1
|
Fiore G, Pascuzzi MC, Di Profio E, Corsello A, Agostinelli M, La Mendola A, Milanta C, Campoy C, Calcaterra V, Zuccotti G, Verduci E. Bioactive compounds in childhood obesity and associated metabolic complications: Current evidence, controversies and perspectives. Pharmacol Res 2023; 187:106599. [PMID: 36503001 DOI: 10.1016/j.phrs.2022.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Obesity represents the most frequent chronic disease among children worldwide, with a significant global burden on society. Metabolically unhealthy obesity (MUO) can affect children since their first years of life, and novel therapeutic strategies to tackle metabolic complications are under investigation. This review focuses on bioactive compounds and their possible beneficial effects on obesity, particularly omega-3, docosahexaenoic acid, vitamin D, biotics, polysaccharide macromolecules, polyphenols, inositols, alpha lipoic acid, and bromelaine. Our aim is to summarize current evidence about bioactive compounds in the treatment of obesity, highlighting recent findings on their use in children and adolescents. Most studied molecules are omega-3 and vitamin D, despite the heterogeneity between the studies. Moreover, given the emerging interest in the gut-brain axis in the link between metabolic health and microbiota, various studies on prebiotics, probiotics, synbiotics, postbiotics and polysaccharide macromolecules have been considered. Some preclinical studies seem to highlight a possible role of the polyphenols, even if their clinical evidence is still discussed. Lastly, we describe possible effects of inositols and alpha-lipoic acid. Despite some dietary supplements seem to be promising in overweight subjects, only in a few of them a dose/response efficacy has been found in the pediatric age. Innovative, well-designed and targeted clinical trials are then needed to prove the beneficial effects of these compounds that could support the standard behavioral therapy for obesity.
Collapse
Affiliation(s)
- Giulia Fiore
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy.
| | | | - Elisabetta Di Profio
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy.
| | - Antonio Corsello
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy.
| | - Marta Agostinelli
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy.
| | - Alice La Mendola
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy.
| | - Chiara Milanta
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), San Cecilio University Hospital. Health Sciences Technological Park, 18016 Granada, Spain.
| | - Valeria Calcaterra
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy; Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Gianvincenzo Zuccotti
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy.
| | - Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Wang Y, Li J, do Vale GD, Chaudhary J, Anwar A, McDonald JG, Qin T, Zhang H, Corbin IR. Repeated trans-arterial treatments of LDL-DHA nanoparticles induce multiple pathways of tumor cell death in hepatocellular carcinoma bearing rats. Front Oncol 2022; 12:1052221. [PMID: 36505796 PMCID: PMC9730405 DOI: 10.3389/fonc.2022.1052221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Repeated hepatic arterial delivery of therapeutic agents to the liver by percutaneously implanted port-catheter systems has been widely used to treat unresectable liver cancer. This approach is applied to assess the therapeutic efficacy of repeated low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticle treatments in a rat model of hepatocellular carcinoma. Methods N1S1 hepatoma bearing rats underwent placement of a percutaneously implanted hepatic artery port-catheter system and were allocated to untreated, control LDL-triolein (LDL-TO) or LDL-DHA nanoparticle infusions groups. Treatments were performed every three days over a nine day study period. MRI was performed at baseline and throughout the study. At the end of the study tissue samples were collected for analyses. Results and Discussion Implantation of the port catheters was successful in all rats. MRI showed that repeated infusions of LDL-DHA nanoparticles significantly impaired the growth of the rat hepatomas eventually leading to tumor regression. The tumors in the LDL-TO treated group showed delayed growth, while the untreated tumors grew steadily throughout the study. Histopathology and MRI support these findings demonstrating extensive tumor necrosis in LDL-DHA treated groups while the control groups displayed minor necrosis. Molecular and biochemical analyses also revealed that LDL-DHA treated tumors had increased levels of nuclear factor-kappa B and lipid peroxidation and depletion of glutathione peroxidase 4 relative to the control groups. Evidence of both ferroptosis and apoptosis tumor cell death was observed following LDL-DHA treatments. In conclusion repeated transarterial infusions of LDL-DHA nanoparticles provides sustained repression of tumor growth in a rat hepatoma model.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Junjie Li
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jaideep Chaudhary
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Arnida Anwar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jeffrey G. McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Tao Qin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Ian R. Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
- Internal Medicine Division of Liver and Digestive Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
- Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
3
|
Design, Characterization, and Immune Augmentation of Docosahexaenoic Acid Nanovesicles as a Potential Delivery System for Recombinant HBsAg Protein. Vaccines (Basel) 2022; 10:vaccines10060954. [PMID: 35746563 PMCID: PMC9231307 DOI: 10.3390/vaccines10060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recombinant HBsAg-loaded docosahexaenoic acid nanovesicles were successfully developed, lyophilized (LRPDNV) and characterized for their physico-chemical properties. The zetapotential (ZP) of LRPDNV was −60.4 ± 10.4 mV, and its polydispersity (PDI) was 0.201, with a % PDI of 74.8. The particle sizes of LRPDNV were 361.4 ± 48.24 z. d.nm and 298.8 ± 13.4 r.nm. The % mass (r.nm) of LRPDNV in a colloidal injectable system was 50, its mobility value was −3.417 µm cm/Vs, while the conductivity of the particles was 0.728 (mS/cm). Transmission electron microscopic (TEM) analysis showed smooth morphological characteristics of discrete spherical LRPDNV. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of LRPDNV revealed that LRPDNV is thermostable. The X-ray diffraction (XRD) studies showed a discrete crystalline structure of LRPDNV at 2θ. Nuclear magnet resonance (NMR) studies (1H-NMR and 13C-NMR spectrum showed the discrete structure of LRPDNV. The immunogenicity study was performed by antibody induction technique. The anti-HBs IgG levels were elevated in Wistar rats; the antibody induction was observed more in the product (LRPDNV) treatment group when compared to the standard vaccine group. The level of antibodies on the 14th and 30th day was 6.3 ± 0.78 U/mL and 9.24 ± 1.76 U/mL in the treatment and standard vaccine groups, respectively. Furthermore, the antibody level on the 30th day in the treatment group was 26.66 ± 0.77 U/mL, and in the standard vaccine group, the antibody level was 23.94 ± 1.62 U/mL. The LRPDNV vaccine delivery method released HBsAg sustainably from the 14th to the 30th day. The results of this study indicate the successful formulation of DHA nanovesicles which have great potential as an adjuvant system for the delivery of recombinant HBsAg protein.
Collapse
|
4
|
Codoñer-Alejos A, Carrasco-Luna J, Carrasco-García Á, Codoñer-Franch P. Reduced Free Fatty Acid Receptor 4 Gene Expression is Associated With Extreme Obesity and Insulin Resistance in Children. J Pediatr Gastroenterol Nutr 2022; 74:535-540. [PMID: 35703949 DOI: 10.1097/mpg.0000000000003360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Free fatty acid receptor 4 (FFAR4) is a G-protein-coupled membrane receptor highly expressed in macrophages that triggers anti-inflammatory effects and promotes insulin sensitization. We have previously found significant associations between the FFAR4 rs11187533 single nucleotide polymorphism (SNP) and various obesity comorbidity parameters. We aimed to verify the FFAR4 expression levels in children with obesity and the associated comorbidities. METHODS Thirty-eight children with obesity were studied. Clinical and anthropometric evaluation was performed. A venous sample under fasting conditions was obtained. Biochemical study included parameters of metabolic risk. DNA was extracted and genotyped for the rs11187533 FFAR4 SNP. Real-time PCR technique was performed to investigate the gene expression. Relative FFAR4 mRNA levels were determined according to the 2-ΔΔCt method. RESULTS Significant differences in FFAR4 expression levels between the CC and CT-TT genotypes of the rs11187533 FFAR4 SNP were observed (P = 0.034). The minor allele T presented higher levels of FFAR4 expression. We found that a loss of FFAR4 expression was associated with extreme obesity (P = 0.032). The lowest FFAR4 expression levels were observed in children who had higher insulin (P = 0.008) and homeostasis model assessment insulin resistance values (P = 0.012) and lower quantitative insulin-sensitivity check index (P = 0.033). CONCLUSIONS The underexpression of FFAR4 was associated with extreme obesity and parameters indicative of obesity comorbidities in children. This under expression could be partially influenced by the presence of the C allele rs11187533 FFAR4 SNP.
Collapse
Affiliation(s)
| | - Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia
- Department of Experimental Science, Catholic University of Valencia, Valencia
| | | | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia
- Department of Pediatrics, University Hospital Dr Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
5
|
Xu F, Wang J, Wang P, Hou T, Zhou H, Zhao Y, Wang J, Liu Y, Liang X. Ursodesoxycholic acid is an FFA4 agonist and reduces hepatic steatosis via FFA4 signaling. Eur J Pharmacol 2022; 917:174760. [PMID: 35033554 DOI: 10.1016/j.ejphar.2022.174760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Ursodeoxycholic acid (UDCA) is a safe bile acid effective in reducing hepatic steatosis in non-alcoholic fatty liver disease (NAFLD). However, the mechanism of action linked to this effect is poorly defined. In the present study, we identified that UDCA acted as a free fatty acid receptor 4 (FFA4) agonist with EC50 of 10.4 ± 0.7 μM, and its activity was determined by dynamic mass redistribution, fluorometric imaging plate reader, inositol monophosphate and bioluminescence resonance energy transfer assays. Moreover, UDCA showed FFA4 selectivity over eleven other G protein-coupled receptors. Real-Time PCR and immunocytochemistry analyses showed that FFA4 was abundantly expressed in human hepatocytes HuH-7 cells. In an in vitro model of NAFLD induced by oleic acid (OA), UDCA downregulated lipid accumulation in HuH-7 cells and suppressed sterol-regulatory element binding protein-1c (SREBP-1c) mRNA expression. This suppression of SREBP-1c was restored when FFA4 expression was knocked down in siRNA assay. In a mouse model of hepatic steatosis, db/db mice were exposed to a high-fat diet (HFD), and treatment of UDCA or docosahexaenoic acid (DHA, an endogenous FFA4 agonist) effectively prevented body weight gain and hepatic fat deposition and reduced triglyceride (TG) levels in serum and liver. This study not only identified a new skeleton of FFA4 agonists, but also demonstrated that FFA4 signal was accounting for the protective effects of UDCA in the NAFLD treatment.
Collapse
Affiliation(s)
- Fangfang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Jun Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Pan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yaopeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
6
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
|
7
|
Frank J, Kisters K, Stirban OA, Obeid R, Lorkowski S, Wallert M, Egert S, Podszun MC, Eckert GP, Pettersen JA, Venturelli S, Classen HG, Golombek J. The role of biofactors in the prevention and treatment of age-related diseases. Biofactors 2021; 47:522-550. [PMID: 33772908 DOI: 10.1002/biof.1728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
The present demographic changes toward an aging society caused a rise in the number of senior citizens and the incidence and burden of age-related diseases (such as cardiovascular diseases [CVD], cancer, nonalcoholic fatty liver disease [NAFLD], diabetes mellitus, and dementia), of which nearly half is attributable to the population ≥60 years of age. Deficiencies in individual nutrients have been associated with increased risks for age-related diseases and high intakes and/or blood concentrations with risk reduction. Nutrition in general and the dietary intake of essential and nonessential biofactors is a major determinant of human health, the risk to develop age-related diseases, and ultimately of mortality in the older population. These biofactors can be a cost-effective strategy to prevent or, in some cases, even treat age-related diseases. Examples reviewed herein include omega-3 fatty acids and dietary fiber for the prevention of CVD, α-tocopherol (vitamin E) for the treatment of biopsy-proven nonalcoholic steatohepatitis, vitamin D for the prevention of neurodegenerative diseases, thiamine and α-lipoic acid for the treatment of diabetic neuropathy, and the role of folate in cancer epigenetics. This list of potentially helpful biofactors in the prevention and treatment of age-related diseases, however, is not exhaustive and many more examples exist. Furthermore, since there is currently no generally accepted definition of the term biofactors, we here propose a definition that, when adopted by scientists, will enable a harmonization and consistent use of the term in the scientific literature.
Collapse
Affiliation(s)
- Jan Frank
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Klaus Kisters
- Medical Clinic I, St. Anna-Hospital & ESH Excellence Centre, Herne, Germany
| | | | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Sarah Egert
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | - Maren C Podszun
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Jacqueline A Pettersen
- Northern Medical Program, University of Northern British Columbia, Prince George, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sascha Venturelli
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | - Hans-Georg Classen
- University of Hohenheim, Institute of Nutritional Sciences, Stuttgart, Germany
| | | |
Collapse
|
8
|
DHA Protects Hepatocytes from Oxidative Injury through GPR120/ERK-Mediated Mitophagy. Int J Mol Sci 2021; 22:ijms22115675. [PMID: 34073582 PMCID: PMC8198367 DOI: 10.3390/ijms22115675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy.
Collapse
|
9
|
Impact of the Association Between PNPLA3 Genetic Variation and Dietary Intake on the Risk of Significant Fibrosis in Patients With NAFLD. Am J Gastroenterol 2021; 116:994-1006. [PMID: 33306506 PMCID: PMC8087619 DOI: 10.14309/ajg.0000000000001072] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION This study explored the relationship between patatin-like phospholipase domain-containing 3 gene (PNPLA3 rs738409), nutrient intake, and liver histology severity in patients with nonalcoholic fatty liver disease (NAFLD). METHODS PNPLA3-rs738409 variant was genotyped in 452 non-Hispanic whites with histologically confirmed NAFLD who completed Food Frequency Questionnaire within 6 months of their liver biopsy. The fibrosis severity on liver histology was the outcome of interest. RESULTS The distribution of PNPLA3 genotypes was CC: 28%, CG: 46%, and GG: 25%. High-carbohydrate (% of energy/d) intake was positively associated (adjusted [Adj] odds ratio [OR]: 1.03, P < 0.01), whereas higher n-3 polyunsaturated fatty acids (n-3 PUFAs) (g/d) (Adj. OR: 0.17, P < 0.01), isoflavones (mg/d) (Adj. OR: 0.74, P = 0.049), methionine (mg/d) (Adj. OR: 0.32, P < 0.01), and choline (mg/d) (Adj. OR: 0.32, P < 0.01) intakes were inversely associated with increased risk of significant fibrosis (stage of fibrosis ≥2). By using an additive model of inheritance, our moderation analysis showed that PNPLA3 rs738409 significantly modulates the relationship between carbohydrate (%), n-3 PUFAs, total isoflavones, methionine, and choline intakes and fibrosis severity in a dose-dependent, genotype manner. These dietary factors tended to have a larger and significant effect on fibrosis severity among rs738409 G-allele carriers. Associations between significant fibrosis and carbohydrates (Adj. OR: 1.04, P = 0.019), n-3 PUFAs (Adj. OR: 0.16, P < 0.01), isoflavones (Adj. OR: 0.65, P = 0.025), methionine (Adj. OR: 0.30, P < 0.01), and total choline (Adj. OR: 0.29, P < 0.01) intakes remained significant only among rs738409 G-allele carriers. DISCUSSION This gene-diet interaction study suggests that PNPLA3 rs738409 G-allele might modulate the effect of specific dietary nutrients on risk of fibrosis in patients with NAFLD.
Collapse
|
10
|
Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M. Free Fatty Acid Receptors as Mediators and Therapeutic Targets in Liver Disease. Front Physiol 2021; 12:656441. [PMID: 33897464 PMCID: PMC8058363 DOI: 10.3389/fphys.2021.656441] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Free fatty acid receptors (FFARs) are a class of G protein-coupled receptors (GPCRs) that have wide-ranging effects on human physiology. The four well-characterized FFARs are FFAR1/GPR40, FFAR2/GPR43, FFAR3/GPR41, and FFAR4/GPR120. Short-chain (<6 carbon) fatty acids target FFAR2/GPR43 and FFAR3/GPR41. Medium- and long-chain fatty acids (6-12 and 13-21 carbon, respectively) target both FFAR1/GPR40 and FFAR4/GPR120. Signaling through FFARs has been implicated in non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), intestinal failure-associated liver disease (IFALD), and a variety of other liver disorders. FFARs are now regarded as targets for therapeutic intervention for liver disease, diabetes, obesity, hyperlipidemia, and metabolic syndrome. In this review, we provide an in-depth, focused summary of the role FFARs play in liver health and disease.
Collapse
Affiliation(s)
- Jordan D. Secor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
11
|
Kalveram L, Schunck WH, Rothe M, Rudolph B, Loddenkemper C, Holzhütter HG, Henning S, Bufler P, Schulz M, Meierhofer D, Zhang IW, Weylandt KH, Wiegand S, Hudert CA. Regulation of the cytochrome P450 epoxyeicosanoid pathway is associated with distinct histologic features in pediatric non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102229. [PMID: 33388475 DOI: 10.1016/j.plefa.2020.102229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Laura Kalveram
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | - Birgit Rudolph
- Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | - Stephan Henning
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Marten Schulz
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany
| | - Ingrid W Zhang
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Karsten H Weylandt
- Department of Gastroenterology, Diabetes, Oncology and Rheumatology, Ruppiner Kliniken, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
12
|
López-Méndez I, Méndez-Maldonado K, Manzo-Francisco LA, Juárez-Hernández E, Uribe M, Barbero-Becerra VJ. G protein-coupled receptors: Key molecules in metabolic associated fatty liver disease development. Nutr Res 2020; 87:70-79. [PMID: 33601216 DOI: 10.1016/j.nutres.2020.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a range of hepatic disorders with progression to steatohepatitis with risk of development of fibrosis, cirrhosis, and hepatocellular carcinoma. MAFLD is strongly related to metabolic disorders of active fatty acids, which seem to be selective according to their specific ligand of G protein-coupled receptors (GPRs) located in immune response cells. An approach to study the pathophysiological mechanisms of MAFLD could be through the expression of active fatty acids ligands. The expression of GPRs is associated with obesity, microbiota environment, and dietary characteristics in patients with MAFLD. More specifically, GPR41, GPR43, GPR20, and GPR120 have been associated with alteration of lipid metabolism in hepatic and intestinal cells, and consequently they have a key role in metabolic diseases. We observed that GPR120 is not expressed in nonoverweight/obese patients, regardless of the presence of MAFLD; meanwhile the expression of GPR41 is increased in patients with lean MAFLD. GPRs role in liver disease is intriguing and a field of research opportunity. More studies are necessary to define the role of active fatty acids in the development of metabolic diseases.
Collapse
Affiliation(s)
- Iván López-Méndez
- Transplants and Hepatology Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Karla Méndez-Maldonado
- Cellular Physiology Institute, Neurosciences Division & Physiology and Pharmacology Department, Veterinary and Zootechnics Faculty, UNAM, Mexico City, Mexico
| | | | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Misael Uribe
- Gastrointestinal and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | |
Collapse
|
13
|
Alberti G, Gana JC, Santos JL. Fructose, Omega 3 Fatty Acids, and Vitamin E: Involvement in Pediatric Non-Alcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12113531. [PMID: 33212947 PMCID: PMC7698421 DOI: 10.3390/nu12113531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common form of liver disease in both adults and children, becoming the leading cause for liver transplant in many countries. Its prevalence has increased considerably in recent years, mainly due to the explosive increase in pediatric obesity rates. NAFLD is strongly associated with central obesity, diabetes, dyslipidemia and insulin resistance, and it has been considered as the hepatic manifestation of the metabolic syndrome. Its complex pathophysiology involves a series of metabolic, inflammatory and oxidative stress processes, among others. Given the sharp increase in the prevalence of NAFLD and the lack of an appropriate pharmacological approach, it is crucial to consider the prevention/management of the disease based on lifestyle modifications such as the adoption of a healthy nutrition pattern. Herein, we review the literature and discuss the role of three key nutrients involved in pediatric NAFLD: fructose and its participation in metabolism, Omega-3 fatty acids and its anti-inflammatory effects and vitamin E and its action on oxidative stress.
Collapse
Affiliation(s)
- Gigliola Alberti
- Gastroenterology and Nutrition Department, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile; (G.A.); (J.C.G.)
| | - Juan Cristóbal Gana
- Gastroenterology and Nutrition Department, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile; (G.A.); (J.C.G.)
| | - José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Correspondence: ; Tel.: +56-2-2354-3868
| |
Collapse
|
14
|
Cansanção K, Citelli M, Carvalho Leite N, López de las Hazas MC, Dávalos A, Tavares do Carmo MDG, Peres WAF. Impact of Long-Term Supplementation with Fish Oil in Individuals with Non-Alcoholic Fatty Liver Disease: A Double Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020; 12:nu12113372. [PMID: 33147705 PMCID: PMC7693661 DOI: 10.3390/nu12113372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic disease affecting up to 25% of the population worldwide. n-3 long-chain polyunsaturated fatty acids (n-3 PUFA) have been associated with improved clinical parameters of NAFLD. Our purpose was to conduct a pilot study to evaluate the effects of n-3 PUFA supplementation in a randomized, double-blind, placebo-controlled clinical study performed on NAFLD individuals diagnosed by ultrasound. Patients received n-3 PUFA (n = 13) or placebo (n = 11) supplementation for six months. Circulating miR-122 expression (determined by quantitative real time-polymerase chain reaction (qRT-PCR), liver fibrosis (FibroScan®), red blood cells (RBC) fatty acids (gas chromatography), and biochemical tests were performed at baseline and after intervention. After the intervention, in the n-3 PUFA group, docosahexaenoic acid (DHA) and omega index increased significantly in RBC (p = 0.022 and p = 0.012, respectively), in addition to a significant reduction in alkaline phosphatase (ALP) (p = 0.002) and liver fibrosis (p = 0.039). However, there was no change in the expression of circulating miR-122 in both groups. Our results showed that omega-3 PUFA were incorporated in erythrocytes after six months of fish oil supplementary intake, and that n-3 PUFA were effective in reducing ALP and liver fibrosis without altering the expression of circulating miR-122 in individuals with NAFLD.
Collapse
Affiliation(s)
- Kátia Cansanção
- Institute of Nutrition Josué de Castro of Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21.941-902, Brazil; (K.C.); (M.d.G.T.d.C.)
| | - Marta Citelli
- Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20559-900, Brazil;
| | - Nathalie Carvalho Leite
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, School of Medicine of UFRJ, Rio de Janeiro 21.941-902, Brazil;
| | - María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain; (M-C.L.d.l.H.); (A.D.)
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain; (M-C.L.d.l.H.); (A.D.)
| | - Maria das Graças Tavares do Carmo
- Institute of Nutrition Josué de Castro of Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21.941-902, Brazil; (K.C.); (M.d.G.T.d.C.)
| | - Wilza Arantes Ferreira Peres
- Institute of Nutrition Josué de Castro of Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21.941-902, Brazil; (K.C.); (M.d.G.T.d.C.)
- Correspondence: ; Tel.: +55-21-393864-32
| |
Collapse
|
15
|
Crudele A, Panera N, Braghini MR, Balsano C, Alisi A. The pharmacological treatment of nonalcoholic fatty liver disease in children. Expert Rev Clin Pharmacol 2020; 13:1219-1227. [PMID: 32981386 DOI: 10.1080/17512433.2020.1829468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in childhood/adolescence. It comprises a broad spectrum of liver disease severity ranging from simple steatosis to steatohepatitis and fibrosis. To date lifestyle modifications, diet and physical activity represent the main option for the management of pediatric NAFLD, but numerous treatments classified depending on the mechanism of action, have been introduced. In keeping with, bariatric surgery, insulin sensitizers, antioxidants, probiotic and dietary supplementations have been evaluated in pediatric clinical trials. AREAS COVERED This review describes, after a search in PubMed/MEDLINE database, the current pediatric NAFLD non-pharmacological and pharmacological treatments and their effects on biochemical and histological features. We report not only the efficacy of the diet coupled with regular exercise but also advantages of the pharmacological treatments used in combination with lifestyle interventions in pediatric NAFLD. EXPERT OPINION Since pharmacological and non-pharmacological interventions have demonstrated variable effects in pediatric NAFLD, it is clear that safe and specific and efficient therapeutic strategies have not yet been identified. Therefore, large and long-term clinical trials in children are needed to find a way to reverse the liver tissue damage and the NAFLD-related long-term morbidity and mortality.
Collapse
Affiliation(s)
- Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Nadia Panera
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Maria Rita Braghini
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - Clara Balsano
- Department of Clinical Medicine, Life, Health & Environmental Sciences-MESVA, University of L'Aquila , L'Aquila, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| |
Collapse
|
16
|
Tomita Y, Cakir B, Liu CH, Fu Z, Huang S, Cho SS, Britton WR, Sun Y, Puder M, Hellström A, Talukdar S, Smith LEH. Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice. Angiogenesis 2020; 23:385-394. [PMID: 32140799 DOI: 10.1007/s10456-020-09717-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
To examine whether free fatty acid receptor 4 (FFAR4) activation can protect against choroidal neovascularization (CNV), which is a common cause of blindness, and to elucidate the mechanism underlying the inhibition, we used the mouse model of laser-induced CNV to mimic angiogenic aspects of age-related macular degeneration (AMD). Laser-induced CNV was compared between groups treated with an FFAR4 agonist or vehicle, and between FFAR4 wild-type (Ffar4+/+) and knock out (Ffar4-/-) mice on a C57BL/6J/6N background. The ex vivo choroid-sprouting assay, including primary retinal pigment epithelium (RPE) and choroid, without retina was used to investigate whether FFAR4 affects choroidal angiogenesis. Western blotting for pNF-ĸB/NF-ĸB and qRT-PCR for Il-6, Il-1β, Tnf-α, Vegf, and Nf-ĸb were used to examine the influence of FFAR4 on inflammation, known to influence CNV. RPE isolated from Ffar4+/+ and Ffar4-/- mice were used to assess RPE contribution to inflammation. The FFAR4 agonist suppressed laser-induced CNV in C57BL/6J mice, and CNV increased in Ffar4-/- compared to Ffar4+/+ mice. We showed that the FFAR4 agonist acted through the FFAR4 receptor. The FFAR4 agonist suppressed mRNA expression of inflammation markers (Il-6, Il-1β) via the NF-ĸB pathway in the retina, choroid, RPE complex. The FFAR4 agonist suppressed neovascularization in the choroid-sprouting ex vivo assay and FFAR4 deficiency exacerbated sprouting. Inflammation markers were increased in primary RPE cells of Ffar4-/- mice compared with Ffar4+/+ RPE. In this mouse model, the FFAR4 agonist suppressed CNV, suggesting FFAR4 to be a new molecular target to reduce pathological angiogenesis in CNV.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - William R Britton
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, USA
| | - Ann Hellström
- Pediatric Ophthalmology, Sahlgrenska Academy, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | | | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
18
|
Chakravarthy MV, Waddell T, Banerjee R, Guess N. Nutrition and Nonalcoholic Fatty Liver Disease: Current Perspectives. Gastroenterol Clin North Am 2020; 49:63-94. [PMID: 32033765 DOI: 10.1016/j.gtc.2019.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis are diseases in their own right as well as modifiable risk factors for cardiovascular disease and type 2 diabetes. With expanding knowledge on NAFLD pathogenesis, insights have been gleaned into molecular targets for pharmacologic and nonpharmacologic approaches. Lifestyle modifications constitute a cornerstone of NAFLD management. This article reviews roles of key dietary macronutrients and micronutrients in NAFLD pathogenesis and their effects on molecular targets shared with established or emerging pharmacotherapies. Based on current evidence, a recommendation for a dietary framework as part of the comprehensive management strategy for NAFLD is provided.
Collapse
Affiliation(s)
| | - Thomas Waddell
- Perspectum Diagnostics, 23-38 Hythe Bridge Street, Oxford OX1 2ET, UK
| | - Rajarshi Banerjee
- Perspectum Diagnostics, 23-38 Hythe Bridge Street, Oxford OX1 2ET, UK; Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Nicola Guess
- King's College London, 150 Stamford Street, London SE1 9NH, UK; University of Westminster, 101 New Cavendish St, Fitzrovia, London W1W 6XH, United Kingdom
| |
Collapse
|
19
|
Nakamoto K, Tokuyama S. [Involvement of the Free Fatty Acid Receptor GPR120/FFAR4 in the Development of Nonalcoholic Steatohepatitis]. YAKUGAKU ZASSHI 2020; 139:1169-1175. [PMID: 31474633 DOI: 10.1248/yakushi.19-00011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the pathological accumulation of fat in the liver in the absence of any other disease related to liver steatosis, which includes a wide spectrum ranging from mild asymptomatic fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis. However, the pathogenesis of NASH has not been established. In this study, we investigated the involvement of the G-protein-coupled receptor 120/free fatty acid receptor 4 (GPR120/FFAR4) in the pathogenesis of NASH. Mice fed a 0.1% methionine- and choline-deficient l-amino acid-defined, high-fat (CDAHF) diet showed a significant increase in plasma aspartate aminotransferase and alanine aminotransferase levels, fatty deposition, inflammatory cell infiltration, and slight fibrosis. Docosahexanoic acid (DHA, a GPR120/FFAR4 agonist) suppressed the inflammatory cytokines in hepatic tissues and prevented liver fibrosis. On the other hand, GPR120/FFAR4-deficient CDAHF-fed mice showed increments in the number of hepatic crown-like structures and immunoreactivity to F4/80-positive cells compared with wild-type mice. Furthermore, the levels of hepatic TNF-α mRNA expression increased in GPR120-deficient mice. These findings suggest that the GPR120/FFAR4-mediating system could be a key signaling pathway to prevent the development of NASH. In this review, we describe our recent data showing that GPR120/FFAR4 could be a therapeutic target in NASH/NAFLD.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutucal Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutucal Sciences, Kobe Gakuin University
| |
Collapse
|
20
|
Song L, Zhou H, Yu W, Ding X, Yang L, Wu J, Song C. Effects of Phytosterol Ester on the Fatty Acid Profiles in Rats with Nonalcoholic Fatty Liver Disease. J Med Food 2020; 23:161-172. [PMID: 31913753 DOI: 10.1089/jmf.2019.4468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Both serum and hepatic fatty acid (FA) compositions differ among nonalcoholic hepatic steatosis, nonalcoholic steatohepatitis, and healthy subjects. The severity of the above liver disease is closely associated with the concentration and composition of FAs. Our previous study found that phytosterol ester (PSE) could alleviate hepatic steatosis in nonalcoholic fatty liver disease rats. The aims of this work were to explore the effects of PSE (0.05/100 g·body weight) on FA profiles and the mRNA levels of FA metabolism-related genes. Compared with a high-fat diet alone group, PSE treatment significantly decreased hepatic saturated fatty acid levels (P < .05) and increased monounsaturated fatty acid (especially C16:1 n-7) levels in the liver, serum, and adipose tissue and polyunsaturated fatty acid levels in the serum and liver (P < .05) after 12 weeks of intervention. In particular, PSE treatment increased the level of C22:5 n-3, an FA that was negatively correlated with the degree of hepatic steatosis in the serum, liver, and adipose tissue. The increases in some unsaturated fatty acids are probably related to the upregulation of stearoyl-coenzyme A desaturase-1 and fatty acid desaturase-1.
Collapse
Affiliation(s)
- Lihua Song
- Department of Food Science and Technology, Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyue Zhou
- Department of Food Science and Technology, Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Food Science and Technology, Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Department of Food Science and Technology, Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Wu
- Department of Food Science and Technology, Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenwei Song
- Department of Food Science and Technology, Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Lin YC, Wu CC, Ni YH. New Perspectives on Genetic Prediction for Pediatric Metabolic Associated Fatty Liver Disease. Front Pediatr 2020; 8:603654. [PMID: 33363067 PMCID: PMC7755886 DOI: 10.3389/fped.2020.603654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic or recently re-defined metabolic associated fatty liver disease (MAFLD), a spectrum of progressive hepatic disease, has become a public health issue in obese children and adolescents. MAFLD is a complex metabolic disease strongly associated with obesity and insulin resistance. It is not known why not every obese subject will develop MAFLD. Different ethnic/racial groups display differences in MAFLD prevalence, indicating genetic factor plays a role. In the past two decades, sequence variations in genetic loci, including PNPLA3, TM6SF2, GCKR, MBOAT7, HSD17B13, etc. have been shown to confer susceptibility to MAFLD in children and adults. This review article provides an updated viewpoint of genetic predictors related to pediatric MAFLD. We discuss whether these susceptible genes can be clinically used for risk stratification and personalized care. Understanding human genetics and molecular mechanisms can give important information not only for prediction of risk but also on how to design drugs. In view of current epidemic of MAFLD worldwide, it is necessary to identify which children with MAFLD progress rapidly and need earlier intervention. In the future, a comprehensive analysis of individualized genetic and environmental factors may help assess the risk of children with MAFLD and personalize their treatment.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Chi-Chien Wu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Hsuan Ni
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
A Nutraceutical Rich in Docosahexaenoic Acid Improves Portal Hypertension in a Preclinical Model of Advanced Chronic Liver Disease. Nutrients 2019; 11:nu11102358. [PMID: 31623374 PMCID: PMC6835927 DOI: 10.3390/nu11102358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammation and oxidative stress play a key role in the pathophysiology of advanced chronic liver disease (ACLD) and portal hypertension (PH). Considering the current lack of effective treatments, we evaluated an anti-inflammatory and antioxidant nutraceutical rich in docosahexaenoic acid (DHA) as a possible therapy for ACLD. We investigated the effects of two-week DHA supplementation (500 mg/kg) on hepatic fatty acids, PH, oxidative stress, inflammation, and hepatic stellate cell (HSC) phenotype in rats with ACLD. Additionally, the effects of DHA were evaluated in murine macrophages and human HSC. In contrast to vehicle-treated animals, cirrhotic rats receiving DHA reestablished a healthy hepatic fatty acid profile, which was associated with an improvement in PH. The mechanisms underlying this hemodynamic improvement included a reduction in oxidative stress and inflammation, as well as a marked HSC deactivation, confirmed in human HSC. Experiments with cultured macrophages showed that treatment with DHA protects against pro-inflammatory insults. The present preclinical study demonstrates that a nutraceutical rich in DHA significantly improves PH in chronic liver disease mainly by suppressing inflammation and oxidative stress-driven HSC activation, encouraging its evaluation as a new treatment for PH and cirrhosis.
Collapse
|
23
|
Musa-Veloso K, Venditti C, Lee HY, Darch M, Floyd S, West S, Simon R. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr Rev 2019; 76:581-602. [PMID: 29917092 PMCID: PMC6367993 DOI: 10.1093/nutrit/nuy022] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Context Treatment options for nonalcoholic fatty liver disease (NAFLD) are needed. Objective The aim of this review was to systematically assess the effects of omega-3 long-chain
polyunsaturated fatty acids (n-3 LC-PUFAs), particularly eicosapentaenoic acid and
docosahexaenoic acid, on liver-related and metabolic outcomes in adult and pediatric
patients with NAFLD. Data Sources The online information service ProQuest Dialog was used to search 8 literature
databases. Study Selection Controlled intervention studies in which the independent effects of n-3 LC-PUFAs could
be isolated were eligible for inclusion. Data Extraction The 18 unique studies that met the criteria for inclusion were divided into 2 sets, and
data transcriptions and study quality assessments were conducted in duplicate. Each
effect size was expressed as the weighted mean difference and 95%CI, using a
random-effects model and the inverse of the variance as a weighting factor. Results Based on the meta-analyses, supplementation with n-3 LC-PUFAs resulted in statistically
significant improvements in 6 of 13 metabolic risk factors, in levels of 2 of 3 liver
enzymes, in liver fat content (assessed via magnetic resonance imaging/spectroscopy),
and in steatosis score (assessed via ultrasonography). Histological measures of disease
[which were assessed only in patients with nonalcoholic steatohepatitis (NASH)] were
unaffected by n-3 LC-PUFA supplementation. Conclusions Omega-3 LC-PUFAs are useful in the dietary management of patients with NAFLD.
Additional trials are needed to better understand the effects of n-3 LC-PUFAs on
histological outcomes in patients with NASH. Systematic Review Registration PROSPERO CRD42017055951.
Collapse
Affiliation(s)
- Kathy Musa-Veloso
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Carolina Venditti
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Han Youl Lee
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Maryse Darch
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Seth Floyd
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Spencer West
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Ryan Simon
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| |
Collapse
|
24
|
Tzifi F, Fretzayas A, Chrousos G, Kanaka-Gantenbein C. Non-alcoholic fatty liver infiltration in children: an underdiagnosed evolving disease. Hormones (Athens) 2019; 18:255-265. [PMID: 31140156 DOI: 10.1007/s42000-019-00107-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) constitutes the most common liver disease, one that is still underdiagnosed in pediatric populations (as well as in the general population), this due to the progressive increase in childhood obesity observed both in developed and developing countries during the last few decades. The pathophysiology of the disease has not been thoroughly clarified yet. The condition displays common pathways in adults and children; however, there are age-related differences. Unlike adults, children with NAFLD require extensive laboratory analysis, because underlying pathologies other than obesity may contribute to the evolution of the disease. Despite the presence of several serum markers and imaging techniques that contribute to NAFLD diagnosis, liver biopsy remains the gold standard diagnostic procedure. Early intervention and obesity prevention are mandatory, as NAFLD is reversible at an early stage. If left undiagnosed and untreated, NAFLD can progress to steatohepatitis (NASH) and subsequent liver failure, a potentially lethal complication. Of note, there are no treatment options when advanced liver fibrosis occurs. This review summarizes literature data on NAFLD in childhood indicating that this is an evolving disease and a significant component of the metabolic syndrome. Pediatricians should be aware of this entity, screening children at high risk and providing appropriate early management, in collaboration with pediatric subspecialists.
Collapse
Affiliation(s)
- Flora Tzifi
- First Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Athens Medical Group, Marousi, Greece.
| | | | - George Chrousos
- First Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, Division of Endocrinology, Diabetes and Metabolism, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
25
|
Squitti R, Cerchiaro G, Giovannoni I, Francalanci P, Siotto M, Maffei P, Ricordi C, Rongioletti MC. A case of a mild Wolfram Syndrome with concomitant ATP7B mutation. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2019; 7. [PMID: 33869661 DOI: 10.32113/cellr4_20198_2735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Wolfram Syndrome 1 (WS1) has been characterized on the basis of mutation in the WFS1 gene encoding a calcium storage wolframin endoplasmatic reticulum transmembrane glycoprotein. Patients and Methods We observed a WS 10-years old female subject, with Type 1 diabetes-mellitus (DM), that had compound heterozygous WSF1 mutations but without other symptoms generally observed in WS subjects, such as optic atrophy or neurodegeneration. Results Decreased copper, ceruloplasmin, and transferrin levels, pointing to a copper deficiency, were associated with a new c.18703A>G mutation in the ATP7B gene, while lower calcium levels were associated with WSF1 mutations. An omega-3 fatty acids therapy was administrated to the subject in the attempt to ameliorate diabetes symptoms, restored copper deficiency, and normal calcium levels. Conclusions This specific case report provides new insights into the potential interplay of ATP7B mutation in shaping a milder WS clinical picture.
Collapse
Affiliation(s)
- R Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - G Cerchiaro
- Center of Natural Sciences and Humanities, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - I Giovannoni
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Siotto
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - P Maffei
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Italy
| | - C Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, USA
| | - M C Rongioletti
- Department of Laboratory Medicine, Research and Development Division, 'San Giovanni Calibita', Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
26
|
The Role of Genetic Predisposition, Programing During Fetal Life, Family Conditions, and Post-natal Diet in the Development of Pediatric Fatty Liver Disease. J Pediatr 2019; 211:72-77.e4. [PMID: 31128886 DOI: 10.1016/j.jpeds.2019.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate, in patients with nonalcoholic fatty liver disease (NAFLD), the role of lifetime exposures associated with genetic predisposition, family history (parental obesity, economic income), programming during fetal life (gestational age, birthweight), being breastfed or not, and later biomarkers of dietary habits and lifestyle in the development of fibrosis. STUDY DESIGN In total, 182 children with overweight/obesity diagnosed with NAFLD proven by biopsy results were enrolled in our study and evaluated for liver fibrosis. We estimated prevalence ORs of fibrosis according to genetics, parental obesity, occupational socioeconomic status (SES), birth weight, breastfeeding, fructose intake (indicator of junk food consumption), and vitamin D status (inflammatory indicator) using logistic regression models, adjusted for age and children's body mass. RESULTS One hundred thirty-seven patients (75.3%) had liver fibrosis, and 45 patients (24.7%) did not have liver fibrosis. The ORs of fibrosis were significant (P < .05) for patatin like phospholipase domain-containing 3-GG genotype (OR 2.1), parental obesity (OR 2.9), not being breastfed (OR 3.1), vitamin D status (<20 mg/dL) (OR 1.24), and fructose consumption (OR 1.6 per 1 g/day increase), whereas a high SES maternal occupation was inversely associated with fibrosis (OR 0.30). CONCLUSIONS Our results show independent roles of the patatin like phospholipase domain-containing 3 gene, parental obesity, maternal SES, and postnatal diet and lifestyle in the development of progressive liver disease secondary to NAFLD.
Collapse
|
27
|
On S, Kim HY, Kim HS, Park J, Kang KW. Involvement of G-Protein-Coupled Receptor 40 in the Inhibitory Effects of Docosahexaenoic Acid on SREBP1-Mediated Lipogenic Enzyme Expression in Primary Hepatocytes. Int J Mol Sci 2019; 20:E2625. [PMID: 31142011 PMCID: PMC6600346 DOI: 10.3390/ijms20112625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease is a frequent liver malady, which can progress to cirrhosis, the end-stage liver disease if proper treatment is not applied. Omega-3 fatty acids, such as docosahexaenoic acid (DHA) and eicosapentaenoic acid, have been clinically proven to lower serum triglyceride levels. Various physiological activities of omega-3 fatty acids are due to their agonistic actions on G-protein-coupled receptor 40 (GPR40) and GPR120. Lipid droplets (LD) accumulation in hepatocytes confirmed that DHA treatment reduced the number of larger ( >10 μm2) LDs, as well as the total area of LDs. Moreover, DHA lowered protein and mRNA expression levels of lipogenic enzymes such as fatty acid synthase (FAS), acetyl-CoA carboxylase and stearoyl-CoA desaturase-1 (SCD-1) in primary hepatocytes incubated with liver X receptor (LXR) agonist T0901317 or high glucose and insulin. DHA also decreased protein expression of nuclear and precursor sterol response-element binding protein (SREBP)-1, a key lipogenesis transcription factor. We further found that exposure of murine primary hepatocytes to DHA for 12 h increased GPR40 and GPR120 mRNA levels. Specific agonists (Compound A for GPR120 and AMG-1638 for GPR40), hepatocytes from GPR120 knock-out mice and GPR40 selective antagonist (GW1100) were used to assess whether DHA's antilipogenic effects are mediated through GPR120 or GPR40. Compound A did not decrease SREBP-1 and FAS protein expression in hepatocytes exposed to T0901317 or high glucose with insulin. Moreover, DHA downregulated lipogenesis enzyme expression in GPR120-null hepatocytes. In contrast, AMG-1638 lowered SREBP-1 and SCD-1 protein levels. Additionally, GW1100, a GPR40 antagonist, reversed the antilipogenic effects of DHA. Collectively, our data demonstrate that DHA downregulates the expression SREBP-1-mediated lipogenic enzymes via GPR40 in primary hepatocytes.
Collapse
Affiliation(s)
- Seungtae On
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Hyo Seon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
28
|
Yang J, Fernández-Galilea M, Martínez-Fernández L, González-Muniesa P, Pérez-Chávez A, Martínez JA, Moreno-Aliaga MJ. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients 2019; 11:E872. [PMID: 31003450 PMCID: PMC6521137 DOI: 10.3390/nu11040872] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex phenomenon characterized by the progressive loss of tissue and organ function. The oxidative-stress theory of aging postulates that age-associated functional losses are due to the accumulation of ROS-induced damage. Liver function impairment and non-alcoholic fatty liver disease (NAFLD) are common among the elderly. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and evolve to hepatic cirrhosis or hepatic carcinoma. Oxidative stress, lipotoxicity, and inflammation play a key role in the progression of NAFLD. A growing body of evidence supports the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFA), mainly docosahaexenoic (DHA) and eicosapentaenoic acid (EPA), on metabolic diseases based on their antioxidant and anti-inflammatory properties. Here, we performed a systematic review of clinical trials analyzing the efficacy of n-3 PUFA on both systemic oxidative stress and on NAFLD/NASH features in adults. As a matter of fact, it remains controversial whether n-3 PUFA are effective to counteract oxidative stress. On the other hand, data suggest that n-3 PUFA supplementation may be effective in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH. Future perspectives and relevant aspects that should be considered when planning new randomized controlled trials are also discussed.
Collapse
Affiliation(s)
- Jinchunzi Yang
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Marta Fernández-Galilea
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
| | - Leyre Martínez-Fernández
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Pedro González-Muniesa
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Adriana Pérez-Chávez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Maria J Moreno-Aliaga
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Fell GL, Cho BS, Dao DT, Anez-Bustillos L, Baker MA, Nandivada P, Pan A, O'Loughlin AA, Mitchell PD, Nose V, Gura KM, Puder M. Fish oil protects the liver from parenteral nutrition-induced injury via GPR120-mediated PPARγ signaling. Prostaglandins Leukot Essent Fatty Acids 2019; 143:8-14. [PMID: 30975380 PMCID: PMC6642797 DOI: 10.1016/j.plefa.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/14/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Intravenous fish oil lipid emulsions (FOLE) can prevent parenteral nutrition (PN)-induced liver injury in murine models and reverse PN-induced cholestasis in pediatric patients. However, the mechanisms by which fish oil protects the liver are incompletely characterized. Fish oil is rich in omega-3 fatty acids, which are ligands for the G-protein coupled receptor 120 (GPR120), expressed on hepatic Kupffer cells. This study tested the hypothesis that FOLE protects the liver from PN-induced injury through GPR120 signaling. Utilizing a previously described murine model of PN-induced liver injury in which mice develop steatosis in response to an oral parenteral nutrition diet, FOLE was able to preserve normal hepatic architecture in wild type mice, but not in congenic GPR120 knockout (gpr120-/-) mice. To further characterize the requirement of intact GPR120 for FOLE-mediated hepatic protection, gene expression profiles of key regulators of fat metabolism were measured. PPARγ was identified as a gene that is up-regulated by the PN diet and normalized with the addition of FOLE in wild type, but not in gpr120-/- mice. This was confirmed at the protein expression level. A PPARγ expression array further identified CD36 and SCD1, both down-stream effectors of PPARγ, to be up-regulated in PN-fed wild type mice yet normalized upon FOLE administration in wild type but not in gpr120-/- mice. Together, these results suggest that FOLE protects the liver, in part, through activation of GPR120 and the downstream effectors PPARγ and CD36. Identification of key genetic determinants of FOLE-mediated hepatic protection may provide targets for small molecule-based hepatic protection strategies.
Collapse
Affiliation(s)
- Gillian L Fell
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Bennet S Cho
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Duy T Dao
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Meredith A Baker
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Prathima Nandivada
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Amy Pan
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Alison A O'Loughlin
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Vania Nose
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Kathleen M Gura
- Department of Pharmacy, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
30
|
Torquato P, Giusepponi D, Alisi A, Galarini R, Bartolini D, Piroddi M, Goracci L, Di Veroli A, Cruciani G, Crudele A, Nobili V, Galli F. Nutritional and lipidomics biomarkers of docosahexaenoic acid-based multivitamin therapy in pediatric NASH. Sci Rep 2019; 9:2045. [PMID: 30765737 PMCID: PMC6375912 DOI: 10.1038/s41598-018-37209-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
Two recent randomized controlled trials demonstrated improved radiographic, histological and hepatometabolic cues of non-alcoholic steatohepatitis (NASH) in pediatric patients treated with the ω-3 fatty acid docosahexaenoic acid (DHA) in combination with vitamin D (VD) or with choline (CHO) and vitamin E (VE), the DHA-VD and DHA-CHO-VE trials, respectively). In the present study we verified the nutritional compliance to these DHA-based multivitamin treatments; lipidomics biomarkers of the reported outcome on NASH indicators were also investigated. Samples were obtained from 30 biopsy-proven pediatric NASH patients of the DHA-CHO-VE trial randomized in multivitamin treatment group and placebo group (n = 15 each), and from 12 patients of the treatment group of the DHA-VD trial. All patients underwent 6-month therapy plus 6 months of follow-up. Plasma samples and clinical data were obtained at baseline and at the end of the study (12 months). Selected biomarkers included the free form of DHA and other ω-3 fatty acid arachidonic acid (AA), indices of the vitamin E status, and some hepatic metabolites of these lipids. Radiographic and histological improvements of treated patients were associated with increased concentrations of DHA, α-linolenic acid and α-tocopherol (i.e. VE), and with decreased AA that was also investigated in complex lipids by untargetd lipidomics. As a result a significantly lowered AA/DHA ratio was observed to represent the main indicator of the response to the DHA-based therapy. Furthermore, baseline levels of AA/DHA showed strong association with NAS and US improvement. A stable correction of DHA AA metabolism interaction is associated with the curative effect of this therapy and may represent a key nutritional endpoint in the clinical management of pediatric NASH.
Collapse
Affiliation(s)
- Pierangelo Torquato
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Perugia, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM), Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Marta Piroddi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandra Di Veroli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valerio Nobili
- Hepatometabolic Unit, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
31
|
Plauth M, Bernal W, Dasarathy S, Merli M, Plank LD, Schütz T, Bischoff SC. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr 2019; 38:485-521. [PMID: 30712783 DOI: 10.1016/j.clnu.2018.12.022] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
This update of evidence-based guidelines (GL) aims to translate current evidence and expert opinion into recommendations for multidisciplinary teams responsible for the optimal nutritional and metabolic management of adult patients with liver disease. The GL was commissioned and financially supported by ESPEN. Members of the guideline group were selected by ESPEN. We searched for meta-analyses, systematic reviews and single clinical trials based on clinical questions according to the PICO format. The evidence was evaluated and used to develop clinical recommendations implementing the SIGN method. A total of 85 recommendations were made for the nutritional and metabolic management of patients with acute liver failure, severe alcoholic steatohepatitis, non-alcoholic fatty liver disease, liver cirrhosis, liver surgery and transplantation as well as nutrition associated liver injury distinct from fatty liver disease. The recommendations are preceded by statements covering current knowledge of the underlying pathophysiology and pathobiochemistry as well as pertinent methods for the assessment of nutritional status and body composition.
Collapse
Affiliation(s)
- Mathias Plauth
- Department of Internal Medicine, Municipal Hospital of Dessau, Dessau, Germany.
| | - William Bernal
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Manuela Merli
- Gastroenterology and Hepatology Unit, Sapienza University of Rome, Rome, Italy
| | - Lindsay D Plank
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Tatjana Schütz
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany
| | - Stephan C Bischoff
- Department for Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
32
|
Clerc P, Mouzaki M, Goldman RD. Omega-3 for nonalcoholic fatty liver disease in children. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2019; 65:34-38. [PMID: 30674511 PMCID: PMC6347303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Question An overweight 12-year-old male patient with nonalcoholic fatty liver disease has had little improvement in liver steatosis or triglyceride levels over the past 2 years. Is omega-3 supplementation useful in managing his condition?Answer Nonalcoholic fatty liver disease in children is prevalent in the Canadian population and can lead to liver fibrosis, cirrhosis, transplant, and reduced life expectancy. There is no recommended pharmacologic treatment of nonalcoholic fatty liver disease. Omega-3 fatty acids are associated with small improvements in liver steatosis and triglyceride concentrations. There are conflicting results with regard to liver function test results and insulin resistance, and while there might be histologic improvement revealed on biopsy, there is little evidence that fibrosis is improved. In children who have struggled to be consistent with the changes needed in their diet, particularly those with elevated triglyceride levels, there might be a role for omega-3 supplementation while continuing to focus on the mainstays of treatment (diet and physical activity); however, further research is still needed.
Collapse
|
33
|
Ullah R, Rauf N, Nabi G, Ullah H, Shen Y, Zhou YD, Fu J. Role of Nutrition in the Pathogenesis and Prevention of Non-alcoholic Fatty Liver Disease: Recent Updates. Int J Biol Sci 2019; 15:265-276. [PMID: 30745819 PMCID: PMC6367556 DOI: 10.7150/ijbs.30121] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an acquired metabolic disease characterized by triglycerides (TGs) deposition in liver induced by other factors rather than alcohol consumption. NAFLD significantly contributes to liver diseases in children and adults. NAFLD pathogenesis is associated with age, gender, race and ethnicity. Insulin resistance, hyperinsulinemia, elevated plasma free fatty acids (FFAs), fatty liver, hepatocyte injury, liver inflammation, oxidative stress, mitochondrial dysfunction, imbalanced pro-inflammatory cytokines, and fibrosis are the characteristics of NAFLD. Factors including genetic and epigenetic pathways, sedentary lifestyle, sleep, and diet composition affect NAFLD pathogenesis. In this review, we discuss the aetiology, risk factors and pathogenesis of NAFLD. Special focus is given to macro and micro nutrition as causing factors and their role in the prevention of NAFLD pathogenesis.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China.,Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China.,Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ghulam Nabi
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hamid Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yi Shen
- Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu-Dong Zhou
- Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
| |
Collapse
|
34
|
Unsaturated fatty acids from flaxseed oil and exercise modulate GPR120 but not GPR40 in the liver of obese mice: a new anti-inflammatory approach. J Nutr Biochem 2018; 66:52-62. [PMID: 30771734 DOI: 10.1016/j.jnutbio.2018.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/19/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
GPR120 and GPR40 were recently reported as omega-3 (ω3) receptors with anti-inflammatory properties. Physical exercise could increase the expression of these receptors in the liver, improving hepatic metabolism in obesity and type 2 diabetes. Our aim was to investigate GPR120/40 in the liver of lean and obese mice after acute or chronic physical exercise, with or without the supplementation of ω3 rich flaxseed oil (FS), as well as assess the impact of exercise and FS on insulin signaling and inflammation. Mice were fed a high-fat diet (HF) for 4 weeks to induce obesity and subsequently subjected to exercise with or without FS, or FS alone. Insulin signaling, inflammatory markers and GPR120/40 and related cascades were measured. Chronic, but not acute, exercise and FS increased GPR120, but not GPR40, activating β-arrestin-2 and decreasing the inflammatory response, as well as reducing fat depots in liver and adipose tissue. Exercise or a source of ω3 led to a higher tolerance to fatigue and an increased running distance and speed. The combination of physical exercise and ω3 food sources could provide a new strategy against obesity through the modulation of hepatic GPR120 and an increase in exercise performance.
Collapse
|
35
|
In a pilot study, reduced fatty acid desaturase 1 function was associated with nonalcoholic fatty liver disease and response to treatment in children. Pediatr Res 2018; 84:696-703. [PMID: 30120404 PMCID: PMC6726123 DOI: 10.1038/s41390-018-0132-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND FADS1 gene encodes delta 5 desaturase, a rate-limiting enzyme in the metabolism of n-3 and n-6 polyunsaturated fatty acids (PUFAs). Minor alleles of FADS1 locus polymorphisms are associated with reduced FADS1 expression and intra-hepatic fat accumulation. However, the relationship between FADS1 expression and pediatric nonalcoholic fatty liver disease (NAFLD) risk remains to be explored. METHODS We analyzed FADS1 transcription levels and their association with intra-hepatic fat and histology in children, and we performed pathway enrichment analysis on transcriptomic profiles associated with FADS1 polymorphisms. We also evaluated the weight of FADS1 alleles on the response to combined docosahexaenoic acid, choline, and vitamin E (DHA-CHO-VE) treatment. RESULTS FADS1 mRNA level was significantly and inversely associated with intra-hepatic fat (p = 0.004), degree of steatosis (p = 0.03), fibrosis (p = 0.05), and NASH (p = 0.008) among pediatric livers. Transcriptomics demonstrated a significant enrichment of a number of pathways strongly related to NAFLD (e.g., liver damage, fibrosis, and hepatic stellate cell activation). Compared to children who are common allele homozygotes, children with FADS1 minor alleles had a greater reduction in steatosis, fibrosis, and NAFLD activity score after DHA-CHO-VE. CONCLUSION This study suggests that decreased FADS1 expression may be associated with NAFLD in children but an increased response to DHA-CHO-VE.
Collapse
|
36
|
Panera N, Barbaro B, Della Corte C, Mosca A, Nobili V, Alisi A. A review of the pathogenic and therapeutic role of nutrition in pediatric nonalcoholic fatty liver disease. Nutr Res 2018; 58:1-16. [DOI: 10.1016/j.nutres.2018.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
|
37
|
Overi D, Carpino G, Cardinale V, Franchitto A, Safarikia S, Onori P, Alvaro D, Gaudio E. Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. Int J Mol Sci 2018; 19:ijms19102917. [PMID: 30257529 PMCID: PMC6213374 DOI: 10.3390/ijms19102917] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.
Collapse
Affiliation(s)
- Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Samira Safarikia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| |
Collapse
|
38
|
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased substantially in the past two decades and NAFLD has now become the most common cause of chronic liver disease in children and adolescents. NAFLD is a broad clinicopathologic spectrum ranging from simple steatosis to varying degrees of necroinflammation called nonalcoholic steatohepatitis (NASH), leading to fibrosis and subsequently to cirrhosis. Despite the increasing prevalence and progressive nature of NAFLD even among children, therapy for NAFLD in both adults and children are limited. Weight loss remains the only consistently effective therapy for NAFLD. Pharmacologic options are even more limited in children than in adults with NAFLD. Vitamin E has been shown to be effective in improving histology in children with NASH. Few pharmacologic options such as metformin, probiotics, omega-3 fatty acids, and cysteamine bitartrate have been studied in children, with limited beneficial effects. However, these studies are limited by small sample size and heterogeneity of outcome assessment after treatment. Recent studies show promising results with bariatric surgery with regards to weight loss and improvement in liver histology in adolescents with NAFLD. In this review article, we discuss epidemiology, pathophysiology, and extrahepatic comorbidities of pediatric NAFLD and review existing therapeutic options for children with NAFLD. We also review novel therapeutic strategies studied in adults that could potentially be studied in children in the future.
Collapse
|
39
|
Corte CD, Iasevoli S, Strologo AD, Sanseviero M, Nobili V. Omega-3 Fatty Acids and Fatty Liver Disease in Children. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:59-77. [PMID: 29860977 DOI: 10.1016/bs.afnr.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents the most common cause of chronic liver disease in Industrialized Countries in adults and children. It is estimated that NAFLD will become the main indication for liver transplantation in the next decade. NAFLD is also considered the hepatic feature of metabolic syndrome and therefore it is generally associated to the risk of developing some metabolic complications, with negative impact on patient's survival. Today, no pharmacological treatment has been identified for NAFLD, and behavioral approach, based on diet and regular physical exercise, represent the current recommended treatment, even if with disappointing results. For these reasons, several pharmacological trials have been conducted, in order to identify possible alternative therapy direct against pathogenetic targets of NAFLD. Several data have suggested the potential beneficial role of omega-3 fatty acids in NAFLD and its related metabolic disarray. In this chapter, we try to elucidate the molecular and clinical available evidence for the omega-3 supplementation in pediatric NAFLD patients.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Nobili
- "Sapienza" University, Rome, Italy; Hepatogastroenterology Unit, "Bambino Gesù" Children's Hospital, Rome, Italy.
| |
Collapse
|
40
|
Individual fatty acids in erythrocyte membranes are associated with several features of the metabolic syndrome in obese children. Eur J Nutr 2018; 58:731-742. [PMID: 29594475 DOI: 10.1007/s00394-018-1677-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Obesity leads to the clustering of cardiovascular (CV) risk factors and the metabolic syndrome (MetS) also in children and is often accompanied by non-alcoholic fatty liver disease. Quality of dietary fat, beyond the quantity, can influence CV risk profile and, in particular, omega-3 fatty acids (FA) have been proposed as beneficial in this setting. The aim of the study was to evaluate the associations of individual CV risk factors, characterizing the MetS, with erythrocyte membrane FA, markers of average intake, in a group of 70 overweight/obese children. METHODS We conducted an observational study. Erythrocyte membrane FA were measured by gas chromatography. Spearman correlation coefficients (rS) were calculated to evaluate associations between FA and features of the MetS. RESULTS Mean content of Omega-3 FA was low (Omega-3 Index = 4.7 ± 0.8%). Not omega-3 FA but some omega-6 FA, especially arachidonic acid (AA), were inversely associated with several features of the MetS: AA resulted inversely correlated with waist circumference (rS = - 0.352), triglycerides (rS = - 0.379), fasting insulin (rS = - 0.337) and 24-h SBP (rS = - 0.313). Total amount of saturated FA (SFA) and specifically palmitic acid, correlated positively with waist circumference (rS = 0.354), triglycerides (rS = 0.400) and fasting insulin (rS = 0.287). Fatty Liver Index (FLI), a predictive score of steatosis based on GGT, triglycerides and anthropometric indexes, was positively correlated to palmitic acid (rS = 0.515) and inversely to AA (rS = - 0.472). CONCLUSIONS Our data suggest that omega-6 FA, and especially AA, could be protective toward CV risk factors featuring the MetS and also to indexes of hepatic steatosis in obese children, whereas SFA seems to exert opposite effects.
Collapse
|
41
|
Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol Aspects Med 2018; 64:135-146. [PMID: 29544992 DOI: 10.1016/j.mam.2018.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
For many years it has been known that high doses of long chain omega-3 fatty acids are beneficial in the treatment of hypertriglyceridaemia. Over the last three decades, there has also been a wealth of in vitro and in vivo data that has accumulated to suggest that long chain omega-3 fatty acid treatment might be beneficial to decrease liver triacylglycerol. Several biological mechanisms have been identified that support this hypothesis; notably, it has been shown that long chain omega-3 fatty acids have a beneficial effect: a) on bioactive metabolites involved in inflammatory pathways, and b) on alteration of nuclear transcription factor activities such as peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP), involved in inflammatory pathways and liver lipid metabolism. Since the pathogenesis of non alcoholic fatty liver disease (NAFLD) begins with the accumulation of liver lipid and progresses with inflammation and then several years later with development of fibrosis; it has been thought in patients with NAFLD omega-3 fatty acid treatment would be beneficial in treating liver lipid and possibly also in ameliorating inflammation. Meta-analyses (of predominantly dietary studies and small trials) have tended to support the assertion that omega-3 fatty acids are beneficial in decreasing liver lipid, but recent randomised controlled trials have produced conflicting data. These trials have suggested that omega-3 fatty acid might be beneficial in decreasing liver triglyceride (docosahexanoic acid also possibly being more effective than eicosapentanoic acid) but not in decreasing other features of steatohepatitis (or liver fibrosis). The purpose of this review is to discuss recent evidence regarding biological mechanisms by which long chain omega-3 fatty acids might act to ameliorate liver disease in NAFLD; to consider the recent evidence from randomised trials in both adults and children with NAFLD; and finally to discuss key 'known unknowns' that need to be considered, before planning future studies that are focussed on testing the effects of omega-3 fatty acid treatment in patients with NAFLD.
Collapse
Affiliation(s)
- Eleonora Scorletti
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Christopher D Byrne
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
42
|
In vitro assessment of nutraceutical compounds and novel nutraceutical formulations in a liver-steatosis-based model. Lipids Health Dis 2018; 17:24. [PMID: 29402273 PMCID: PMC5800044 DOI: 10.1186/s12944-018-0663-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022] Open
Abstract
Background Steatosis is a chronic liver disease that depends on the accumulation of intracellular fatty acids. Currently, no drug treatment has been licensed for steatosis; thus, only nutritional guidelines are indicated to reduce its progression. The aim of this study is to combine different nutraceutical compounds in order to evaluate their synergistic effects on a steatosis in vitro model compared to their separate use. In particular, three different formulations based on silymarin, curcumin, vitamin E, docosahexaenoic acid (DHA), choline, and phosphatidylcholine were assayed. Methods Human hepatocellular carcinoma cells (HepG2 cell line) were treated with a mixture of fatty acids in order to induce an in vitro model of steatosic cells, and then the amount of intracellular fat was evaluated by Oil Red O staining. The peroxisome proliferator-activated receptors α and γ (PPARα and γ) expression, closely correlated to lipid metabolism, was evaluated. The efficiency of these receptors was evaluated through the study of LPL mRNA expression, a marker involved in the lipolysis mechanism. Superoxide dismutase (SOD-2) and malondialdehydes (MDA) in lipid peroxidation were assayed as specific biomarkers of oxidative stress. In addition, experiments were performed using human liver cells stressed to obtain a steatosis model. In particular, the content of the intracellular fat was assayed using Oil Red O staining, the activation of PPARα and γ was evaluated through western blotting analyses, and the LPL mRNA expression level was analyzed through qRT-PCR. Results All formulations proved effective on lipid content reduction of about 35%. The oxidative stress damage was reduced by all the substances separately and even more efficiently by the same in formulation (i.e. Formulation 1 and Formulation 3, which reduced the SOD-2 expression and induced the PPARs activation). Lipid peroxidation, was reduced about 2 fold by foormulation2 and up to 5 fold by the others compared to the cells pretreated with H2O2.Formulation 1, was more effective on PPARγ expression (2.5 fold increase) respect to the other compounds on FA treated hepathocytes. Beside, LPL was activated also by Formulation 3 and resulted in a 5 to 9 fold-increase respect to FA treated control. Conclusions Our results proved that the formulations tested could be considered suitable support to face steatosis disease beside the mandatory dietetic regimen.
Collapse
|
43
|
Abstract
Nonalcoholic fatty liver disease (NAFLD), an increasingly prevalent paediatric disorder, is diagnosed and managed not only by both pediatric gastroenterologists/hepatologists but also frequently by the general pediatrician. This article updates recent advances in diagnostic and therapeutic approach, which may be applied to everyday practice. Diagnosis of NAFLD takes into account the risk factor profile and is a diagnosis of exclusion. Techniques such as transient elastography and specific biomarkers aimed at improving diagnosis and monitoring of NAFLD need further validation in the pediatric population. Defining the risk to develop cirrhosis seems to be of primary importance already in childhood and a combination of genetic, clinical, and environmental factors can help in monitoring and making decisions on therapy. Weight reduction therapy should be the aim of treatment approach, but the compliance is poor and pharmacological treatment would be helpful; docosahexaenoic acid, some probiotics, and vitamin E are to be considered, but evidence is not sufficient to recommend widespread use.
Collapse
Affiliation(s)
- Valerio Nobili
- Hepatometabolic Diseases Unit and Liver Research Unit Bambino Gesu Children Hospital, Rome.,Pediatric Department University La Sapienza-Rome, Italy
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children's Memorial Health Institute, Warszawa, Poland
| |
Collapse
|
44
|
de Castro GS, Calder PC. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin Nutr 2018; 37:37-55. [DOI: 10.1016/j.clnu.2017.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 02/08/2023]
|
45
|
Yoo W, Gjuka D, Stevenson HL, Song X, Shen H, Yoo SY, Wang J, Fallon M, Ioannou GN, Harrison SA, Beretta L. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS One 2017; 12:e0189965. [PMID: 29244873 PMCID: PMC5731750 DOI: 10.1371/journal.pone.0189965] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and ranges from isolated steatosis to NASH. To determine whether circulating fatty acids could serve as diagnostic markers of NAFLD severity and whether specific fatty acids could contribute to the pathogenesis of NASH, we analyzed two independent NAFLD patient cohorts and used the methionine- and choline-deficient diet (MCD) NASH mouse model. We identified six fatty acids that could serve as non-invasive markers of NASH in patients with NAFLD. Serum levels of 15:0, 17:0 and 16:1n7t negatively correlated with NAFLD activity scores and hepatocyte ballooning scores, while 18:1n7c serum levels strongly correlated with fibrosis stage and liver inflammation. Serum levels of 15:0 and 17:0 also negatively correlated with fasting glucose and AST, while 16:1n7c and 18:1n7c levels positively correlated with AST and ferritin, respectively. Inclusion of demographic and clinical parameters improved the performance of the fatty acid panels in detecting NASH in NAFLD patients. The panel [15:0, 16:1n7t, 18:1n7c, 22:5n3, age, ferritin and APRI] predicted intermediate or advanced fibrosis in NAFLD patients, with 82% sensitivity at 90% specificity [AUROC = 0.92]. 15:0 and 18:1n7c were further selected for functional studies in vivo. Mice treated with 15:0-supplemented MCD diet showed reduced AST levels and hepatic infiltration of ceroid-laden macrophages compared to MCD-treated mice, suggesting that 15:0 deficiency contributes to liver injury in NASH. In contrast, 18:1n7c-supplemented MCD diet didn’t affect liver pathology. In conclusion, 15:0 may serve as a promising biomarker or therapeutic target in NASH, opening avenues for the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Wonbeak Yoo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Donjeta Gjuka
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Heather L. Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiaoling Song
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hong Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Suk Young Yoo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Fallon
- Division of Gastroenterology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - George N. Ioannou
- Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington, United States of America
| | - Stephen A. Harrison
- Department of Medicine, Brooke Army Medical Center, San Antonio, Texas, United States of America
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Nakamoto K, Shimada K, Harada S, Morimoto Y, Hirasawa A, Tokuyama S. DHA supplementation prevent the progression of NASH via GPR120 signaling. Eur J Pharmacol 2017; 820:31-38. [PMID: 29221950 DOI: 10.1016/j.ejphar.2017.11.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the most common liver diseases involving chronic accumulation of fat and inflammation, often leading to advanced fibrosis, cirrhosis and carcinoma. However, the pathological mechanism for this is unknown. GPR120/FFAR4 has been recognized as a functional fatty acid receptor and an attractive therapeutic target for metabolic diseases. In this study, we investigated the involvement of GPR120/FFAR4 in the pathogenesis of NASH. Mice fed with a 0.1% methionine and choline deficient high-fat (CDAHF) diet showed a significant increase in plasma aspartate transaminase and alanine transaminase levels, fatty deposition, inflammatory cell infiltration, and mild fibrosis. Docosahexaenoic acid (DHA, GPR120/FFAR4 agonist) suppressed the inflammatory cytokines in the liver tissues and prevented fibrosis in the wild type (WT) mice fed CDAHF diet, but not GPR120/FFAR4 deficient (GPR120KO) mice. GPR120KO mice fed CDAHF diet showed increment of the number of crown like structures and the immunoreactivity for F4/80 positive cells, and increased TNF-α mRNA in the liver compared to WT mice fed CDAHF diet. GPR120 KO mice fed CDAHF diet showed more severe liver inflammation than that of WT mice fed CDAHF diet, but not fibrosis. Our findings suggest that DHA supplementation could be prevented the development of NASH via GPR120/FFAR4 signaling. Furthermore, decrease of GPR120/FFAR4 signaling could be facilitated an inflammatory response in the process of NASH progression.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Koki Shimada
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Shinichi Harada
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Yasuko Morimoto
- Laboratory of Hygienic Chemistry and Health Support, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, Kobe Gakuin University, School of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan.
| |
Collapse
|
47
|
Kang S, Huang J, Lee BK, Jung YS, Im E, Koh JM, Im DS. Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120). Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:105-116. [PMID: 29126901 DOI: 10.1016/j.bbalip.2017.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 10/18/2022]
Abstract
Protective effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) on non-alcoholic fatty liver disease has been demonstrated. FFA4 (also known as GPR120; a G protein-coupled receptor) has been suggested to be a target of n-3 PUFA. FFA4 expression in hepatocytes has also been reported from liver biopsies in child fatty liver patients. In order to assess the functional role of FFA4 in hepatic steatosis, we used an in vitro model of liver X receptor (LXR)-mediated hepatocellular steatosis. FFA4 expression was confirmed in Hep3B and HepG2 human hepatoma cells. T0901317 (a specific LXR activator) induced lipid accumulation and docosahexaenoic acid (DHA; a representative n-3 PUFA) inhibited lipid accumulation. This DHA-induced inhibition was blunted by treatment of AH7614 (a FFA4 antagonist) and by transfection of FFA4 siRNA. SREBP-1c (a key transcription factor of lipogenesis) was induced by treatment with T0901317, and SREBP-1c induction was also inhibited by DHA at mRNA and protein levels. DHA-induced suppression of SREBP-1c expression was also blunted by FFA4-knockdown. Furthermore, DHA inhibited T0901317-induced lipid accumulation in primary hepatocytes from wild type mice, but not in those from FFA4 deficient mice. In addition, DHA-induced activations of Gq/11 proteins, CaMKK, and AMPK were found to be signaling components of the steatosis protective pathway. The results of this study suggest that n-3 PUFA protect hepatic steatosis by activating FFA4 in hepatocytes, and its signaling cascade sequentially involves FFA4, Gq/11 proteins, CaMKK, AMPK, and SREBP-1c suppression.
Collapse
Affiliation(s)
- Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 469241, Republic of Korea
| | - Jin Huang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 469241, Republic of Korea
| | - Bo-Kyung Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 469241, Republic of Korea
| | - Young-Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 469241, Republic of Korea
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 469241, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 469241, Republic of Korea.
| |
Collapse
|
48
|
Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med 2017; 64:92-108. [PMID: 28887275 DOI: 10.1016/j.mam.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022]
Abstract
Unsaturated long-chain fatty acids have been suggested to be beneficial in the context of cardiovascular disorders based in epidemiologic studies conducted in Greenland and Mediterranean. DHA and EPA are omega-3 polyunsaturated fatty acids that are plentiful in fish oil, and oleic acid is an omega-9 monounsaturated fatty acid, rich in olive oil. Dietary intake of these unsaturated long-chain fatty acids have been associated with insulin sensitivity and weight loss, which contrasts with the impairment of insulin sensitivity and weight gain associated with high intakes of saturated long-chain fatty acids. The recent discovery that free fatty acid receptor 4 (FFA4, also known as GPR120) acts as a sensor for unsaturated long-chain fatty acids started to unveil the molecular mechanisms underlying the beneficial functions played by these unsaturated long-chain fatty acids in various physiological processes, which include the secretions of gastrointestinal peptide hormones and glucose homeostasis. In this review, the physiological roles and therapeutic significance of FFA4 in appetite control, insulin sensitization, and inflammation reduction are discussed in relation to obesity and type 2 diabetes from pharmacological viewpoints.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
49
|
Treatment of Nonalcoholic Fatty Liver Disease in Children: A Systematic Review. JOURNAL OF PEDIATRICS REVIEW 2017. [DOI: 10.5812/jpr.11635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Barchetta I, Cimini FA, Cavallo MG. Vitamin D Supplementation and Non-Alcoholic Fatty Liver Disease: Present and Future. Nutrients 2017; 9:nu9091015. [PMID: 28906453 PMCID: PMC5622775 DOI: 10.3390/nu9091015] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic disease throughout the Western world and is recognized as the main cause of cryptogenic cirrhosis; however, the identification of an effective therapy for NAFLD is still a major challenge. Vitamin D deficiency is a wide-spread condition which reaches epidemic proportions in industrialized countries, mainly in relation to current lifestyle and limited dietary sources. Epidemiological studies point towards an association between hypovitaminosis D and the presence of NAFLD and steatohepatitis (NASH), independently of confounders such as obesity and insulin resistance. Furthermore, several pieces of experimental data have shown the anti-fibrotic, anti-inflammatory and insulin-sensitizing properties exerted by vitamin D on hepatic cells. However, results from trials evaluating the effects of oral vitamin D supplementation on liver damage in NAFLD and NASH are controversial. The aim of this review is to give an overview of the evidence currently available from clinical trials and to discuss possible shortcomings and new strategies to be considered in future investigations.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome 00161, Italy.
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome 00161, Italy.
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome 00161, Italy.
| |
Collapse
|