1
|
Abdel-Nasser A, Badr AN, Fathy HM, Ghareeb MA, Barakat OS, Hathout AS. Antifungal, antiaflatoxigenic, and cytotoxic properties of bioactive secondary metabolites derived from Bacillus species. Sci Rep 2024; 14:16590. [PMID: 39025896 PMCID: PMC11258281 DOI: 10.1038/s41598-024-66700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.
Collapse
Affiliation(s)
- Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ahmed N Badr
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hayam M Fathy
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Haddar, Imbaba, (P.O. 30), Giza, 12411, Egypt
| | - Olfat S Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Amal S Hathout
- Food Toxicology and Contaminants Department, Food Industry and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Calderaro A, Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024; 12:322. [PMID: 38399726 PMCID: PMC10892259 DOI: 10.3390/microorganisms12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) in the last decade has revealed itself as a valid support in the workflow in the clinical microbiology laboratory for the identification of bacteria and fungi, demonstrating high reliability and effectiveness in this application. Its use has reduced, by 24 h, the time to obtain a microbiological diagnosis compared to conventional biochemical automatic systems. MALDI-TOF MS application to the detection of pathogens directly in clinical samples was proposed but requires a deeper investigation, whereas its application to positive blood cultures for the identification of microorganisms and the detection of antimicrobial resistance are now the most useful applications. Thanks to its rapidity, accuracy, and low price in reagents and consumables, MALDI-TOF MS has also been applied to different fields of clinical microbiology, such as the detection of antibiotic susceptibility/resistance biomarkers, the identification of aminoacidic sequences and the chemical structure of protein terminal groups, and as an emerging method in microbial typing. Some of these applications are waiting for an extensive evaluation before confirming a transfer to the routine. MALDI-TOF MS has not yet been used for the routine identification of parasites; nevertheless, studies have been reported in the last few years on its use in the identification of intestinal protozoa, Plasmodium falciparum, or ectoparasites. Innovative applications of MALDI-TOF MS to viruses' identification were also reported, seeking further studies before adapting this tool to the virus's diagnostic. This mini-review is focused on the MALDI-TOF MS application in the real life of the diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | | |
Collapse
|
3
|
Asare PT, Lee CH, Hürlimann V, Teo Y, Cuénod A, Akduman N, Gekeler C, Afrizal A, Corthesy M, Kohout C, Thomas V, de Wouters T, Greub G, Clavel T, Pamer EG, Egli A, Maier L, Vonaesch P. A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia. Front Microbiol 2023; 14:1104707. [PMID: 36896425 PMCID: PMC9990839 DOI: 10.3389/fmicb.2023.1104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Microbial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting via Matrix-assisted Laser Desorption Ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria. Methods We constructed a database containing mass spectral profiles (MSP) from 142 bacterial strains representing 47 species and 21 genera within the class Clostridia. Each strain-specific MSP was constructed using >20 raw spectra measured on a microflex Biotyper system (Bruker-Daltonics) from two independent cultures. Results For validation, we used 58 sequence-confirmed strains and the CLOSTRI-TOF database successfully identified 98 and 93% of the strains, respectively, in two independent laboratories. Next, we applied the database to 326 isolates from stool of healthy Swiss volunteers and identified 264 (82%) of all isolates (compared to 170 (52.1%) with the Bruker-Daltonics library alone), thus classifying 60% of the formerly unknown isolates. Discussion We describe a new open-source MSP database for fast and accurate identification of the Clostridia class from the human gut microbiota. CLOSTRI-TOF expands the number of species which can be rapidly identified by MALDI-TOF MS.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Chi-Hsien Lee
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Vera Hürlimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Youzheng Teo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital of Basel, Basel, Switzerland
| | - Nermin Akduman
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Afrizal Afrizal
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Myriam Corthesy
- Institute of Microbiology of the University of Lausanne, University Hospital Centre (CHUV), Lausanne, Switzerland
| | - Claire Kohout
- Duchossois Family Institute, Division of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, United States
| | | | | | - Gilbert Greub
- Institute of Microbiology of the University of Lausanne, University Hospital Centre (CHUV), Lausanne, Switzerland
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Eric G Pamer
- Duchossois Family Institute, Division of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, United States
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital of Basel, Basel, Switzerland
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Rapid Identification of Escherichia coli Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry. Microorganisms 2021; 9:microorganisms9112210. [PMID: 34835336 PMCID: PMC8623207 DOI: 10.3390/microorganisms9112210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) Escherichia coli strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the E. coli strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice.
Collapse
|
5
|
Neumann-Cip AC, Fingerle V, Margos G, Straubinger RK, Overzier E, Ulrich S, Wieser A. A Novel Rapid Sample Preparation Method for MALDI-TOF MS Permits Borrelia burgdorferi Sensu Lato Species and Isolate Differentiation. Front Microbiol 2020; 11:690. [PMID: 32373099 PMCID: PMC7186393 DOI: 10.3389/fmicb.2020.00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
The genus Borrelia comprises vector-borne bacterial pathogens that can severely affect human and animal health. Members of the Borrelia burgdorferi sensu lato species complex can cause Lyme borreliosis, one of the most common vector-borne diseases in the Northern hemisphere. Besides, members of the relapsing fever group of spirochetes can cause tick-borne relapsing fever in humans and various febrile illnesses in animals in tropical, subtropical and temperate regions. Borrelia spp. organisms are fastidious to cultivate and to maintain in vitro, and therefore, difficult to work with in the laboratory. Currently, borrelia identification is mainly performed using PCR and DNA sequencing methods, which can be complicated/frustrating on complex DNA templates and may still be relatively expensive. Alternative techniques such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) are not well established for Borrelia spp., although this technique is currently one of the most used techniques for rapid identification of bacteria in microbiological diagnostic laboratories. This is mainly due to unsatisfactory results obtained by use of simple sample preparation techniques and medium-contamination obscuring the mass spectra. In addition, comprehensive libraries for Borrelia spp. MALDI-TOF MS have yet to be established. In this study, we developed a new filter-based chemical extraction technique that allows measurement of high quality Borrelia spp. spectra from less than 100,000 bacteria per spot in MALDI-TOF MS. We used 49 isolates of 13 different species to produce the largest mass-library for Borrelia spp. so far and to validate the protocol. The library was successfully established and identifies >96% of used isolates correctly to species level. Cluster analysis on the sum spectra was applied to all the different isolates, which resulted in tight cluster generation for most species. Comparative analysis of the generated cluster to a phylogeny based on concatenated multi-locus sequence typing genes provided a surprising homology. Our data demonstrate that the technique described here can be used for fast and reliable species and strain typing within the borrelia complex.
Collapse
Affiliation(s)
- Anna-Cathrine Neumann-Cip
- Division of Infectious Diseases and Tropical Medicine, University Hospital LMU, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Reinhard K Straubinger
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Evelyn Overzier
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sebastian Ulrich
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital LMU, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.,Chair of Medical Microbiology and Hospital Epidemiology, Faculty of Medicine, Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
6
|
Papalia M, Figueroa-Espinosa R, Steffanowski C, Barberis C, Almuzara M, Barrios R, Vay C, Gutkind G, Di Conza J, Radice M. Expansion and improvement of MALDI-TOF MS databases for accurate identification of Achromobacter species. J Microbiol Methods 2020; 172:105889. [PMID: 32171844 DOI: 10.1016/j.mimet.2020.105889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Different MALDI-TOF MS databases were evaluated for the identification of Achromobacter species. The in-house and extended database generated in this study rendered more accurate identification (58/64 and 57/64 isolates, respectively) in comparison with the Bruker commercial database (42/64 isolates), especially in those infrequent species that are not available or poorly represented.
Collapse
Affiliation(s)
- Mariana Papalia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Roque Figueroa-Espinosa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina
| | - Carla Steffanowski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina
| | - Claudia Barberis
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Laboratorio de Bacteriología Clínica, Av. Córdoba 2351, 1er. piso, Ciudad Autónoma de Buenos Aires CP1113, Argentina
| | - Marisa Almuzara
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Laboratorio de Bacteriología Clínica, Av. Córdoba 2351, 1er. piso, Ciudad Autónoma de Buenos Aires CP1113, Argentina
| | | | - Carlos Vay
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Departamento de Bioquímica Clínica, Laboratorio de Bacteriología Clínica, Av. Córdoba 2351, 1er. piso, Ciudad Autónoma de Buenos Aires CP1113, Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - José Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcela Radice
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
7
|
Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W, Vaishampayan P. Development of a Custom MALDI-TOF MS Database for Species-Level Identification of Bacterial Isolates Collected From Spacecraft and Associated Surfaces. Front Microbiol 2018; 9:780. [PMID: 29867782 PMCID: PMC5968301 DOI: 10.3389/fmicb.2018.00780] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, the Planetary Protection Group at the Jet Propulsion Laboratory (JPL) has maintained an archive of spacecraft-associated bacterial isolates. Identification of these isolates was routinely performed by sequencing the 16S rRNA gene. Although this technique is an industry standard, it is time consuming and has poor resolving power for some closely related taxa. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry is widely used in clinical diagnostics and is a promising method to substitute standard 16S rRNA sequencing. However, manufacturer-provided databases lack the bacterial diversity found in spacecraft-assembly cleanrooms. This study reports the development of the first custom database of MALDI-TOF MS profiles of bacterial isolates obtained from spacecraft and associated cleanroom environments. With the use of this in-house database, 454 bacterial isolates were successfully identified in concurrence with their 16S rRNA sequence-based classifications. Additionally, MALDI-TOF MS resolved strain-level variations, identified potential novel species and distinguished between members of taxonomic groups, which is not possible using conventional 16S rRNA sequencing. MALDI-TOF MS has proved to be an accurate, high-throughput approach for real-time identification of bacterial isolates during the spacecraft assembly process.
Collapse
Affiliation(s)
- Arman Seuylemezian
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Heidi S Aronson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - James Tan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Mandy Lin
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Wayne Schubert
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
8
|
Mello RV, Meccheri FS, Bagatini IL, Rodrigues-Filho E, Vieira AA. MALDI-TOF MS based discrimination of coccoid green microalgae (Selenastraceae, Chlorophyta). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Pérez-Sancho M, Vela AI, Wiklund T, Kostrzewa M, Domínguez L, Fernández-Garayzábal JF. Differentiation of Flavobacterium psychrophilum from Flavobacterium psychrophilum-like species by MALDI-TOF mass spectrometry. Res Vet Sci 2017; 115:345-352. [PMID: 28688366 DOI: 10.1016/j.rvsc.2017.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/09/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022]
Abstract
Rainbow trout fry syndrome (RTFS) is an important infectious disease caused by Flavobacterium psychrophilum affecting farmed salmonids worldwide. Other Flavobacterium psychrophilum-like species (F. plurextorum, F. oncorhynchi, F. tructae, F. collinsii and F. piscis) have been isolated from diseased rainbow trout fry suspected of RTFS although the epidemiological and clinical relevance of these pathogens are unknown. The objective of this study was to evaluate the potential use of MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization-Time of Flight) Mass Spectrometry as method for specific identification of F. psychrophilum and its differentiation from other F. psychrophilum-like species isolated from diseased fish. Fifty-three isolates were analyzed after the creation of the Main Spectrum Profile (MSP) of reference strains of each of abovementioned species. F. psychrophilum exhibited a mass spectra very different from those of F. psychrophilum-like species, with five peaks (m/z 3654, 4585, 5388, 6730 and 7310) present only in F. psychrophilum isolates, and three peaks (m/z 6170, 7098 and 9241) absent in F. psychrophilum but present in all F. psychrophilum-like species. All F. psychrophilum isolates were correctly identified and differentiated from the F. psychrophilum-like species by MALDI-TOF. Although this approach showed a limited ability to differentiate among F. psychrophilum-like species, its complementation with a few simple biochemical tests may represent an alternative approach for the routine identification of the Flavobacterium psychrophilum-like species.
Collapse
Affiliation(s)
- Marta Pérez-Sancho
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ana Isabel Vela
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, BioCity, Artillerigatan 6, 20520 Åbo, Finland
| | | | - Lucas Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - José Francisco Fernández-Garayzábal
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Goc A, Niedzwiecki A, Rath M. Reciprocal cooperation of phytochemicals and micronutrients against typical and atypical forms of Borrelia sp. J Appl Microbiol 2017. [PMID: 28644529 DOI: 10.1111/jam.13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Borrelia sp., a causative pathogenic factor of Lyme disease (LD), has become a major public health threat. Current treatments based on antibiotics often lead to relapse after their withdrawal. Naturally derived substances that could work synergistically to display higher efficacy compared with the individual components may serve as a resource for the development of novel approaches to combat both active and latent forms of Borrelia sp. METHODS AND RESULTS Using checkerboard assay, we investigated the anti-borreliae reciprocal cooperation of phytochemicals and micronutrients against two species of Borrelia selected as prevalent causes of LD in the United States and Europe. We tested 28 combinations of phytochemicals such as polyphenols (baicalein, luteolin, rosmarinic acids), fatty acids (monolaurin, cis-2-decenoic acid) and micronutrients (ascorbic acid, cholecalciferol and iodine). The results showed that the combinations of baicalein with luteolin as well as monolaurin with cis-2-decenoic acid expressed synergistic anti-spirochetal effects. Moreover, baicalein and luteolin, when combined with rosmarinic acid or iodine, produced additive bacteriostatic and bactericidal effects against typical corkscrew motile spirochaetes and persistent knob/round-shaped forms, respectively. An additive anti-biofilm effect was noticed between baicalein with luteolin and monolaurin with cis-2-decenoic acid. Finally, application of the combination of baicalein with luteolin increased cytoplasmic permeability of Borrelia sp. but did not cause DNA damage. CONCLUSIONS These results show that a specific combination of flavones might play a supporting role in combating Borrelia sp. through either synergistic or additive anti-borreliae effects. SIGNIFICANCE AND IMPACT OF THE STUDY Presented here in vitro results might help advancing our knowledge and improving the approach to target Borrelia sp.
Collapse
Affiliation(s)
- A Goc
- Dr Rath Research Institute BV, Santa Clara, CA, USA
| | | | - M Rath
- Dr Rath Research Institute BV, Santa Clara, CA, USA
| |
Collapse
|
11
|
Suttisunhakul V, Pumpuang A, Ekchariyawat P, Wuthiekanun V, Elrod MG, Turner P, Currie BJ, Phetsouvanh R, Dance DAB, Limmathurotsakul D, Peacock SJ, Chantratita N. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species. PLoS One 2017; 12:e0175294. [PMID: 28384252 PMCID: PMC5383291 DOI: 10.1371/journal.pone.0175294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/23/2017] [Indexed: 11/21/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for rapid bacterial identification. Studies of Burkholderia pseudomallei identification have involved small isolate numbers drawn from a restricted geographic region. There is a need to expand the reference database and evaluate B. pseudomallei from a wider geographic distribution that more fully captures the extensive genetic diversity of this species. Here, we describe the evaluation of over 650 isolates. Main spectral profiles (MSP) for 26 isolates of B. pseudomallei (N = 5) and other Burkholderia species (N = 21) were added to the Biotyper database. MALDI-TOF MS was then performed on 581 B. pseudomallei, 19 B. mallei, 6 B. thailandensis and 23 isolates representing a range of other bacterial species. B. pseudomallei originated from northeast and east Thailand (N = 524), Laos (N = 12), Cambodia (N = 14), Hong Kong (N = 4) and Australia (N = 27). All 581 B. pseudomallei were correctly identified, with 100% sensitivity and specificity. Accurate identification required a minimum inoculum of 5 x 107 CFU/ml, and identification could be performed on spiked blood cultures after 24 hours of incubation. Comparison between a dendrogram constructed from MALDI-TOF MS main spectrum profiles and a phylogenetic tree based on recA gene sequencing demonstrated that MALDI-TOF MS distinguished between B. pseudomallei and B. mallei, while the recA tree did not. MALDI-TOF MS is an accurate method for the identification of B. pseudomallei, and discriminates between this and other related Burkholderia species.
Collapse
Affiliation(s)
- Vichaya Suttisunhakul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apinya Pumpuang
- Department of Clinical Pathology, Faculty of Medicine, Navamindradhiraj University, Bangkok, Thailand
| | - Peeraya Ekchariyawat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mindy G. Elrod
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Zoonotic and Emerging Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bart J. Currie
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia; Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Rattanaphone Phetsouvanh
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - David A. B. Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sharon J. Peacock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Kuleš J, Potocnakova L, Bhide K, Tomassone L, Fuehrer HP, Horvatić A, Galan A, Guillemin N, Nižić P, Mrljak V, Bhide M. The Challenges and Advances in Diagnosis of Vector-Borne Diseases: Where Do We Stand? Vector Borne Zoonotic Dis 2017; 17:285-296. [PMID: 28346867 DOI: 10.1089/vbz.2016.2074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vector-borne diseases (VBD) are of major importance to human and animal health. In recent years, VBD have been emerging or re-emerging in many geographical areas, alarming new disease threats and economic losses. The precise diagnosis of many of these diseases still remains a major challenge because of the lack of comprehensive data available on accurate and reliable diagnostic methods. Here, we conducted a systematic and in-depth review of the former, current, and upcoming techniques employed for the diagnosis of VBD.
Collapse
Affiliation(s)
- Josipa Kuleš
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Lenka Potocnakova
- 2 Laboratory of Biomedical Microbiology and Immunology of University of Veterinary Medicine and Pharmacy , Kosice, Slovakia
| | - Katarina Bhide
- 2 Laboratory of Biomedical Microbiology and Immunology of University of Veterinary Medicine and Pharmacy , Kosice, Slovakia
| | - Laura Tomassone
- 3 Department of Veterinary Science, University of Torino , Grugliasco, Italy
| | - Hans-Peter Fuehrer
- 4 Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine , Vienna, Austria
| | - Anita Horvatić
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Asier Galan
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Nicolas Guillemin
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia
| | - Petra Nižić
- 5 Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb , Zagreb, Croatia
| | - Vladimir Mrljak
- 5 Faculty of Veterinary Medicine, Internal Diseases Clinic, University of Zagreb , Zagreb, Croatia
| | - Mangesh Bhide
- 1 ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb , Zagreb, Croatia .,2 Laboratory of Biomedical Microbiology and Immunology of University of Veterinary Medicine and Pharmacy , Kosice, Slovakia .,6 Institute of Neuroimmunology , Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
13
|
Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Montecchini S, Vasile Simone R, Medici MC, Chezzi C, De Conto F. Identification of different respiratory viruses, after a cell culture step, by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Sci Rep 2016; 6:36082. [PMID: 27786297 PMCID: PMC5081539 DOI: 10.1038/srep36082] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
In this study matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), a reliable identification method for the diagnosis of bacterial and fungal infections, is presented as an innovative tool to investigate the protein profile of cell cultures infected by the most common viruses causing respiratory tract infections in humans. MALDI-TOF MS was applied to the identification of influenza A and B viruses, adenovirus C species, parainfluenza virus types 1, 2 and 3, respiratory syncytial virus, echovirus, cytomegalovirus and metapneumovirus. In this study MALDI-TOF MS was proposed as a model to be applied to the identification of cultivable respiratory viruses using cell culture as a viral proteins enrichment method to the proteome profiling of virus infected and uninfected cell cultures. The reference virus strains and 58 viruses identified from respiratory samples of subjects with respiratory diseases positive for one of the above mentioned viral agents by cell culture were used for the in vitro infection of suitable cell cultures. The isolated viral particles, concentrated by ultracentrifugation, were used for subsequent protein extraction and their spectra profiles were generated by MALDI-TOF MS analysis. The newly created library allowed us to discriminate between uninfected and respiratory virus infected cell cultures.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Maria Cristina Arcangeletti
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Isabella Rodighiero
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Mirko Buttrini
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Sara Montecchini
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Rosita Vasile Simone
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Maria Cristina Medici
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Carlo Chezzi
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| | - Flora De Conto
- Department of Clinical and Experimental Medicine – Unit of Microbiology and Virology - University of Parma – Parma, Italy
| |
Collapse
|
14
|
Rahi P, Prakash O, Shouche YS. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists. Front Microbiol 2016; 7:1359. [PMID: 27625644 PMCID: PMC5003876 DOI: 10.3389/fmicb.2016.01359] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies.
Collapse
Affiliation(s)
- Praveen Rahi
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| | - Om Prakash
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| |
Collapse
|
15
|
Antibiotic combinations for controlling colistin-resistant Enterobacter cloacae. J Antibiot (Tokyo) 2016; 70:122-129. [PMID: 27381521 DOI: 10.1038/ja.2016.77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/16/2016] [Accepted: 05/26/2016] [Indexed: 02/02/2023]
Abstract
Enterobacter cloacae is a Gram-negative bacterium associated with high morbidity and mortality in intensive care patients due to its resistance to multiple antibiotics. Currently, therapy against multi-resistant bacteria consists of using colistin, in spite of its toxic effects at higher concentrations. In this context, colistin-resistant E. cloacae strains were challenged with lower levels of colistin combined with other antibiotics to reduce colistin-associated side effects. Colistin-resistant E. cloacae (ATCC 49141) strains were generated by serial propagation in subinhibitory colistin concentrations. After this, three colistin-resistant and three nonresistant replicates were isolated. The identity of all the strains was confirmed by MALDI-TOF MS, VITEK 2 and MicroScan analysis. Furthermore, cross-resistance to other antibiotics was checked by disk diffusion and automated systems. The synergistic effects of the combined use of colistin and chloramphenicol were observed via the broth microdilution checkerboard method. First, data here reported showed that all strains presented intrinsic resistance to penicillin, cephalosporin (except fourth generation), monobactam, and some associations of penicillin and β-lactamase inhibitors. Moreover, a chloramphenicol and colistin combination was capable of inhibiting the induced colistin-resistant strains as well as two colistin-resistant clinical strains. Furthermore, no cytotoxic effect was observed by using such concentrations. In summary, the data reported here showed for the first time the possible therapeutic use of colistin-chloramphenicol for infections caused by colistin-resistant E. cloacae.
Collapse
|
16
|
Goc A, Rath M. The anti-borreliae efficacy of phytochemicals and micronutrients: an update. Ther Adv Infect Dis 2016; 3:75-82. [PMID: 27536352 DOI: 10.1177/2049936116655502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Naturally occurring substances have been used for centuries to fight against various pathogens. They serve as a source for new chemical entities or provide options to already existing therapeutics. While there is an increasing interest in studying antimicrobial properties of naturally derived agents, little is known about their effects against Borrelia burgdorferi sensu lato, the causative pathogens of Lyme disease. A better understanding of this aspect could advance knowledge about pathophysiology of these bacteria and help improve the efficacy of current approaches against Lyme disease. Here, we review all naturally occurring substances scientifically evaluated to date, including plant extracts, their metabolites, and micronutrients, against vegetative (spirochetes) and latent (rounded bodies, biofilm) forms of Borrelia sp. This summary reveals the potent anti-borreliae activity of several of these natural compounds indicating their potential in enhancing the efficacy of current treatments for Lyme disease, and offering new options to already existing therapeutic regiments.
Collapse
Affiliation(s)
- Anna Goc
- Dr. Rath Research Institute, 1260 Memorex Drive, Santa Clara, CA 95050, USA
| | | |
Collapse
|
17
|
Calderaro A, Piergianni M, Montecchini S, Buttrini M, Piccolo G, Rossi S, Arcangeletti MC, Medici MC, Chezzi C, De Conto F. MALDI-TOF mass spectrometry as a potential tool for Trichomonas vaginalis identification. BMC Infect Dis 2016; 16:261. [PMID: 27282151 PMCID: PMC4901424 DOI: 10.1186/s12879-016-1594-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 05/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background Trichomonas vaginalis is a flagellated protozoan causing trichomoniasis, a sexually transmitted human infection, with around 276.4 million new cases estimated by World Health Organization. Culture is the gold standard method for the diagnosis of T. vaginalis infection. Recently, immunochromatographic assays as well as PCR assays for the detection of T. vaginalis antigen or DNA, respectively, have been also available. Although the well-known genome sequence of T. vaginalis has made possible the application of proteomic studies, few data are available about the overall proteomic expression profiling of T. vaginalis. The aim of this study was to investigate the potential application of MALDI-TOF MS as a new tool for the identification of T. vaginalis. Methods Twenty-one isolates were analysed by MALDI-TOF MS after the creation of a Main Spectrum Profile (MSP) from a T. vaginalis reference strain (G3) and its subsequent supplementation in the Bruker Daltonics database, not including any profile of protozoa. This was achieved after the development of a new identification method created by modifying the range setting (6–10 kDa) for the MALDI-TOF MS analysis in order to exclude the overlapping of peaks derived from the culture media used in this study. Results Two MSP reference spectra were created in 2 different range: 3–15 kDa (standard range setting) and 6–10 kDa (new range setting). Both MSP spectra were deposited in the MALDI BioTyper database for further identification of additional T. vaginalis strains. All the 21 strains analysed in this study were correctly identified by using the new identification method. Conclusions In this study it was demonstrated that changes in the MALDI-TOF MS standard parameters usually used to identify bacteria and fungi allowed the identification of the protozoan T. vaginalis. This study shows the usefulness of MALDI-TOF MS in the reliable identification of microorganism grown on complex liquid media such as the protozoan T. vaginalis, on the basis of the proteic profile and not on the basis of single markers, by using a “new range setting” different from that developed for bacteria and fungi.
Collapse
Affiliation(s)
- Adriana Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy.
| | - Maddalena Piergianni
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Sara Montecchini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Mirko Buttrini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Giovanna Piccolo
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Sabina Rossi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Maria Cristina Arcangeletti
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Maria Cristina Medici
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Carlo Chezzi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| | - Flora De Conto
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14-43126, Parma, Italy
| |
Collapse
|
18
|
Fotso Fotso A, Drancourt M. Laboratory Diagnosis of Tick-Borne African Relapsing Fevers: Latest Developments. Front Public Health 2015; 3:254. [PMID: 26618151 PMCID: PMC4641162 DOI: 10.3389/fpubh.2015.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/29/2015] [Indexed: 11/20/2022] Open
Abstract
In Africa, relapsing fevers caused by ectoparasite-borne Borrelia species are transmitted by ticks, with the exception of Borrelia recurrentis, which is a louse-borne spirochete. These tropical diseases are responsible for mild to deadly spirochetemia. Cultured Borrelia crocidurae, Borrelia duttonii, and Borrelia hispanica circulate alongside at least six species that have not yet been cultured in vectors. Direct diagnosis is hindered by the use of non-specific laboratory tools. Indeed, microscopic observation of Borrelia spirochaeta in smears of peripheral blood taken from febrile patients lacks sensitivity and specificity. Although best visualized using dark-field microscopy, the organisms can also be detected using Wright–Giemsa or acridine orange stains. PCR-based detection of specific sequences in total DNA extracted from a specimen can be used to discriminate different relapsing fever Borreliae. In our laboratory, we developed a multiplex real-time PCR assay for the specific detection of B. duttonii/recurrentis and B. crocidurae: multispacer sequence typing accurately identified cultured relapsing fever borreliae and revealed diversity among them. Other molecular typing techniques, such as multilocus sequence analysis of tick-borne relapsing fever borreliae, showed the potential risk of human infection in Africa. Recent efforts to culture and sequence relapsing fever borreliae have provided new information for reassessment of the diversity of these bacteria. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been reported as a means of identifying cultured borreliae and of identifying both vectors and vectorized pathogens such as detecting relapsing fever borreliae directly in ticks. The lack of a rapid diagnosis test restricts the management of such diseases. We produced monoclonal antibodies against B. crocidurae in order to develop cheap assays for the rapid detection of relapsing fever borreliae. In this paper, we review point-of-care diagnosis and confirmatory methods.
Collapse
Affiliation(s)
- Aurélien Fotso Fotso
- Aix Marseille Université, URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine , Marseille , France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine , Marseille , France
| |
Collapse
|
19
|
Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D. Blood-Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 2015; 93:1070-3. [PMID: 26416117 DOI: 10.4269/ajtmh.15-0124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/03/2015] [Indexed: 11/07/2022] Open
Abstract
To improve the knowledge base of Borrelia in north Africa, we tested 257 blood samples collected from febrile patients in Oran, Algeria, between January and December 2012 for Borrelia species using flagellin gene polymerase chain reaction sequencing. A sequence indicative of a new Borrelia sp. named Candidatus Borrelia algerica was detected in one blood sample. Further multispacer sequence typing indicated this Borrelia sp. had 97% similarity with Borrelia crocidurae, Borrelia duttonii, and Borrelia recurrentis. In silico comparison of Candidatus B. algerica spacer sequences with those of Borrelia hispanica and Borrelia garinii revealed 94% and 89% similarity, respectively. Candidatus B. algerica is a new relapsing fever Borrelia sp. detected in Oran. Further studies may help predict its epidemiological importance.
Collapse
Affiliation(s)
- Aurélien Fotso Fotso
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France; Service des Maladies Infectieuses, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
| | - Emmanouil Angelakis
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France; Service des Maladies Infectieuses, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
| | - Nadjet Mouffok
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France; Service des Maladies Infectieuses, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
| | - Michel Drancourt
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France; Service des Maladies Infectieuses, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France; Service des Maladies Infectieuses, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
| |
Collapse
|
20
|
Portillo A, Oteo JA. New tools, new tick-borne diseases? World J Clin Infect Dis 2015; 5:51-54. [DOI: 10.5495/wjcid.v5.i3.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/17/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
Tick-borne diseases (TBDs) are a major public health concern that has increased in the past three decades. Nevertheless, emerging or reemerging TBDs may be still misdiagnosed. Molecular biology techniques for the screening of ticks, use of “Omics” approaches and the incorporation of analytical methods such as mass spectrometry or nuclear magnetic resonance, to the study of ticks and their associated pathogens or potential pathogens are promising tools for a more accurate differential diagnosis of TBDs. However, this huge amount of data needs to be carefully interpreted before being incorporated to the routine of clinical practice. In the meantime, a clinical approach and high level of suspicion keep being essential for the diagnosis and proper handling of TBDs.
Collapse
|
21
|
Calderaro A, Piergianni M, Buttrini M, Montecchini S, Piccolo G, Gorrini C, Rossi S, Chezzi C, Arcangeletti MC, Medici MC, De Conto F. MALDI-TOF mass spectrometry for the detection and differentiation of Entamoeba histolytica and Entamoeba dispar. PLoS One 2015; 10:e0122448. [PMID: 25874612 PMCID: PMC4398369 DOI: 10.1371/journal.pone.0122448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/12/2015] [Indexed: 01/06/2023] Open
Abstract
Detection of Entamoeba histolytica and its differentiation from Entamoeba dispar is an important goal of the clinical parasitology laboratory. The aim of this study was the identification and differentiation of E. histolytica and E. dispar by MALDI-TOF MS, in order to evaluate the application of this technique in routine diagnostic practice. MALDI-TOF MS was applied to 3 amebic reference strains and to 14 strains isolated from feces that had been differentiated by molecular methods in our laboratory. Protein extracts from cultures of these strains (axenic cultures for the 3 reference strains and monoxenic cultures for the 14 field isolates) were analyzed by MALDI-TOF MS and the spectra obtained were analyzed by statistical software. Five peaks discriminating between E. histolytica and E. dispar reference strains were found by protein profile analysis: 2 peaks (8,246 and 8,303 Da) specific for E. histolytica and 3 (4,714; 5,541; 8,207 Da) for E. dispar. All clinical isolates except one showed the discriminating peaks expected for the appropriate species. For 2 fecal samples from which 2 strains (1 E. histolytica and 1 E. dispar) out of the 14 included in this study were isolated, the same discriminating peaks found in the corresponding isolated amebic strains were detected after only 12h (E. histolytica) and 24h (E. dispar) of incubation of the fecal samples in Robinson’s medium without serum. Our study shows that MALDI-TOF MS can be used to discriminate between E. histolytica and E. dispar using in vitro xenic cultures and it also could have potential for the detection of these species in clinical samples.
Collapse
Affiliation(s)
- Adriana Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
- * E-mail:
| | - Maddalena Piergianni
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Mirko Buttrini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Sara Montecchini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Giovanna Piccolo
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Chiara Gorrini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Sabina Rossi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Carlo Chezzi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Maria Cristina Arcangeletti
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Maria Cristina Medici
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Flora De Conto
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
22
|
Yssouf A, Almeras L, Terras J, Socolovschi C, Raoult D, Parola P. Detection of Rickettsia spp in ticks by MALDI-TOF MS. PLoS Negl Trop Dis 2015; 9:e0003473. [PMID: 25659152 PMCID: PMC4319929 DOI: 10.1371/journal.pntd.0003473] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown to be an effective tool for the rapid identification of arthropods, including tick vectors of human diseases. METHODOLOGY/PRINCIPAL FINDINGS The objective of the present study was to evaluate the use of MALDI-TOF MS to identify tick species, and to determine the presence of rickettsia pathogens in the infected Ticks. Rhipicephalus sanguineus and Dermacentor marginatus Ticks infected or not by R. conorii conorii or R. slovaca, respectively, were used as experimental models. The MS profiles generated from protein extracts prepared from tick legs exhibited mass peaks that distinguished the infected and uninfected Ticks, and successfully discriminated the Rickettsia spp. A blind test was performed using Ticks that were laboratory-reared, collected in the field or removed from patients and infected or not by Rickettsia spp. A query against our in-lab arthropod MS reference database revealed that the species and infection status of all Ticks were correctly identified at the species and infection status levels. CONCLUSIONS/SIGNIFICANCE Taken together, the present work demonstrates the utility of MALDI-TOF MS for a dual identification of tick species and intracellular bacteria. Therefore, MALDI-TOF MS is a relevant tool for the accurate detection of Rickettsia spp in Ticks for both field monitoring and entomological diagnosis. The present work offers new perspectives for the monitoring of other vector borne diseases that present public health concerns.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Jérôme Terras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | | | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
23
|
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep 2014; 4:6803. [PMID: 25354905 PMCID: PMC4213803 DOI: 10.1038/srep06803] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification.
Collapse
|
24
|
Identification of Dermatophyte species after implementation of the in-house MALDI-TOF MS database. Int J Mol Sci 2014; 15:16012-24. [PMID: 25216335 PMCID: PMC4200822 DOI: 10.3390/ijms150916012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 12/04/2022] Open
Abstract
Despite that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool in the clinical microbiology setting, few studies have till now focused on MALDI-TOF MS-based identification of dermatophytes. In this study, we analyze dermatophytes strains isolated from clinical samples by MALDI-TOF MS to supplement the reference database available in our laboratory. Twenty four dermatophytes (13 reference strains and 11 field isolated strains), identified by both conventional and molecular standard procedures, were analyzed by MALDI-TOF MS, and the spectra obtained were used to supplement the available database, limited to a few species. To verify the robustness of the implemented database, 64 clinical isolates other than those used for the implementation were identified by MALDI-TOF MS. The implementation allowed the identification of the species not included in the original database, reinforced the identification of the species already present and correctly identified those within the Trichophyton mentagrophytes complex previously classified as Trichophyton. tonsurans by MALDI-TOF MS. The dendrogram obtained by analyzing the proteic profiles of the different species of dermatophytes reflected their taxonomy, showing moreover, in some cases, a different clusterization between the spectra already present in the database and those newly added. In this study, MALDI-TOF MS proved to be a useful tool suitable for the identification of dermatophytes for diagnostic purpose.
Collapse
|
25
|
Fotso Fotso A, Mediannikov O, Diatta G, Almeras L, Flaudrops C, Parola P, Drancourt M. MALDI-TOF mass spectrometry detection of pathogens in vectors: the Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl Trop Dis 2014; 8:e2984. [PMID: 25058611 PMCID: PMC4109908 DOI: 10.1371/journal.pntd.0002984] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Africa, relapsing fever borreliae are neglected vector-borne pathogens that cause mild to deadly septicemia and miscarriage. Screening vectors for the presence of borreliae currently requires technically demanding, time- and resource-consuming molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has recently emerged as a tool for the rapid identification of vectors and the identification of cultured borreliae. We investigated whether MALDI-TOF-MS could detect relapsing fever borreliae directly in ticks. METHODOLOGY/PRINCIPAL FINDINGS As a first step, a Borrelia MALDI-TOF-MS database was created to house the newly determined Mean Spectrum Projections for four Lyme disease group and ten relapsing fever group reference borreliae. MALDI-TOF-MS yielded a unique protein profile for each of the 14 tested Borrelia species, with 100% reproducibility over 12 repeats. In a second proof-of-concept step, the Borrelia database and a custom software program that subtracts the uninfected O. sonrai profile were used to detect Borrelia crocidurae in 20 Ornithodoros sonrai ticks, including eight ticks that tested positive for B. crocidurae by PCR-sequencing. A B. crocidurae-specific pattern consisting of 3405, 5071, 5898, 7041, 8580 and 9757-m/z peaks was found in all B. crocidurae-infected ticks and not found in any of the un-infected ticks. In a final blind validation step, MALDI-TOF-MS exhibited 88.9% sensitivity and 93.75% specificity for the detection of B. crocidurae in 50 O. sonrai ticks, including 18 that tested positive for B. crocidurae by PCR-sequencing. MALDI-TOF-MS took 45 minutes to be completed. CONCLUSIONS/SIGNIFICANCE After the development of an appropriate database, MALDI-TOF-MS can be used to identify tick species and the presence of relapsing fever borreliae in a single assay. This work paves the way for the use of MALDI-TOF-MS for the dual identification of vectors and vectorized pathogens.
Collapse
Affiliation(s)
- Aurélien Fotso Fotso
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Oleg Mediannikov
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France; URMITE, UMR, IRD 198, Campus IRD Ham Manisty, Dakar, Senegal
| | - Georges Diatta
- URMITE, UMR, IRD 198, Campus IRD Ham Manisty, Dakar, Senegal
| | - Lionel Almeras
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Christophe Flaudrops
- Pôle de Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France
| | - Philippe Parola
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Michel Drancourt
- URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
26
|
Calderaro A, Piccolo G, Gorrini C, Montecchini S, Buttrini M, Rossi S, Piergianni M, De Conto F, Arcangeletti MC, Chezzi C, Medici MC. Leptospira species and serovars identified by MALDI-TOF mass spectrometry after database implementation. BMC Res Notes 2014; 7:330. [PMID: 24890024 PMCID: PMC4048046 DOI: 10.1186/1756-0500-7-330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Background Leptospirosis, a spirochaetal zoonotic disease of worldwide distribution, endemic in Europe, has been recognized as an important emerging infectious disease, though yet it is mostly a neglected disease which imparts its greatest burden on impoverished populations from developing countries. Leptospirosis is caused by the infection with any of the more than 230 serovars of pathogenic Leptospira sp. In this study we aimed to implement the MALDI-TOF mass spectrometry (MS) database currently available in our laboratory with Leptospira reference pathogenic (L. interrogans, L. borgpetersenii, L. kirschneri, L. noguchii), intermediate (L. fainei) and saprophytic (L. biflexa) strains of our collection in order to evaluate its possible application to the diagnosis of leptospirosis and to the typing of strains. This was done with the goal of understanding whether this methodology could be used as a tool for the identification of Leptospira strains, not only at species level for diagnostic purposes, but also at serovar level for epidemiological purposes, overcoming the limits of serological and molecular conventional methods. Twenty Leptospira reference strains were analysed by MALDI-TOF MS. Statistical analysis of the protein spectra was performed by ClinProTools software. Results The spectra obtained by the analysis of the reference strains tested were grouped into 6 main classes corresponding to the species analysed, highlighting species-specific protein profiles. Moreover, the statistical analysis of the spectra identified discriminatory peaks to recognize Leptospira strains also at serovar level extending previously published data. Conclusions In conclusion, we confirmed that MALDI-TOF MS could be a powerful tool for research and diagnostic in the field of leptospirosis with broad applications ranging from the detection and identification of pathogenic leptospires for diagnostic purposes to the typing of pathogenic and non-pathogenic leptospires for epidemiological purposes in order to enrich our knowledge about the epidemiology of the infection in different areas and generate control strategies.
Collapse
Affiliation(s)
- Adriana Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Viale A, Gramsci, 14-43126 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|