1
|
Dündar Orhan Y, Üstüntanır Dede AF, Duran Ş, Arslanyolu M. Use of E-64 cysteine protease inhibitor for the recombinant protein production in Tetrahymena thermophila. Eur J Protistol 2024; 94:126085. [PMID: 38703600 DOI: 10.1016/j.ejop.2024.126085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Tetrahymena thermophila is an alternative organism for recombinant protein production. However, the production efficiency in T. thermophila is quite low mainly due to the rich cysteine proteases. In this study, we studied whether supplementation of the E-64 inhibitor to T. thermophila cultures increases the recombinant protein production efficiency without any toxic side effects. Our study showed that supplementation of E-64 had no lethal effects on T. thermophila cells in flask culture at 30 °C and 38 °C. In vitro protease activity analysis using secretome as protease enzyme source from E-64-supplemented cell cultures showed a reduced protein substrate degradation using bovine serum albumin, rituximab, and milk lactoglobulin proteins. E-64 also prevented proteolysis of the recombinantly produced and secreted TtmCherry2-sfGFP fusion protein at some level. This reduced inhibitory effect of E-64 could be due to genetic compensation of the inhibited proteases. As a result, the 5 µM concentration of E-64 was found to be a non-toxic protease inhibitory supplement to improve extracellular recombinant protein production efficiency in T. thermophila. This study suggests that the use of E-64 may increase the efficiency of extracellular recombinant protein production by continuously reducing extracellular cysteine protease activity during cultivation.
Collapse
Affiliation(s)
- Yeliz Dündar Orhan
- Department of Advanced Technologies, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Turkey.
| | - Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Turkey.
| | - Şeyma Duran
- Department of Molecular Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskişehir 26470, Turkey.
| |
Collapse
|
2
|
Duran Ş, Üstüntanir Dede AF, Dündar Orhan Y, Arslanyolu M. Genome-wide identification and in-silico analysis of papain-family cysteine protease encoding genes in Tetrahymena thermophila. Eur J Protistol 2024; 92:126033. [PMID: 38088016 DOI: 10.1016/j.ejop.2023.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 02/06/2024]
Abstract
Tetrahymena thermophila is a promising host for recombinant protein production, but its utilization in biotechnology is mostly limited due to the presence of intracellular and extracellular papain-family cysteine proteases (PFCPs). In this study, we employed bioinformatics approaches to investigate the T. thermophila PFCP genes and their encoded proteases (TtPFCPs), the most prominent protease family in the genome. Results from the multiple sequence alignment, protein modeling, and conserved motif analyses revealed that all TtPFCPs showed considerably high homology with mammalian cysteine cathepsins and contained conserved amino acid motifs. The total of 121 TtPFCP-encoding genes, 14 of which were classified as non-peptidase homologs, were found. Remaining 107 true TtPFCPs were divided into four distinct subgroups depending on their homology with mammalian lysosomal cathepsins: cathepsin L-like (TtCATLs), cathepsin B-like (TtCATBs), cathepsin C-like (TtCATCs), and cathepsin X-like (TtCATXs) PFCPs. The majority of true TtPFCPs (96 out of the total) were in TtCATL-like peptidase subgroup. Both phylogenetic and chromosomal localization analyses of TtPFCPs supported the hypothesis that TtPFCPs likely evolved through tandem gene duplication events and predominantly accumulated on micronuclear chromosome 5. Additionally, more than half of the identified TtPFCP genes are expressed in considerably low quantities compared to the rest of the TtPFCP genes, which are expressed at a higher level. However, their expression patterns fluctuate based on the stage of the life cycle. In conclusion, this study provides the first comprehensive in-silico analysis of TtPFCP genes and encoded proteases. The results would help designing an effective strategy for protease knockout mutant cell lines to discover biological function and to improve the recombinant protein production in T. thermophila.
Collapse
Affiliation(s)
- Şeyma Duran
- Department of Molecular Biology, Graduate School of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Türkiye.
| | - Ayça Fulya Üstüntanir Dede
- Department of Molecular Biology, Graduate School of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Türkiye.
| | - Yeliz Dündar Orhan
- Department of Advanced Technologies, Graduate School of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Türkiye.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskişehir 26470, Türkiye.
| |
Collapse
|
3
|
Üstüntanır Dede AF, Arslanyolu M. Recombinant production of hormonally active human insulin from pre-proinsulin by Tetrahymena thermophila. Enzyme Microb Technol 2023; 170:110303. [PMID: 37562115 DOI: 10.1016/j.enzmictec.2023.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Alternative cell factories, such as the unicellular ciliate eukaryotic Tetrahymena thermophila, may be required for the production of protein therapeutics that are challenging to produce in conventional expression systems. T. thermophila (Tt) can secrete proteins with the post-translational modifications necessary for their function in humans. In this study, we tested if T. thermophila could process the human pre-proinsulin to produce hormonally active human insulin (hINS) with correct modifications. Flask and bioreactor culture of T. thermophila were used to produce the recombinant Tt-hINS either with or without an affinity tag from a codon-adapted pre-proinsulin sequence. Our results indicate that T. thermophila can produce a 6 kDa Tt-hINS monomer with the appropriate disulfide bonds after removal of the human insulin signal sequence or endogenous phospholipase A signal sequence, and the C-peptide of the human insulin. Additionally, Tt-hINS can form 12 kDa dimeric, 24 kDa tetrameric, and 36 kDa hexameric complexes. Tt-hINS-sfGFP fusion protein was localized to the vesicles within the cytoplasm and was secreted extracellularly. Assessing the affinity-purified Tt-hINS activity using the in vivo T. thermophila extracellular glucose drop assay, we observed that Tt-hINS induced a significant reduction (approximately 21 %) in extracellular glucose levels, indicative of its functional insulin activity. Our results demonstrate that T. thermophila is a promising candidate for the pharmaceutical and biotechnology industries as a host organism for the production of human protein drugs.
Collapse
Affiliation(s)
- Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey,.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskisehir 26470, Turkey.
| |
Collapse
|
4
|
Zolfaghari Emameh R, Barker HR, Turpeinen H, Parkkila S, Hytönen VP. A reverse vaccinology approach on transmembrane carbonic anhydrases from Plasmodium species as vaccine candidates for malaria prevention. Malar J 2022; 21:189. [PMID: 35706028 PMCID: PMC9199335 DOI: 10.1186/s12936-022-04186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
5
|
Monteiro EF, Fernandez-Becerra C, Curado I, Wunderlich G, Hiyane MI, Kirchgatter K. Antibody Profile Comparison against MSP1 Antigens of Multiple Plasmodium Species in Human Serum Samples from Two Different Brazilian Populations Using a Multiplex Serological Assay. Pathogens 2021; 10:1138. [PMID: 34578170 PMCID: PMC8470980 DOI: 10.3390/pathogens10091138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium malariae has a wide geographic distribution, but mainly at very low parasitemias and in co-infections, leading to an underestimated prevalence of this species. Studies for the detection of antibodies against Plasmodium recombinant proteins are increasingly used to map geographical distributions, seroprevalence and transmission intensities of malaria infection. However, no seroepidemiological survey using recombinant P. malariae proteins has been conducted in Brazil. This work evaluated the antibody response in serum samples of individuals from endemic regions of Brazil (the Amazon region and Atlantic Forest) against five recombinant proteins of P. malariae merozoite surface protein 1 (MSP1), and the MSP1 C-terminal portions of P. vivax and P. falciparum, in a multiplex assay. The positivity was 69.5% of samples recognizing at least one MSP1 recombinant protein. The mean of the Reactivity Index for the C-terminal portion of the P. falciparum was significantly higher compared to the other recombinant proteins, followed by the C-terminal of P. vivax and the N-terminal of P. malariae. Among the recombinant P. malariae proteins, the N-terminal of P. malariae showed the highest Reactivity Index alone. This study validates the use of the multiplex assay to measure naturally acquired IgG antibodies against Plasmodium MSP1 proteins and demonstrate that these proteins are important tools for seroepidemiological surveys and could be used in malaria surveillance.
Collapse
Affiliation(s)
- Eliana Ferreira Monteiro
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (E.F.M.); (I.C.)
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain;
- Germans Trias i Pujol Health Science Research Institute (IGTP), 08916 Badalona, Spain
| | - Izilda Curado
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (E.F.M.); (I.C.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo 01027-000, Brazil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Meire Ioshie Hiyane
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil;
| | - Karin Kirchgatter
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (E.F.M.); (I.C.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo 01027-000, Brazil
| |
Collapse
|
6
|
Çalıseki M, Üstüntanır Dede AF, Arslanyolu M. Characterization and use of Tetrahymena thermophila artificial chromosome 2 (TtAC2) constructed by biomimetic of macronuclear rDNA minichromosome. Microbiol Res 2021; 248:126764. [PMID: 33887535 DOI: 10.1016/j.micres.2021.126764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022]
Abstract
Efficient expression vectors for unicellular ciliate eukaryotic Tetrahymena thermophila are still needed in recombinant biology and biotechnology applications. Previously, the construction of the T. thermophila Macronuclear Artificial Chromosome 1 (TtAC1) vector revealed additional needs for structural improvements such as better in vivo stability and maintenance as a recombinant protein expression platform. In this study, we designed an efficiently maintained artificial chromosome by biomimetic of the native macronuclear rDNA minichromosome. TtAC2 was constructed by sequential cloning of subtelomeric 3'NTS region (1.8 kb), an antibiotic resistance gene cassette (2 kb neo4), a gene expression cassette (2 kb TtsfGFP), rDNA coding regions plus a dominant C3 origin sequence (10.3 kb), and telomeres (2.4 kb) in a pUC19 backbone plasmid (2.6 kb). The 21 kb TtAC2 was characterized using fluorescence microscopy, qPCR, western blot and Southern blot after its transformation to vegetative T. thermophila CU428.2 strain, which has a recessive B origin allele. All experimental data show that circular or linear forms of novel TtAC2 were maintained as free replicons in T. thermophila macronucleus with or without antibiotic treatment. Notably, TtAC2 carrying strains expressed a TtsfGFP marker protein, demonstrating the efficacy and functionality of the protein expression platform. We show that TtAC2 is functionally maintained for more than two months, and can be efficiently used in recombinant DNA, and protein production applications.
Collapse
Affiliation(s)
- Mehmet Çalıseki
- Department of Advanced Technologies, Graduate School of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Ayça Fulya Üstüntanır Dede
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey.
| |
Collapse
|
7
|
Jawinski K, Hartmann M, Singh C, Kinnear E, Busse DC, Ciabattini A, Fiorino F, Medaglini D, Trombetta CM, Montomoli E, Contreras V, Le Grand R, Coiffier C, Primard C, Verrier B, Tregoning JS. Recombinant Haemagglutinin Derived From the Ciliated Protozoan Tetrahymena thermophila Is Protective Against Influenza Infection. Front Immunol 2019; 10:2661. [PMID: 31798589 PMCID: PMC6863932 DOI: 10.3389/fimmu.2019.02661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Current influenza vaccines manufactured using eggs have considerable limitations, both in terms of scale up production and the potential impact passaging through eggs can have on the antigenicity of the vaccine virus strains. Alternative methods of manufacture are required, particularly in the context of an emerging pandemic strain. Here we explore the production of recombinant influenza haemagglutinin using the ciliated protozoan Tetrahymena thermophila. For the first time we were able to produce haemagglutinin from both seasonal influenza A and B strains. This ciliate derived material was immunogenic, inducing an antibody response in both mice and non-human primates. Mice immunized with ciliate derived haemagglutinin were protected against challenge with homologous influenza A or B viruses. The antigen could also be combined with submicron particles containing a Nod2 ligand, significantly boosting the immune response and reducing the dose of antigen required. Thus, we show that Tetrahymena can be used as a manufacturing platform for viral vaccine antigens.
Collapse
Affiliation(s)
| | | | - Charanjit Singh
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Ekaterina Kinnear
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - David C Busse
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi s.r.l., Siena, Italy
| | - Vanessa Contreras
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Celine Coiffier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | | | | | - John S Tregoning
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Affiliation(s)
- María E. Elguero
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara B. Nudel
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro D. Nusblat
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Protein-protein interaction studies reveal the Plasmodium falciparum merozoite surface protein-1 region involved in a complex formation that binds to human erythrocytes. Biochem J 2018; 475:1197-1209. [PMID: 29511044 DOI: 10.1042/bcj20180017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum merozoite surface protein (PfMSP) 1 has been studied extensively as a vaccine candidate antigen. PfMSP-1 undergoes proteolytic processing into four major products, such as p83, p30, p38, and p42, that are associated in the form of non-covalent complex(s) with other MSPs. To delineate MSP1 regions involved in the interaction with other MSPs, here we expressed recombinant proteins (PfMSP-165) encompassing part of p38 and p42 regions and PfMSP-119 PfMSP-165 interacted strongly with PfMSP-3, PfMSP-6, PfMSP-7, and PfMSP-9, whereas PfMSP-119 did not interact with any of these proteins. Since MSP-1 complex binds human erythrocytes, we examined the ability of these proteins to bind human erythrocyte. Among the proteins of MSP-1 complex, PfMSP-6 and PfMSP-9 bound to human erythrocytes. Serological studies showed that PfMSP-165 was frequently recognized by sera from malaria endemic regions, whereas this was not the case for PfMSP-119 In contrast, antibodies against PfMSP-119 showed much higher inhibition of merozoite invasion compared with antibodies against the larger PfMSP-165 fragment. Importantly, anti-PfMSP-119 antibodies recognized both recombinant proteins, PfMSP-119 and PfMSP-165; however, anti-PfMSP-165 antibody failed to recognize the PfMSP-119 protein. Taken together, these results demonstrate that PfMSP-1 sequences upstream of the 19 kDa C-terminal region are involved in molecular interactions with other MSPs, and these sequences may probably serve as a smoke screen to evade antibody response to the membrane-bound C-terminal 19 kDa region.
Collapse
|
10
|
Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol Adv 2017; 36:26-46. [PMID: 28911809 DOI: 10.1016/j.biotechadv.2017.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
Thraustochytrids were first discovered in 1934, and since the 1960's they have been increasingly studied for their beneficial and deleterious effects. This review aims to provide an enhanced understanding of these protists with a particular emphasis on their taxonomy, ecology and biotechnology applications. Over the years, thraustochytrid taxonomy has improved with the development of modern molecular techniques and new biochemical markers, resulting in the isolation and description of new strains. In the present work, the taxonomic history of thraustochytrids is reviewed, while providing an up-to-date classification of these organisms. It also describes the various biomarkers that may be taken into consideration to support taxonomic characterization of the thraustochytrids, together with a review of traditional and modern techniques for their isolation and molecular identification. The originality of this review lies in linking taxonomy and ecology of the thraustochytrids and their biotechnological applications as producers of docosahexaenoic acid (DHA), carotenoids, exopolysaccharides and other compounds of interest. The paper provides a summary of these aspects while also highlighting some of the most important recent studies in this field, which include the diversity of polyunsaturated fatty acid metabolism in thraustochytrids, some novel strategies for biomass production and recovery of compounds of interest. Furthermore, a detailed overview is provided of the direct and current applications of thraustochytrid-derived compounds in the food, fuel, cosmetic, pharmaceutical, and aquaculture industries and of some of the commercial products available. This review is intended to be a source of information and references on the thraustochytrids for both experts and those who are new to this field.
Collapse
Affiliation(s)
- Loris Fossier Marchan
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Kim J Lee Chang
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Peter D Nichols
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Wilfrid J Mitchell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Jane L Polglase
- Jane L Polglase Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tony Gutierrez
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
11
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
12
|
Calow J, Behrens AJ, Mader S, Bockau U, Struwe WB, Harvey DJ, Cormann KU, Nowaczyk MM, Loser K, Schinor D, Hartmann MWW, Crispin M. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. MAbs 2016; 8:1498-1511. [PMID: 27594301 PMCID: PMC5098438 DOI: 10.1080/19420862.2016.1228504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity.
Collapse
Affiliation(s)
| | - Anna-Janina Behrens
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | | | | | - Weston B Struwe
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - David J Harvey
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| | - Kai U Cormann
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Marc M Nowaczyk
- c Plant Biochemistry, Ruhr University Bochum , Bochum , Germany
| | - Karin Loser
- d Department of Dermatology , University of Münster , Münster , Germany
| | - Daniel Schinor
- e Wessling GmbH, Pharmaanalytik Münster , Münster , Germany
| | | | - Max Crispin
- b Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford , UK
| |
Collapse
|
13
|
Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S. Recent advances in recombinant protein-based malaria vaccines. Vaccine 2015; 33:7433-43. [PMID: 26458807 PMCID: PMC4687528 DOI: 10.1016/j.vaccine.2015.09.093] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/05/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
Protein-based vaccines remain the cornerstone approach for B cell and antibody induction against leading target malaria antigens. Advances in antigen selection, immunogen design and epitope-focusing are advancing the field. New heterologous expression platforms are enabling cGMP production of next-generation protein vaccines. Next-generation antigens, protein-based immunogens and virus-like particle (VLP) delivery platforms are in clinical development. Protein-based vaccines will form part of a highly effective multi-component/multi-stage/multi-antigen subunit formulation against malaria.
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | - Evelina Angov
- Walter Reed Army Institute of Research, U. S. Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 561-873, Japan
| | - Louis H Miller
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prakash Srinivasan
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
14
|
Kumar S, Kumari R, Pandey R. New insight-guided approaches to detect, cure, prevent and eliminate malaria. PROTOPLASMA 2015; 252:717-753. [PMID: 25323622 DOI: 10.1007/s00709-014-0697-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their scaffold structure several of the desired properties of malaria cure and control are exemplified by OZ439, NITD609, ELQ300 and tafenoquine that are already undergoing clinical trials, and decoquinate, usnic acid, torin-2, ferroquine, WEHI-916, MMV396749 and benzothiophene-type N-myristoyltransferase (NMT) inhibitors, which are candidates for future clinical usage. Among these, NITD609, ELQ300, decoquinate, usnic acid, torin-2 and NMT inhibitors not only cure simple malaria and are prophylactic against simple malaria, but they also cure relapsing malaria.
Collapse
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development (SKAIRED), 4/11 SarvPriya Vihar, New Delhi, 110016, India,
| | | | | |
Collapse
|
15
|
Sarkari P, Reindl M, Stock J, Müller O, Kahmann R, Feldbrügge M, Schipper K. Improved expression of single-chain antibodies in Ustilago maydis. J Biotechnol 2014; 191:165-75. [DOI: 10.1016/j.jbiotec.2014.06.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|