1
|
Rondinel-Mendoza KV, Lorite J, Marín-Rodulfo M, Cañadas EM. Tracking Phenological Changes over 183 Years in Endemic Species of a Mediterranean Mountain (Sierra Nevada, SE Spain) Using Herbarium Specimens. PLANTS (BASEL, SWITZERLAND) 2024; 13:522. [PMID: 38498521 PMCID: PMC10892450 DOI: 10.3390/plants13040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Phenological studies have a crucial role in the global change context. The Mediterranean basin constitutes a key study site since strong climate change impacts are expected, particularly in mountain areas such as Sierra Nevada, where we focus. Specifically, we delve into phenological changes in endemic vascular plants over time by analysing data at three scales: entire massif, altitudinal ranges, and particular species, seeking to contribute to stopping biodiversity loss. For this, we analysed 5262 samples of 2129 herbarium sheets from Sierra Nevada, dated from 1837 to 2019, including reproductive structure, complete collection date, and precise location. We found a generalized advancement in phenology at all scales, and particularly in flowering onset and flowering peak. Thus, plants flower on average 11 days earlier now than before the 1970s. Although similar trends have been confirmed for many territories and species, we address plants that have been studied little in the past regarding biotypes and distribution, and which are relevant for conservation. Thus, we analysed phenological changes in endemic plants, mostly threatened, from a crucial hotspot within the Mediterranean hotspot, which is particularly vulnerable to global warming. Our results highlight the urgency of phenological studies by species and of including ecological interactions and effects on their life cycles.
Collapse
Affiliation(s)
- Katy V. Rondinel-Mendoza
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Juan Lorite
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
- Interuniversity Institute for Earth System Research, University of Granada, 18071 Granada, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Eva M. Cañadas
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| |
Collapse
|
2
|
Morente‐López J, Kass JM, Lara‐Romero C, Serra‐Diaz JM, Soto‐Correa JC, Anderson RP, Iriondo JM. Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. GLOBAL CHANGE BIOLOGY 2022; 28:4143-4162. [PMID: 35359032 PMCID: PMC9325479 DOI: 10.1111/gcb.16181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 05/10/2023]
Abstract
Environmental variation within a species' range can create contrasting selective pressures, leading to divergent selection and novel adaptations. The conservation value of populations inhabiting environmentally marginal areas remains in debate and is closely related to the adaptive potential in changing environments. Strong selection caused by stressful conditions may generate novel adaptations, conferring these populations distinct evolutionary potential and high conservation value under climate change. On the other hand, environmentally marginal populations may be genetically depauperate, with little potential for new adaptations to emerge. Here, we explored the use of ecological niche models (ENMs) linked with common garden experiments to predict and test for genetically determined phenotypic differentiation related to contrasting environmental conditions. To do so, we built an ENM for the alpine plant Silene ciliata in central Spain and conducted common garden experiments, assessing flowering phenology changes and differences in leaf cell resistance to extreme temperatures. The suitability patterns and response curves of the ENM led to the predictions that: (1) the environmentally marginal populations experiencing less snowpack and higher minimum temperatures would have delayed flowering to avoid risks of late-spring frosts and (2) those with higher minimum temperatures and greater potential evapotranspiration would show enhanced cell resistance to high temperatures to deal with physiological stress related to desiccation and heat. The common garden experiments revealed the expected genetically based phenotypic differentiation in flowering phenology. In contrast, they did not show the expected differentiation for cell resistance, but these latter experiments had high variance and hence lower statistical power. The results highlight ENMs as useful tools to identify contrasting putative selective pressures across species ranges. Linking ENMs with common garden experiments provides a theoretically justified and practical way to study adaptive processes, including insights regarding the conservation value of populations inhabiting environmentally marginal areas under ongoing climate change.
Collapse
Affiliation(s)
- Javier Morente‐López
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
- Island Ecology and Evolution Research GroupInstitute of Natural Products and Agrobiology, Consejo Superior de Investigaciones Científicas (IPNA‐CSIC)San Cristóbal de La Laguna, TenerifeSpain
| | - Jamie M. Kass
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami‐gunOkinawaJapan
| | - Carlos Lara‐Romero
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| | | | - José Carmen Soto‐Correa
- Facultad de Ciencias NaturalesUniversidad Autónoma de Querétaro (FCN‐UAQ)Santa Rosa Jáuregui, QuerétaroMexico
| | - Robert P. Anderson
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Division of Vertebrate Zoology (Mammalogy)American Museum of Natural HistoryNew YorkNew YorkUSA
| | - José M. Iriondo
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| |
Collapse
|
3
|
Notarnicola RF, Nicotra AB, Kruuk LEB, Arnold PA. Tolerance of Warmer Temperatures Does Not Confer Resilience to Heatwaves in an Alpine Herb. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.615119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is generating both sustained trends in average temperatures and higher frequency and intensity of extreme events. This poses a serious threat to biodiversity, especially in vulnerable environments, like alpine systems. Phenotypic plasticity is considered to be an adaptive mechanism to cope with climate change in situ, yet studies of the plastic responses of alpine plants to high temperature stress are scarce. Future weather extremes will occur against a background of warmer temperatures, but we do not know whether acclimation to warmer average temperatures confers tolerance to extreme heatwaves. Nor do we know whether populations on an elevational gradient differ in their tolerance or plasticity in response to warming and heatwave events. We investigated the responses of a suite of functional traits of an endemic Australian alpine herb, Wahlenbergia ceracea, to combinations of predicted future (warmer) temperatures and (relative) heatwaves. We also tested whether responses differed between high- vs. low-elevation populations. When grown under warmer temperatures, W. ceracea plants showed signs of acclimation by means of higher thermal tolerance (Tcrit, T50, and Tmax). They also invested more in flower production, despite showing a concurrent reduction in photosynthetic efficiency (Fv/Fm) and suppression of seed production. Heatwaves reduced both photosynthetic efficiency and longevity. However, we found no evidence that acclimation to warmer temperatures conferred tolerance of the photosynthetic machinery to heatwaves. Instead, when exposed to heatwaves following warmer growth temperatures, plants had lower photosynthetic efficiency and underwent a severe reduction in seed production. High- and low-elevation populations and families exhibited limited genetic variation in trait means and plasticity in response to temperature. We conclude that W. ceracea shows some capacity to acclimate to warming conditions but there is no evidence that tolerance of warmer temperatures confers any resilience to heatwaves.
Collapse
|
4
|
Espinosa CI, Vélez‐Mora DP, Ramón P, Gusmán‐Montalván E, Duncan DH, Quintana‐Ascencio PF. Intraspecific interactions affect the spatial pattern of a dominant shrub in a semiarid shrubland: A prospective approach. POPUL ECOL 2018. [DOI: 10.1002/1438-390x.1018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Pablo Ramón
- Universidad Técnica Particular de Loja Loja Ecuador
| | | | - David H. Duncan
- Universidad Técnica Particular de Loja Loja Ecuador
- School of BioSciences University of Melbourne Parkville Victoria Australia
| | - Pedro F. Quintana‐Ascencio
- Universidad Técnica Particular de Loja Loja Ecuador
- Department of Biology University of Central Florida Orlando, Florida
| |
Collapse
|
5
|
Morente-López J, García C, Lara-Romero C, García-Fernández A, Draper D, Iriondo JM. Geography and Environment Shape Landscape Genetics of Mediterranean Alpine Species Silene ciliata Poiret. (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:1698. [PMID: 30538712 PMCID: PMC6277476 DOI: 10.3389/fpls.2018.01698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/31/2018] [Indexed: 05/22/2023]
Abstract
The study of the drivers that shape spatial genetic structure across heterogeneous landscapes is one of the main approaches used to understand population dynamics and responses in changing environments. While the Isolation-by-Distance model (IBD) assumes that genetic differentiation increases among populations with geographical distance, the Isolation-by-Resistance model (IBR) also considers geographical barriers and other landscape features that impede gene flow. On the other hand, the Isolation-by-Environment model (IBE) explains genetic differentiation through environmental differences between populations. Although spatial genetic studies have increased significantly in recent years, plants from alpine ecosystems are highly underrepresented, even though they are great suitable systems to disentangle the role of the different factors that structure genetic variation across environmental gradients. Here, we studied the spatial genetic structure of the Mediterranean alpine specialist Silene ciliata across its southernmost distribution limit. We sampled three populations across an altitudinal gradient from 1850 to 2400 m, and we replicated this sample over three mountain ranges aligned across an E-W axis in the central part of the Iberian Peninsula. We genotyped 20 individuals per population based on eight microsatellite markers and used different landscape genetic tools to infer the role of topographic and environmental factors in shaping observed patterns along the altitudinal gradient. We found a significant genetic structure among the studied Silene ciliata populations which was related to the orography and E-W configuration of the mountain ranges. IBD pattern arose as the main factor shaping population genetic differentiation. Geographical barriers between mountain ranges also affected the spatial genetic structure (IBR pattern). Although environmental variables had a significant effect on population genetic diversity parameters, no IBE pattern was found on genetic structure. Our study reveals that IBD was the driver that best explained the genetic structure, whereas environmental factors also played a role in determining genetic diversity values of this dominant plant of Mediterranean alpine environments.
Collapse
Affiliation(s)
- Javier Morente-López
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- *Correspondence: Javier Morente-López, José María Iriondo,
| | - Cristina García
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Plant Biology Group, CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Porto, Portugal
| | - Carlos Lara-Romero
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA), Consejo Superior de Investigaciones Científicas (CSIC), Esporles, Spain
| | - Alfredo García-Fernández
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
| | - David Draper
- Natural History and Systematics Research Group, cE3c, Centro de Ecologia, Evolução e Alterações Ambientais, Universidade de Lisboa, Lisbon, Portugal
- UBC Botanical Garden and Centre for Plant Research, Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- *Correspondence: Javier Morente-López, José María Iriondo,
| |
Collapse
|
6
|
Giménez-Benavides L, Escudero A, García-Camacho R, García-Fernández A, Iriondo JM, Lara-Romero C, Morente-López J. How does climate change affect regeneration of Mediterranean high-mountain plants? An integration and synthesis of current knowledge. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:50-62. [PMID: 28985449 DOI: 10.1111/plb.12643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/30/2017] [Indexed: 05/25/2023]
Abstract
Mediterranean mountains are extraordinarily diverse and hold a high proportion of endemic plants, but they are particularly vulnerable to climate change, and most species distribution models project drastic changes in community composition. Retrospective studies and long-term monitoring also highlight that Mediterranean high-mountain plants are suffering severe range contractions. The aim of this work is to review the current knowledge of climate change impacts on the process of plant regeneration by seed in Mediterranean high-mountain plants, by combining available information from observational and experimental studies. We also discuss some processes that may provide resilience against changing environmental conditions and suggest some research priorities for the future. With some exceptions, there is still little evidence of the direct effects of climate change on pollination and reproductive success of Mediterranean high-mountain plants, and most works are observational and/or centred only in the post-dispersal stages (germination and establishment). The great majority of studies agree that the characteristic summer drought and the extreme heatwaves, which are projected to be more intense in the future, are the most limiting factors for the regeneration process. However, there is an urgent need for studies combining elevational gradient approaches with experimental manipulations of temperature and drought to confirm the magnitude and variability of species' responses. There is also limited knowledge about the ability of Mediterranean high-mountain plants to cope with climate change through phenotypic plasticity and local adaptation processes. This could be achieved by performing common garden and reciprocal translocation experiments with species differing in life history traits.
Collapse
Affiliation(s)
- L Giménez-Benavides
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - A Escudero
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - R García-Camacho
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - A García-Fernández
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - J M Iriondo
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - C Lara-Romero
- Global Change Research Department, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Mallorca, Balearic Islands, Spain
| | - J Morente-López
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| |
Collapse
|
7
|
Lara-Romero C, de la Cruz M, Escribano-Ávila G, García-Fernández A, Iriondo JM. What causes conspecific plant aggregation? Disentangling the role of dispersal, habitat heterogeneity and plant-plant interactions. OIKOS 2016. [DOI: 10.1111/oik.03099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Lara-Romero
- Biodiversity and Conservation Area, ESCET, Univ. Rey Juan Carlos; C/Tulipán s/n ES-28933 Móstoles Madrid Spain
| | - Marcelino de la Cruz
- Biodiversity and Conservation Area, ESCET, Univ. Rey Juan Carlos; C/Tulipán s/n ES-28933 Móstoles Madrid Spain
| | | | - Alfredo García-Fernández
- Biodiversity and Conservation Area, ESCET, Univ. Rey Juan Carlos; C/Tulipán s/n ES-28933 Móstoles Madrid Spain
| | - Jose M. Iriondo
- Biodiversity and Conservation Area, ESCET, Univ. Rey Juan Carlos; C/Tulipán s/n ES-28933 Móstoles Madrid Spain
| |
Collapse
|
8
|
Individual spatial aggregation correlates with between-population variation in fine-scale genetic structure of Silene ciliata (Caryophyllaceae). Heredity (Edinb) 2015; 116:417-23. [PMID: 26604191 DOI: 10.1038/hdy.2015.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 11/08/2022] Open
Abstract
Fine-scale genetic structure (FSGS) can vary among populations within species depending on multiple demographic and environmental factors. Theoretical models predict that FSGS should decrease in high-density populations and increase in populations where individuals are spatially aggregated. However, few empirical studies have compared FSGS between populations with different degrees of individual spatial aggregation and microhabitat heterogeneity. In this work, we studied the relationship between spatial and genetic structure in five populations of alpine specialist Silene ciliata Poiret (Caryophyllaceae). We mapped all individuals in each population and genotyped 96 of them using 10 microsatellite markers. We found significant FSGS consistent with an isolation-by-distance process in three of the five populations. The intensity of FSGS was positively associated with individual spatial aggregation. However, no association was found between FSGS and global population density or microhabitat heterogeneity. Overall, our results support theoretical studies indicating that stronger spatial aggregation tends to increase the magnitude of FSGS. They also highlight the relevance of characterizing local plant distribution and microhabitat to better understand the mechanisms that generate intraspecific variation in FSGS across landscapes.
Collapse
|
9
|
Kyrkou I, Iriondo JM, García-Fernández A. A glacial survivor of the alpine Mediterranean region: phylogenetic and phylogeographic insights into Silene ciliata Pourr. (Caryophyllaceae). PeerJ 2015; 3:e1193. [PMID: 26312184 PMCID: PMC4548490 DOI: 10.7717/peerj.1193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/26/2015] [Indexed: 11/20/2022] Open
Abstract
Silene ciliata Pourr. (Caryophyllaceae) is a species with a highly disjunct distribution which inhabits the alpine mountains of the Mediterranean Basin. We investigated the phylogeny and phylogeography of the species to (a) clarify the long-suggested division of S. ciliata into two subspecies, (b) evaluate its phylogenetic origin and (c) assess whether the species' diversification patterns were affected by the Mediterranean relief. For this purpose, we collected DNA from 25 populations of the species that inhabit the mountains of Portugal, Spain, France, Italy, former Yugoslav Republic of Macedonia, Bulgaria and Greece and studied the plastid regions rbcL, rps16 and trnL. Major intraspecific variation was supported by all analyses, while the possibility of the existence of more varieties or subspecies was not favoured. Plastid DNA (cpDNA) evidence was in accordance with the division of S. ciliata into the two subspecies, one spreading west (Iberian Peninsula and Central Massif) and the other east of the Alps region (Italian and Balkan Peninsula). This study proposes that the species' geographically disconnected distribution has probably derived from vicariance processes and from the Alps acting as a barrier to the species' dispersal. The monophyletic origin of the species is highly supported. cpDNA patterns were shown independent of the chromosome evolution in the populations and could have resulted from a combination of geographic factors providing links and barriers, climatic adversities and evolutionary processes that took place during Quaternary glaciations.
Collapse
Affiliation(s)
- Ifigeneia Kyrkou
- Department of Biotechnology, Agricultural University of Athens , Athens , Greece ; Area de Biodiversidad y Conservación, Universidad Rey Juan Carlos , Móstoles, Madrid , Spain
| | - José María Iriondo
- Area de Biodiversidad y Conservación, Universidad Rey Juan Carlos , Móstoles, Madrid , Spain
| | | |
Collapse
|