Immunodeficiency Virus-1 (HIV-1) Nef promotes p53 protein degradation to protect HIV-1 infected cells from p53 induced apoptosis. We found that Nef mediated p53 degradation is accomplished through ubiquitin proteasome pathway in an Mdm2-independent manner. By GST pulldown and immunoprecipitation assays, we have shown that Nef interacts with E3 ubiquitin ligase E6AP in both Nef transfected HEK-293T cells and HIV-1 infected MOLT3 cells. The p53 ubiquitination and degradation was found to be enhanced by Nef with E6AP but not by Nef with E6AP-C843A, a dominant negative E6AP mutant. We show that Nef binds with E6AP and promotes E6AP dependent p53 ubiquitination. Further, Nef inhibits apoptosis of p53 null H1299 cells after exogenous expression of p53 protein. The p53 dependent apoptosis of H1299 cells was further reduced after the expression of Nef with E6AP. However, Nef mediated reduction in p53 induced apoptosis of H1299 cells was restored when Nef was co-expressed with E6AP-C843A. Thus, Nef and E6AP co-operate to promote p53 ubiquitination and degradation in order to suppress p53 dependent apoptosis. CHME3 cells, which are a natural host of HIV-1, also show p53 ubiquitination and degradation by Nef and E6AP. These results establish that Nef induces p53 degradation via cellular E3 ligase E6AP to inhibit apoptosis during HIV-1 infection.
Collapse
Affiliation(s)
- Amjad Ali
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA 01605.
| | - Sabihur Rahman Farooqui
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Jagdish Rai
- IFSC, Panjab University, Chandigarh, 160014, India.
| | - Jyotsna Singh
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vivek Kumar
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ritu Mishra
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Akhil C Banerjea
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Mueller KAL, Hanna DB, Ehinger E, Xue X, Baas L, Gawaz MP, Geisler T, Anastos K, Cohen MH, Gange SJ, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Tien PC, Hodis HN, Landay AL, Kaplan RC, Ley K. Loss of CXCR4 on non-classical monocytes in participants of the Women's Interagency HIV Study (WIHS) with subclinical atherosclerosis. Cardiovasc Res 2019; 115:1029-1040. [PMID: 30520941 PMCID: PMC6735712 DOI: 10.1093/cvr/cvy292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS To test whether human immunodeficiency virus (HIV) infection and subclinical cardiovascular disease (sCVD) are associated with expression of CXCR4 and other surface markers on classical, intermediate, and non-classical monocytes in women. METHODS AND RESULTS sCVD was defined as presence of atherosclerotic lesions in the carotid artery in 92 participants of the Women's Interagency HIV Study (WIHS). Participants were stratified into four sets (n = 23 each) by HIV and sCVD status (HIV-/sCVD-, HIV-/sCVD+, HIV+/sCVD-, and HIV+/sCVD+) matched by age, race/ethnicity, and smoking status. Three subsets of monocytes were determined from archived peripheral blood mononuclear cells. Flow cytometry was used to count and phenotype surface markers. We tested for differences by HIV and sCVD status accounting for multiple comparisons. We found no differences in monocyte subset size among the four groups. Expression of seven surface markers differed significantly across the three monocyte subsets. CXCR4 expression [median fluorescence intensity (MFI)] in non-classical monocytes was highest among HIV-/CVD- [628, interquartile range (IQR) (295-1389)], followed by HIV+/CVD- [486, IQR (248-699)], HIV-/CVD+ (398, IQR (89-901)), and lowest in HIV+/CVD+ women [226, IQR (73-519)), P = 0.006 in ANOVA. After accounting for multiple comparison (Tukey) the difference between HIV-/CVD- vs. HIV+/CVD+ remained significant with P = 0.005 (HIV-/CVD- vs. HIV+/CVD- P = 0.04, HIV-/CVD- vs. HIV-/CVD+ P = 0.06, HIV+/CVD+ vs. HIV+/CVD- P = 0.88, HIV+/CVD+ vs. HIV-/CVD+ P = 0.81, HIV+/CVD- vs. HIV-/CVD+, P = 0.99). All pairwise comparisons with HIV-/CVD- were individually significant (P = 0.050 vs. HIV-/CVD+, P = 0.028 vs. HIV+/CVD-, P = 0.009 vs. HIV+/CVD+). CXCR4 expression on non-classical monocytes was significantly higher in CVD- (501.5, IQR (249.5-887.3)) vs. CVD+ (297, IQR (81.75-626.8) individuals (P = 0.028, n = 46 per group). CXCR4 expression on non-classical monocytes significantly correlated with cardiovascular and HIV-related risk factors including systolic blood pressure, platelet and T cell counts along with duration of antiretroviral therapy (P < 0.05). In regression analyses, adjusted for education level, study site, and injection drug use, presence of HIV infection and sCVD remained significantly associated with lower CXCR4 expression on non-classical monocytes (P = 0.003), but did not differ in classical or intermediate monocytes. CONCLUSION CXCR4 expression in non-classical monocytes was significantly lower among women with both HIV infection and sCVD, suggesting a potential atheroprotective role of CXCR4 in non-classical monocytes.
Collapse
Affiliation(s)
- Karin A L Mueller
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Erik Ehinger
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Livia Baas
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Meinrad P Gawaz
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Tobias Geisler
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Mardge H Cohen
- John H. Stroger, Jr. Hospital of Cook County, 1969 Ogden Ave, Chicago, IL, USA
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, 265 Garland Hall, 3400 North Charles Street, Baltimore, MD, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL, USA
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - Chenglong Liu
- Georgetown University Medical Center, Washington, DC, USA
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, Atlanta, GA, USA
| | - Phyllis C Tien
- Department of Medicine, VAMC, Infectious Disease Section, 111W 4150 Clement St., San Francisco, CA, USA
| | - Howard N Hodis
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, 1735 West Harrison St, Chicago, IL, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| |
Collapse
|
6
|
Lata S, Mishra R, Banerjea AC. Proteasomal Degradation Machinery: Favorite Target of HIV-1 Proteins. Front Microbiol 2018; 9:2738. [PMID: 30524389 PMCID: PMC6262318 DOI: 10.3389/fmicb.2018.02738] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Proteasomal degradation pathways play a central role in regulating a variety of protein functions by controlling not only their turnover but also the physiological behavior of the cell. This makes it an attractive target for the pathogens, especially viruses which rely on the host cellular machinery for their propagation and pathogenesis. Viruses have evolutionarily developed various strategies to manipulate the host proteasomal machinery thereby creating a cellular environment favorable for their own survival and replication. Human immunodeficiency virus-1 (HIV-1) is one of the most dreadful viruses which has rapidly spread throughout the world and caused high mortality due to its high evolution rate. Here, we review the various mechanisms adopted by HIV-1 to exploit the cellular proteasomal machinery in order to escape the host restriction factors and components of host immune system for supporting its own multiplication, and successfully created an infection.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Akhil C Banerjea
- Virology Lab II, National Institute of Immunology, New Delhi, India
| |
Collapse
|
7
|
Kohler SL, Pham MN, Folkvord JM, Arends T, Miller SM, Miles B, Meditz AL, McCarter M, Levy DN, Connick E. Germinal Center T Follicular Helper Cells Are Highly Permissive to HIV-1 and Alter Their Phenotype during Virus Replication. THE JOURNAL OF IMMUNOLOGY 2016; 196:2711-22. [PMID: 26873986 DOI: 10.4049/jimmunol.1502174] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/18/2016] [Indexed: 01/13/2023]
Abstract
HIV-1 replication is concentrated within CD4(+) T cells in B cell follicles of secondary lymphoid tissues during asymptomatic disease. Limited data suggest that a subset of T follicular helper cells (TFH) within germinal centers (GC) is highly permissive to HIV-1. Whether GC TFH are the major HIV-1 virus-producing cells in vivo has not been established. In this study, we investigated TFH permissivity to HIV-1 ex vivo by spinoculating and culturing tonsil cells with HIV-1 GFP reporter viruses. Using flow cytometry, higher percentages of GC TFH (CXCR5(high)PD-1(high)) and CXCR5(+)programmed cell death-1 (PD-1)(low) cells were GFP(+) than non-GC TFH (CXCR5(+)PD-1(intermediate)) or extrafollicular (EF) (CXCR5(-)) cells. When sorted prior to spinoculation, however, GC TFH were substantially more permissive than CXCR5(+)PD-1(low) or EF cells, suggesting that many GC TFH transition to a CXCR5(+)PD-1(low) phenotype during productive infection. In situ hybridization on inguinal lymph node sections from untreated HIV-1-infected individuals without AIDS revealed higher frequencies of HIV-1 RNA(+) cells in GC than non-GC regions of follicle or EF regions. Superinfection of HIV-1-infected individuals' lymph node cells with GFP reporter virus confirmed the permissivity of follicular cells ex vivo. Lymph node immunostaining revealed 96% of CXCR5(+)CD4(+) cells were located in follicles. Within sorted lymph node cells from four HIV-infected individuals, CXCR5(+) subsets harbored 11-66-fold more HIV-1 RNA than CXCR5(-) subsets, as determined by RT PCR. Thus, GC TFH are highly permissive to HIV-1, but downregulate PD-1 and, to a lesser extent, CXCR5 during HIV-1 replication. These data further implicate GC TFH as the major HIV-1-producing cells in chronic asymptomatic HIV-1 infection.
Collapse
Affiliation(s)
- Stephanie L Kohler
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael N Pham
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Joy M Folkvord
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Tessa Arends
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Shannon M Miller
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Brodie Miles
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Amie L Meditz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Martin McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - David N Levy
- College of Dentistry, New York University, New York, NY 10010
| | - Elizabeth Connick
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
8
|
Differential Ability of Primary HIV-1 Nef Isolates To Downregulate HIV-1 Entry Receptors. J Virol 2015; 89:9639-52. [PMID: 26178998 DOI: 10.1128/jvi.01548-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/06/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED HIV-1 Nef downregulates the viral entry receptor CD4 as well as the coreceptors CCR5 and CXCR4 from the surface of HIV-infected cells, and this leads to promotion of viral replication through superinfection resistance and other mechanisms. Nef sequence motifs that modulate these functions have been identified via in vitro mutagenesis with laboratory HIV-1 strains. However, it remains unclear whether the same motifs contribute to Nef activity in patient-derived sequences and whether these motifs may differ in Nef sequences isolated at different infection stages and/or from patients with different disease phenotypes. Here, nef clones from 45 elite controllers (EC), 46 chronic progressors (CP), and 43 acute progressors (AP) were examined for their CD4, CCR5, and CXCR4 downregulation functions. Nef clones from EC exhibited statistically significantly impaired CD4 and CCR5 downregulation ability and modestly impaired CXCR4 downregulation activity compared to those from CP and AP. Nef's ability to downregulate CD4 and CCR5 correlated positively in all cohorts, suggesting that they are functionally linked in vivo. Moreover, impairments in Nef's receptor downregulation functions increased the susceptibility of Nef-expressing cells to HIV-1 infection. Mutagenesis studies on three functionally impaired EC Nef clones revealed that multiple residues, including those at novel sites, were involved in the alteration of Nef functions and steady-state protein levels. Specifically, polymorphisms at highly conserved tryptophan residues (e.g., Trp-57 and Trp-183) and immune escape-associated sites were responsible for reduced Nef functions in these clones. Our results suggest that the functional modulation of primary Nef sequences is mediated by complex polymorphism networks. IMPORTANCE HIV-1 Nef, a key factor for viral pathogenesis, downregulates functionally important molecules from the surface of infected cells, including the viral entry receptor CD4 and coreceptors CCR5 and CXCR4. This activity enhances viral replication by protecting infected cells from cytotoxicity associated with superinfection and may also serve as an immune evasion strategy. However, how these activities are maintained under selective pressure in vivo remains elusive. We addressed this question by analyzing functions of primary Nef clones isolated from patients at various infection stages and with different disease phenotypes, including elite controllers, who spontaneously control HIV-1 viremia to undetectable levels. The results indicated that downregulation of HIV-1 entry receptors, particularly CCR5, is impaired in Nef clones from elite controllers. These functional impairments were driven by rare Nef polymorphisms and adaptations associated with cellular immune responses, underscoring the complex molecular pathways responsible for maintaining and attenuating viral protein function in vivo.
Collapse
|
9
|
Job F, Settele F, Lorey S, Rundfeldt C, Baumann L, Beck-Sickinger AG, Haupts U, Lilie H, Bosse-Doenecke E. Ubiquitin is a versatile scaffold protein for the generation of molecules with de novo binding and advantageous drug-like properties. FEBS Open Bio 2015; 5:579-93. [PMID: 26258013 PMCID: PMC4522466 DOI: 10.1016/j.fob.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/17/2023] Open
Abstract
In the search for effective therapeutic strategies, protein-based biologicals are under intense development. While monoclonal antibodies represent the majority of these drugs, other innovative approaches are exploring the use of scaffold proteins for the creation of binding molecules with tailor-made properties. Ubiquitin is especially suited for this strategy due to several key characteristics. Ubiquitin is a natural serum protein, 100% conserved across the mammalian class and possesses high thermal, structural and proteolytic stability. Because of its small size and lack of posttranslational modifications, it can be easily produced in Escherichia coli. In this work we provide evidence that ubiquitin is safe as tested experimentally in vivo. In contrast to previously published results, we show that, in our hands, ubiquitin does not act as a functional ligand of the chemokine receptor CXCR4. Cellular assays based on different signaling pathways of the receptor were conducted with the natural agonist SDF-1 as a benchmark. In none of the assays could a response to ubiquitin treatment be elicited. Furthermore, intravenous application to mice at high concentrations did not induce any detectable effect on cytokine levels or hematological parameters.
Collapse
Affiliation(s)
- Florian Job
- Institute for Biochemistry and Biotechnology/Technical Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Florian Settele
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Susan Lorey
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Chris Rundfeldt
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Lars Baumann
- Institute of Biochemistry, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | | | - Ulrich Haupts
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology/Technical Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Eva Bosse-Doenecke
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
- Corresponding author. Tel.: +49 345 4780 365; fax: +49 345 27996 332.
| |
Collapse
|
10
|
Chawansuntati K, Chotirosniramit N, Sugandhavesa P, Aurpibul L, Thetket S, Kosashunhanan N, Supindham T, Kaewthip O, Sroysuwan P, Sirisanthana T, Suparatpinyo K, Wipasa J. Low expression of activation marker CD69 and chemokine receptors CCR5 and CXCR3 on memory T cells after 2009 H1N1 influenza A antigen stimulation in vitro following H1N1 vaccination of HIV-infected individuals. Hum Vaccin Immunother 2015; 11:2253-65. [PMID: 26091502 DOI: 10.1080/21645515.2015.1051275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike well-studied antibody responses to pandemic 2009 H1N1 influenza A virus vaccines in human immunodeficiency virus-infected (HIV+) individuals, less well understood are cell-mediated immune (CMI) responses to this antigen in this susceptible population. We investigated such influenza-specific CMI responses in 61 HIV+ individuals and in 20 HIV-negative (HIV-) healthy controls. Each was vaccinated with a single licensed dose of inactivated, split-virion vaccine comprised of the influenza A/California/7/2009 (H1N1) virus-like strain. Cells collected just prior to vaccination and at 1 and 3 months afterwards were stimulated in vitro with dialyzed vaccine antigen and assayed by flow cytometry for cytokines TNF-α, IFN-γ, IL-2, and IL-10, for degranulation marker CD107a, as well as phenotypes of memory T-cell subpopulations. Comparable increases of cytokine-producing and CD107a-expressing T cells were observed in both HIV+ subjects and healthy HIV-controls. However, by 3 months post-vaccination, in vitro antigen stimulation of peripheral blood mononuclear cells induced greater expansion in controls of both CD4 and CD8 central memory and effector memory T cells, as well as higher expression of the activation marker CD69 and chemokine receptors CCR5 and CXCR3 than in HIV+ subjects. We concluded CD4+ and CD8+ memory T cells produce cytokines at comparable levels in both groups, whereas the expression after in vitro stimulation of molecules critical for cell migration to infection sites are lower in the HIV+ than in comparable controls. Further immunization strategies against influenza are needed to improve the CMI responses in people living with HIV.
Collapse
|
11
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|