1
|
Pickkers P, Angus DC, Bass K, Bellomo R, van den Berg E, Bernholz J, Bestle MH, Doi K, Doig CJ, Ferrer R, Francois B, Gammelager H, Pedersen UG, Hoste E, Iversen S, Joannidis M, Kellum JA, Liu K, Meersch M, Mehta R, Millington S, Murray PT, Nichol A, Ostermann M, Pettilä V, Solling C, Winkel M, Young PJ, Zarbock A. Phase-3 trial of recombinant human alkaline phosphatase for patients with sepsis-associated acute kidney injury (REVIVAL). Intensive Care Med 2024; 50:68-78. [PMID: 38172296 PMCID: PMC10810941 DOI: 10.1007/s00134-023-07271-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Ilofotase alfa is a human recombinant alkaline phosphatase with reno-protective effects that showed improved survival and reduced Major Adverse Kidney Events by 90 days (MAKE90) in sepsis-associated acute kidney injury (SA-AKI) patients. REVIVAL, was a phase-3 trial conducted to confirm its efficacy and safety. METHODS In this international double-blinded randomized-controlled trial, SA-AKI patients were enrolled < 72 h on vasopressor and < 24 h of AKI. The primary endpoint was 28-day all-cause mortality. The main secondary endpoint was MAKE90, other secondary endpoints were (i) days alive and free of organ support through day 28, (ii) days alive and out of the intensive care unit (ICU) through day 28, and (iii) time to death through day 90. Prior to unblinding, the statistical analysis plan was amended, including an updated MAKE90 definition. RESULTS Six hundred fifty patients were treated and analyzed for safety; and 649 for efficacy data (ilofotase alfa n = 330; placebo n = 319). The observed mortality rates in the ilofotase alfa and placebo groups were 27.9% and 27.9% at 28 days, and 33.9% and 34.8% at 90 days. The trial was stopped for futility on the primary endpoint. The observed proportion of patients with MAKE90A and MAKE90B were 56.7% and 37.4% in the ilofotase alfa group vs. 64.6% and 42.8% in the placebo group. Median [interquartile range (IQR)] days alive and free of organ support were 17 [0-24] and 14 [0-24], number of days alive and discharged from the ICU through day 28 were 15 [0-22] and 10 [0-22] in the ilofotase alfa and placebo groups, respectively. Adverse events were reported in 67.9% and 75% patients in the ilofotase and placebo group. CONCLUSION Among critically ill patients with SA-AKI, ilofotase alfa did not improve day 28 survival. There may, however, be reduced MAKE90 events. No safety concerns were identified.
Collapse
Affiliation(s)
- Peter Pickkers
- Department of Intensive Care, Radboudumc, Nijmegen, The Netherlands.
| | - Derek C Angus
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | | | | | - Morten H Bestle
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Chistopher J Doig
- Department of Critical Care Medicine, Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ricard Ferrer
- Department of Intensive Care Medicine, SODIR-VHIR Research Group, Val d'Hebron University Hospital, Barcelona, Spain
| | - Bruno Francois
- Intensive Care, Inserm CIC 1435 & UMR 1092, CHU Limoges, Limoges, France
| | - Henrik Gammelager
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Eric Hoste
- Department of Internal Medicine and Pediatrics, Intensive Care Unit, Ghent University Hospital, Ghent University, Ghent, Belgium
- Research Foundation-Flanders, (FWO), Brussels, Belgium
| | - Susanne Iversen
- Department of Anaesthesiology and Intensive Care, Slagelse Hospital, Slagelse, Denmark
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Kathleen Liu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melanie Meersch
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Ravindra Mehta
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | | - Alistair Nichol
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- University College Dublin-Clinical Research Centre at St Vincent's University Hospital, Dublin, Ireland
| | - Marlies Ostermann
- Department of Critical Care, Guys & St Thomas' Foundation Trust, London, UK
| | - Ville Pettilä
- Department of Perioperative and Intensive Care, University of Helsinki and Helsinki University Hospital, HUS, Helsinki, Finland
| | - Christoffer Solling
- Department of Anaestesiology and Intensive Care, Viborg Regional Hospital, Viborg, Denmark
| | | | - Paul J Young
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Intensive Care Unit, Wellington Hospital, Wellington, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
2
|
Khan Jadoon MS, Pelletier J, Sévigny J, Iqbal J. Synthesis of new class of indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors. RSC Adv 2023; 13:29496-29511. [PMID: 37822663 PMCID: PMC10562900 DOI: 10.1039/d3ra04266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Ectonucleotidases inhibitors (ENPPs, e5'NT (CD73) and h-TNAP) are potential therapeutic candidates for the treatment of cancer. Adenosine, the cancer-developing, and growth moiety is the resultant product of these enzymes. The synthesis of small molecules that can increase the acidic and ionizable structure of adenosine 5-monophosphate (AMP) has been used in traditional attempts to inhibit ENPPs, ecto-5'-nucleotidase and h-TNAP. In this article, we present a short and interesting method for developing substituted indole acetic acid sulfonate derivatives (5a-5o), which are non-nucleotide based small molecules, and investigated their inhibitory potential against recombinant h-ENPP1, h-ENPP3, h-TNAP, h-e5'NT and r-e5'NT. Their overexpression in the tumor environment leads to high adenosine level that results in tumor development as well as immune evasion. Therefore, selective, and potent inhibitors of these enzymes would be expected to decrease adenosine levels and manage tumor development and progression. Our intended outcome led to the discovery of new potent inhibitors like' 5e (IC50 against h-ENPP1 = 0.32 ± 0.01 μM, 58 folds increased with respect to suramin), 5j (IC50 against h-ENPP3 = 0.62 ± 0.003 μM, 21 folds increase with respect to suramin), 5c (IC50 against h-e5'NT = 0.37 ± 0.03 μM, 115 folds increase with respect to sulfamic acid), 5i (IC50 against r-e5'NT = 0.81 ± 0.05 μM, 95 folds increase with respect to sulfamic acid), and 5g (IC50 against h-TNAP = 0.59 ± 0.08 μM, 36 folds increase with respect to Levamisole). Molecular docking studies revealed that inhibitors of these selected target enzymes induced favorable interactions with the key amino acids of the active site, including Lys255, Lys278, Asn277, Gly533, Lys528, Tyr451, Phe257, Tyr340, Gln465, Gln434, Lys437, Glu830, Cys818, Asn499, Arg40, Phe417, Phe500, Asn503, Asn599, Tyr281, Arg397, Asp526, Phe419 and Tyr502. Enzyme kinetic studies revealed that potent compounds such as 5j and 5e blocked these ectonucleotidases competitively while compounds 5e and 5c presented an un-competitive binding mode. 5g revealed a non-competitive mode of inhibition.
Collapse
Affiliation(s)
- Muhammad Siraj Khan Jadoon
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
- Centre for Advanced Drug Research, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval Québec G1V 4G2 Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval Québec G1V 4G2 Canada
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval Québec G1V 0A6 Canada
| | - Jamshed Iqbal
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
- Centre for Advanced Drug Research, COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| |
Collapse
|
3
|
Jagdish RK, Roy A, Kumar K, Premkumar M, Sharma M, Rao PN, Reddy DN, Kulkarni AV. Pathophysiology and management of liver cirrhosis: from portal hypertension to acute-on-chronic liver failure. Front Med (Lausanne) 2023; 10:1060073. [PMID: 37396918 PMCID: PMC10311004 DOI: 10.3389/fmed.2023.1060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Cirrhosis transcends various progressive stages from compensation to decompensation driven by the severity of portal hypertension. The downstream effect of increasing portal hypertension severity leads to various pathophysiological pathways, which result in the cardinal complications of cirrhosis, including ascites, variceal hemorrhage, and hepatic encephalopathy. Additionally, the severity of portal hypertension is the central driver for further advanced complications of hyperdynamic circulation, hepatorenal syndrome, and cirrhotic cardiomyopathy. The management of these individual complications has specific nuances which have undergone significant developments. In contrast to the classical natural history of cirrhosis and its complications which follows an insidious trajectory, acute-on-chronic failure (ACLF) leads to a rapidly downhill course with high short-term mortality unless intervened at the early stages. The management of ACLF involves specific interventions, which have quickly evolved in recent years. In this review, we focus on complications of portal hypertension and delve into an approach toward ACLF.
Collapse
Affiliation(s)
- Rakesh Kumar Jagdish
- Department of Hepatology, Gastroenterology and Liver Transplant Medicine, Metro Hospital, Noida, India
| | - Akash Roy
- Department of Gastroenterology, Institute of Gastrosciences and Liver Transplantation, Apollo Hospitals, Kolkata, India
| | - Karan Kumar
- Department of Hepatology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Madhumita Premkumar
- Department of Hepatology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mithun Sharma
- Department of Hepatology, Asian Institute of Gastroenterology (AIG) Hospitals, Hyderabad, India
| | - Padaki Nagaraja Rao
- Department of Hepatology, Asian Institute of Gastroenterology (AIG) Hospitals, Hyderabad, India
| | - Duvvur Nageshwar Reddy
- Department of Hepatology, Asian Institute of Gastroenterology (AIG) Hospitals, Hyderabad, India
| | - Anand V. Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology (AIG) Hospitals, Hyderabad, India
| |
Collapse
|
4
|
Pickkers P, Angus DC, Arend J, Bellomo R, van den Berg E, Bernholz J, Bestle M, Broglio K, Carlsen J, Doig CJ, Ferrer R, Joannidis M, Francois B, Doi K, Kellum JA, Laterre PF, Liu K, Mehta RL, Murray PT, Ostermann M, Pettilä V, Richards S, Young P, Zarbock A, Kjølbye AL. Study protocol of a randomised, double-blind, placebo-controlled, two-arm parallel-group, multi-centre phase 3 pivotal trial to investigate the efficacy and safety of recombinant human alkaline phosphatase for treatment of patients with sepsis-associated acute kidney injury. BMJ Open 2023; 13:e065613. [PMID: 37012016 PMCID: PMC10083765 DOI: 10.1136/bmjopen-2022-065613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
INTRODUCTION Sepsis, the leading cause of acute kidney injury (AKI), is associated with a high morbidity and mortality. Alkaline phosphatase (ALP) is an endogenous detoxifying enzyme. A recombinant human ALP compound, ilofotase alfa, showed no safety or tolerability concerns in a phase 2 trial. Renal function improvement over 28 days was significantly greater in the ilofotase alfa group. Moreover, a significant relative reduction in 28-day all-cause mortality of >40% was observed. A follow-up trial has been designed to confirm these findings. METHODS AND ANALYSIS This is a phase 3, global, multi-centre, randomised, double-blind, placebo-controlled, sequential design trial in which patients are randomly assigned to either placebo or 1.6 mg/kg ilofotase alfa. Randomisation is stratified by baseline modified Sequential Organ Failure Assessment (mSOFA) score and trial site. The primary objective is to confirm the survival benefit with ilofotase alfa by demonstrating a reduction in 28-day all-cause mortality in patients with sepsis-associated AKI requiring vasopressors. A maximum of 1400 patients will be enrolled at ∼120 sites in Europe, North America, Japan, Australia and New Zealand. Up to four interim analyses will take place. Based on predefined decision rules, the trial may be stopped early for futility or for effectiveness. In addition, patients with COVID-19 disease and patients with 'moderate to severe' chronic kidney disease are analysed as 2 separate cohorts of 100 patients each. An independent Data Monitoring Committee evaluates safety data at prespecified intervals throughout the trial. ETHICS AND DISSEMINATION The trial is approved by relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this study will determine the potential of ilofotase alfa to reduce mortality in critically ill patients with sepsis-associated AKI and will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER EudraCT CT Number 2019-0046265-24. US IND Number 117 605 Pre-results. CLINICALTRIALS gov number: NCT04411472.
Collapse
Affiliation(s)
- Peter Pickkers
- Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Derek C Angus
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Rinaldo Bellomo
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Critical Care, Austin Hospital, Melbourne, Victoria, Australia
| | | | | | - Morten Bestle
- Department of Anaesthesiology and Intensive care, Nordsjaellands Hospital, Hillerod, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Christopher J Doig
- Department of Critical Care Medicine, University of Calgary Medical Centre, Calgary, Alberta, Canada
| | - Ricard Ferrer
- Intensive Care Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Bruno Francois
- ICU and Inserm C1C, University of Limoges, Limoges, France
| | - Kent Doi
- Emergency and Critical Care Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Kathleen Liu
- Divisions of Critical Care Medicine and Nephrology, Departments of Anesthesia and Medicine, University of California San Fransisco, San Francisco, California, USA
| | - Ravindra L Mehta
- Department of Medicine, University of California, San Diego, California, USA
| | | | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, UK
| | - Ville Pettilä
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, Helsingin Yliopisto Laaketieteellinen tiedekunta, Helsinki, Finland
| | | | - Paul Young
- Intensive Care Unit, Wellington Hospital, Wellington, New Zealand
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, Universität Münster, Münster, Germany
| | | |
Collapse
|
5
|
Yin X, Wang W, Seah SYK, Mine Y, Fan MZ. Deglycosylation Differentially Regulates Weaned Porcine Gut Alkaline Phosphatase Isoform Functionality along the Longitudinal Axis. Pathogens 2023; 12:pathogens12030407. [PMID: 36986329 PMCID: PMC10053101 DOI: 10.3390/pathogens12030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Gut alkaline phosphatases (AP) dephosphorylate the lipid moiety of endotoxin and other pathogen-associated-molecular patterns members, thus maintaining gut eubiosis and preventing metabolic endotoxemia. Early weaned pigs experience gut dysbiosis, enteric diseases and growth retardation in association with decreased intestinal AP functionality. However, the role of glycosylation in modulation of the weaned porcine gut AP functionality is unclear. Herein three different research approaches were taken to investigate how deglycosylation affected weaned porcine gut AP activity kinetics. In the first approach, weaned porcine jejunal AP isoform (IAP) was fractionated by the fast protein-liquid chromatography and purified IAP fractions were kinetically characterized to be the higher-affinity and lower-capacity glycosylated mature IAP (p < 0.05) in comparison with the lower-affinity and higher-capacity non-glycosylated pre-mature IAP. The second approach enzyme activity kinetic analyses showed that N-deglycosylation of AP by the peptide N-glycosidase-F enzyme reduced (p < 0.05) the IAP maximal activity in the jejunum and ileum and decreased AP affinity (p < 0.05) in the large intestine. In the third approach, the porcine IAP isoform-X1 (IAPX1) gene was overexpressed in the prokaryotic ClearColiBL21 (DE3) cell and the recombinant porcine IAPX1 was associated with reduced (p < 0.05) enzyme affinity and maximal enzyme activity. Therefore, levels of glycosylation can modulate plasticity of weaned porcine gut AP functionality towards maintaining gut microbiome and the whole-body physiological status.
Collapse
Affiliation(s)
- Xindi Yin
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Weijun Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Canadian Food Inspection Agency (CFIA)-Ontario Operation, Guelph, ON N1G 4S9, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ming Z. Fan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- One Health Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
6
|
Levitt DG, Levitt MD. Development and application of a simple pharmacokinetic model that quantitatively describes the distribution and elimination of the commonly measured proteins. ADMET & DMPK 2023; 11:57-80. [PMID: 36778906 PMCID: PMC9909726 DOI: 10.5599/admet.1570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Increased plasma concentrations of a variety of cellular enzymes (alanine transaminase, aspartate aminotransferase, alkaline phosphatase, amylase, etc.) are commonly used as routine screening tests for a range of conditions. An increased concentration usually is assumed to result from an increased rate of delivery to the plasma. Factors such as decreased metabolism or excretion or altered extravascular distribution usually are ignored. As a prelude to a detailed analysis of all the factors producing altered plasma enzyme levels, we have reviewed the relevant literature describing the pharmacokinetics (PK) of 13 of the commonly measured plasma proteins and developed a PK model that provides a simple physiological description of all the data. Our model starts with the general 3-compartment, 6-parameter system previously developed for albumin and interprets the fluxes in terms of unidirectional sieved protein convectional volume flows from the plasma to the two tissue compartments and equal lymph flows returning to the plasma. This greatly constrains the model such that each protein is characterized by only two adjustable parameters (plasma clearance and sieving factor). In addition to accurately fitting the plasma kinetics, the model can accurately describe the tissue and lymph protein PK. For example, it can describe the thoracic duct lymph protein concentration following an intravenous infusion or the plasma concentration following a subcutaneous tissue injection. This simple model provides a satisfactory framework for the PK of 12 of the 13 proteins investigated. The glycoprotein intestinal alkaline phosphatase is the exception, requiring the addition of a liver recycling compartment involving the asialoglycoprotein receptor.
Collapse
Affiliation(s)
- David G. Levitt
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA; ,*Corresponding Author: E-mail:
| | - Michael D. Levitt
- Medicine Service, Veterans Affairs Medical Center, Minneapolis, MN. 55417, USA;
| |
Collapse
|
7
|
Wang H, Reddy ST, Fogelman AM. The role of gut-derived oxidized lipids and bacterial lipopolysaccharide in systemic inflammation and atherosclerosis. Curr Opin Lipidol 2022; 33:277-282. [PMID: 35979993 PMCID: PMC9581106 DOI: 10.1097/mol.0000000000000841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review explores mechanisms by which gut-derived bacteriallipopolysaccharide (LPS) and oxidized phospholipids contribute to chronic systemic inflammation and atherosclerosis. RECENT FINDINGS Gut-derived LPS enters through the small intestine via two distinct pathways that involve high density lipoproteins (HDL) and chylomicrons. Gut-derived LPS can bind to the LPS-binding protein (LBP) and to HDL 3 in the small intestine and travel through the portal vein to the liver where it does not elicit an inflammatory reaction, and is inactivated or it can bind to HDL 2 and travel through the portal vein to the liver where it elicits an inflammatory reaction. Alternatively, in the small intestine, LPS can bind to LBP and chylomicrons and travel through the lymphatics to the systemic circulation and enhance inflammatory processes including atherosclerosis. Oxidized phospholipids formed in the small intestine regulate the levels and uptake of LPS in small intestine by regulating antimicrobial proteins such as intestinal alkaline phosphatase. Gut-derived LPS and oxidized phospholipids may be responsible for the persistent inflammation seen in some persons with human immunodeficiency virus on potent antiretroviral therapy with undetectable virus levels. SUMMARY By targeting gut-derived oxidized phospholipids, the uptake of gut-derived LPS may be reduced to decrease systemic inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medicine, Division of Cardiology
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles California, USA
| | | |
Collapse
|
8
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
9
|
Kulkarni AV, Premkumar M, Arab JP, Kumar K, Sharma M, Reddy ND, Padaki NR, Reddy RK. Early Diagnosis and Prevention of Infections in Cirrhosis. Semin Liver Dis 2022; 42:293-312. [PMID: 35672014 DOI: 10.1055/a-1869-7607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strategies to prevent infection and improve outcomes in patients with cirrhosis. HAV, hepatitis A virus; HBV, hepatitis B virus; COVID-19, novel coronavirus disease 2019; NSBB, nonselective β-blocker; PPI, proton pump inhibitors.Cirrhosis is a risk factor for infections. Majority of hospital admissions in patients with cirrhosis are due to infections. Sepsis is an immunological response to an infectious process that leads to end-organ dysfunction and death. Preventing infections may avoid the downstream complications, and early diagnosis of infections may improve the outcomes. In this review, we discuss the pathogenesis, diagnosis, and biomarkers of infection; the incremental preventive strategies for infections and sepsi; and the consequent organ failures in cirrhosis. Strategies for primary prevention include reducing gut translocation by selective intestinal decontamination, avoiding unnecessary proton pump inhibitors' use, appropriate use of β-blockers, and vaccinations for viral diseases including novel coronavirus disease 2019. Secondary prevention includes early diagnosis and a timely and judicious use of antibiotics to prevent organ dysfunction. Organ failure support constitutes tertiary intervention in cirrhosis. In conclusion, infections in cirrhosis are potentially preventable with appropriate care strategies to then enable improved outcomes.
Collapse
Affiliation(s)
- Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Juan P Arab
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Karan Kumar
- Department of Hepatology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Mithun Sharma
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nageshwar D Reddy
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nagaraja R Padaki
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Rajender K Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Rosin DL, Hall JP, Zheng S, Huang L, Campos-Bilderback S, Sandoval R, Bree A, Beaumont K, Miller E, Larsen J, Hariri G, Kaila N, Encarnacion IM, Gale JD, van Elsas A, Molitoris BA, Okusa MD. Human Recombinant Alkaline Phosphatase (Ilofotase Alfa) Protects Against Kidney Ischemia-Reperfusion Injury in Mice and Rats Through Adenosine Receptors. Front Med (Lausanne) 2022; 9:931293. [PMID: 35966871 PMCID: PMC9366018 DOI: 10.3389/fmed.2022.931293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Adenosine triphosphate (ATP) released from injured or dying cells is a potent pro-inflammatory "danger" signal. Alkaline phosphatase (AP), an endogenous enzyme that de-phosphorylates extracellular ATP, likely plays an anti-inflammatory role in immune responses. We hypothesized that ilofotase alfa, a human recombinant AP, protects kidneys from ischemia-reperfusion injury (IRI), a model of acute kidney injury (AKI), by metabolizing extracellular ATP to adenosine, which is known to activate adenosine receptors. Ilofotase alfa (iv) with or without ZM241,385 (sc), a selective adenosine A2A receptor (A2AR) antagonist, was administered 1 h before bilateral IRI in WT, A2AR KO (Adora2a-/- ) or CD73-/- mice. In additional studies recombinant alkaline phosphatase was given after IRI. In an AKI-on-chronic kidney disease (CKD) ischemic rat model, ilofotase alfa was given after the three instances of IRI and rats were followed for 56 days. Ilofotase alfa in a dose dependent manner decreased IRI in WT mice, an effect prevented by ZM241,385 and partially prevented in Adora2a-/- mice. Enzymatically inactive ilofotase alfa was not protective. Ilofotase alfa rescued CD73-/- mice, which lack a 5'-ectonucleotidase that dephosphorylates AMP to adenosine; ZM241,385 inhibited that protection. In both rats and mice ilofotase alfa ameliorated IRI when administered after injury, thus providing relevance for therapeutic dosing of ilofotase alfa following established AKI. In an AKI-on-CKD ischemic rat model, ilofotase alfa given after the third instance of IRI reduced injury. These results suggest that ilofotase alfa promotes production of adenosine from liberated ATP in injured kidney tissue, thereby amplifying endogenous mechanisms that can reverse tissue injury, in part through A2AR-and non-A2AR-dependent signaling pathways.
Collapse
Affiliation(s)
- Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States,*Correspondence: Diane L. Rosin, , orcid.org/0000-0003-0187-5717
| | - J. Perry Hall
- Inflammation and Immunology Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Shuqiu Zheng
- Division of Nephrology, Center for Immunity, Inflammation and Regeneration, University of Virginia, Charlottesville, VA, United States
| | - Liping Huang
- Division of Nephrology, Center for Immunity, Inflammation and Regeneration, University of Virginia, Charlottesville, VA, United States
| | - Silvia Campos-Bilderback
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indiana Center for Biological Microscopy, Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Ruben Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indiana Center for Biological Microscopy, Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Andrea Bree
- Inflammation and Immunology Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Kevin Beaumont
- BioMedicine Design, Pfizer Inc., Cambridge, MA, United States
| | - Emily Miller
- BioMedicine Design, Pfizer Inc., Groton, CT, United States
| | - Jennifer Larsen
- Early Clinical Development, Pfizer Inc., Groton, CT, United States
| | - Ghazal Hariri
- Drug Product Development, Pfizer Inc., Cambridge, MA, United States
| | - Neelu Kaila
- Medicinal Chemistry, Pfizer Inc., Cambridge, MA, United States
| | - Iain M. Encarnacion
- Division of Nephrology, Center for Immunity, Inflammation and Regeneration, University of Virginia, Charlottesville, VA, United States
| | - Jeremy D. Gale
- Inflammation and Immunology Research Unit, Pfizer Inc., Cambridge, MA, United States
| | | | - Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indiana Center for Biological Microscopy, Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Mark D. Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regeneration, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
11
|
Patent Highlights February-March 2022. Pharm Pat Anal 2022; 11:119-126. [PMID: 35861060 DOI: 10.4155/ppa-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
12
|
Sadeghi M, Miroliaei M. Inhibitory effects of selected isoquinoline alkaloids against main protease (M pro) of SARS-CoV-2, in silico study. In Silico Pharmacol 2022; 10:5. [PMID: 35310017 PMCID: PMC8918422 DOI: 10.1007/s40203-022-00122-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global threat. Despite the production of various vaccines and different treatments, finding natural compounds to control COVID-19 is still a challenging task. Isoquinoline alkaloids are naturally occurring compounds known to have some potential antiviral activity. In this study, ten abundant isoquinoline alkaloids with antiviral activity were selected to analyze the preventive effect on COVID-19. A scrutinized evaluation based on Lipinski's rule showed that one out of ten compounds was toxic. Based on molecular docking analysis using Autodock software one of the best molecules with maximum negative binding energy was selected for further analysis. The Gromacs simulation analysis revealed that Coptisine has more action against active site Mpro of COVID-19. Overall, to make a rational design of various preventive analogues that inhibit the COVID-19, associated in vitro and in vivo analyses are needed to confirm this claim.
Collapse
Affiliation(s)
- Morteza Sadeghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mehran Miroliaei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
13
|
Monitoring protein conformational changes using fluorescent nanoantennas. Nat Methods 2022; 19:71-80. [PMID: 34969985 DOI: 10.1038/s41592-021-01355-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Understanding the relationship between protein structural dynamics and function is crucial for both basic research and biotechnology. However, methods for studying the fast dynamics of structural changes are limited. Here, we introduce fluorescent nanoantennas as a spectroscopic technique to sense and report protein conformational changes through noncovalent dye-protein interactions. Using experiments and molecular simulations, we detect and characterize five distinct conformational states of intestinal alkaline phosphatase, including the transient enzyme-substrate complex. We also explored the universality of the nanoantenna strategy with another model protein, Protein G and its interaction with antibodies, and demonstrated a rapid screening strategy to identify efficient nanoantennas. These versatile nanoantennas can be used with diverse dyes to monitor small and large conformational changes, suggesting that they could be used to characterize diverse protein movements or in high-throughput screening applications.
Collapse
|
14
|
Ashraf J, Mughal EU, Alsantali RI, Sadiq A, Jassas RS, Naeem N, Ashraf Z, Nazir Y, Zafar MN, Mumtaz A, Mirzaei M, Saberi S, Ahmed SA. 2-Benzylidenebenzofuran-3(2 H)-ones as a new class of alkaline phosphatase inhibitors: synthesis, SAR analysis, enzyme inhibitory kinetics and computational studies. RSC Adv 2021; 11:35077-35092. [PMID: 35493176 PMCID: PMC9042899 DOI: 10.1039/d1ra07379f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
The excelling role of organic chemistry in the medicinal field continues to be one of the main leads in the drug development process. Particularly, this industry requires organic chemists to discover small molecular structures with powerful pharmacological potential. Herein, a diverse range of chalcone (1–11) and aurone (12–22) derivatives was designed and synthesized and for the first time, and both motifs were evaluated as potent inhibitors of alkaline phosphatases (APs). Structural identification of the target compounds (1–22) was accomplished using common spectroscopic techniques. The effect of the nature and position of the substituent was interestingly observed and justified based on the detailed structure–activity relationship (SAR) of the target compounds against AP. It was concluded from the obtained results that all the newly synthesized compounds exhibit high inhibitory potential against the AP enzyme. Among them, compounds 12 (IC50 = 2.163 ± 0.048 μM), 15 (IC50 = 2.146 ± 0.056 μM), 16 (IC50 = 2.132 ± 0.034 μM), 18 (IC50 = 1.154 ± 0.043 μM), 20 (IC50 = 1.055 ± 0.029 μM) and 21 (IC50 = 2.326 ± 0.059 μM) exhibited excellent inhibitory activity against AP, and even better/more active than KH2PO4 (standard) (IC50 = 2.80 ± 0.065 μM). Remarkably, compound 20 (IC50 = 1.055 ± 0.029 μM) may serve as a lead structure to design more potent inhibitors of alkaline phosphatase. To the best of our knowledge, these synthetic compounds are the most potent AP inhibitors with minimum IC50 values reported to date. Furthermore, a molecular modeling study was performed against the AP enzyme (1EW2) to check the binding interaction of the synthesized compounds 1–22 against the target protein. The Lineweaver–Burk plots demonstrated that most potential derivative 20 inhibited h-IAP via a non-competitive pathway. Finally, molecular dynamic (MD) simulations were performed to evaluate the dynamic behavior, stability of the protein–ligand complex, and binding affinity of the compounds, resulting in the identification of compound 20 as a potential inhibitor of AP. Accordingly, excellent correlation was observed between the experimental and theoretical results. The pharmacological studies revealed that the synthesized analogs 1–22 obey Lipinski's rule. The assessment of the ADMET parameters showed that these compounds possess considerable lead-like characteristics with low toxicity and can serve as templates in drug design. Aurones are the plant secondary metabolites belonging to the flavonoid’s family. The bioactivities of aurones are very promising, thus these heterocyclic compounds can be considered as an alluring scaffold for drug design and development.![]()
Collapse
Affiliation(s)
- Jamshaid Ashraf
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University Islamabad-44000 Pakistan
| | - Yasir Nazir
- Department of Chemistry, Allama Iqbal Open University Islamabad-44000 Pakistan.,Department of Chemistry, University of Sialkot Sialkot-51300 Pakistan
| | | | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad Abbottabad Pakistan
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad-9177948974 Iran
| | - Satar Saberi
- Department of Chemistry, Faculty of Science, Farhangian University Tehran Iran
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia .,Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
15
|
Briolay A, Bessueille L, Magne D. TNAP: A New Multitask Enzyme in Energy Metabolism. Int J Mol Sci 2021; 22:ijms221910470. [PMID: 34638808 PMCID: PMC8509042 DOI: 10.3390/ijms221910470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is mainly known for its necessary role in skeletal and dental mineralization, which relies on the hydrolysis of the mineralization inhibitor inorganic pyrophosphate (PPi). Mutations in the gene encoding TNAP leading to severe hypophosphatasia result in strongly reduced mineralization and perinatal death. Fortunately, the relatively recent development of a recombinant TNAP with a bone anchor has allowed to correct the bone defects and prolong the life of affected babies and children. Researches on TNAP must however not be slowed down, because accumulating evidence indicates that TNAP activation in individuals with metabolic syndrome (MetS) is associated with enhanced cardiovascular mortality, presumably in relation with cardiovascular calcification. On the other hand, TNAP appears to be necessary to prevent the development of steatohepatitis in mice, suggesting that TNAP plays protective roles. The aim of the present review is to highlight the known or suspected functions of TNAP in energy metabolism that may be associated with the development of MetS. The location of TNAP in liver and its function in bile excretion, lipopolysaccharide (LPS) detoxification and fatty acid transport will be presented. The expression and function of TNAP in adipocyte differentiation and thermogenesis will also be discussed. Given that TNAP is a tissue- and substrate-nonspecific phosphatase, we believe that it exerts several crucial pathophysiological functions that are just beginning to be discovered.
Collapse
|
16
|
Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 2021; 593:580-585. [PMID: 33981039 DOI: 10.1038/s41586-021-03533-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Adaptive thermogenesis has attracted much attention because of its ability to increase systemic energy expenditure and to counter obesity and diabetes1-3. Recent data have indicated that thermogenic fat cells use creatine to stimulate futile substrate cycling, dissipating chemical energy as heat4,5. This model was based on the super-stoichiometric relationship between the amount of creatine added to mitochondria and the quantity of oxygen consumed. Here we provide direct evidence for the molecular basis of this futile creatine cycling activity in mice. Thermogenic fat cells have robust phosphocreatine phosphatase activity, which is attributed to tissue-nonspecific alkaline phosphatase (TNAP). TNAP hydrolyses phosphocreatine to initiate a futile cycle of creatine dephosphorylation and phosphorylation. Unlike in other cells, TNAP in thermogenic fat cells is localized to the mitochondria, where futile creatine cycling occurs. TNAP expression is powerfully induced when mice are exposed to cold conditions, and its inhibition in isolated mitochondria leads to a loss of futile creatine cycling. In addition, genetic ablation of TNAP in adipocytes reduces whole-body energy expenditure and leads to rapid-onset obesity in mice, with no change in movement or feeding behaviour. These data illustrate the critical role of TNAP as a phosphocreatine phosphatase in the futile creatine cycle.
Collapse
|
17
|
Ásgeirsson B, Markússon S, Hlynsdóttir SS, Helland R, Hjörleifsson JG. X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine. Biochem Biophys Rep 2020; 24:100830. [PMID: 33102813 PMCID: PMC7569297 DOI: 10.1016/j.bbrep.2020.100830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background Para-nitrophenyl phosphate, the common substrate for alkaline phosphatase (AP), is available as a cyclohexylamine salt. Here, we report that cyclohexylamine is a non-competitive inhibitor of APs. Methods Cyclohexylamine inhibited four different APs. Co-crystallization with the cold-active Vibrio AP (VAP) was performed and the structure solved. Results Inhibition of VAP fitted a non-competitive kinetic model (Km unchanged, Vmax reduced) with IC50 45.3 mM at the pH optimum 9.8, not sensitive to 0.5 M NaCl, and IC50 27.9 mM at pH 8.0, where the addition of 0.5 M NaCl altered the inhibition to the level observed at pH 9.8. APs from E. coli and calf intestines were less sensitive to cyclohexylamine, whereas an Antarctic bacterial AP was similar to VAP in this respect. X-ray crystallography at 2.3 Å showed two binding sites, one in the active site channel and another at the surface close to dimer interface. Antarctic bacterial AP and VAP have Trp274 in common in their active-sites, that takes part in binding cyclohexylamine. VAP variants W274A, W274K, and W274H gave IC50 values of 179 mM, 188 mM and 187 mM, respectively, at pH 9.8. Conclusions The binding of cyclohexylamine in locations at the dimeric interface and/or in the active site of APs may delay product release or reduce the rate of catalytic step(s) involving conformational changes and intersubunit communications. General significance Cyclohexylamine is a common chemical in industries and used as a counterion in substrates for alkaline phosphatase, a clinically important and common enzyme in the biosphere. Cyclohexylamine inhibits alkaline phosphatase activity non-competitively. X-ray structure was solved that shows cyclohexylamine bound to alkaline phosphatase at two sites. Alkaline phosphatases from four different organisms bind cyclohexylamine with varying affinity.
Collapse
Affiliation(s)
- Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Sigurbjörn Markússon
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Sigríður S Hlynsdóttir
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Ronny Helland
- NorStruct, Department of Chemistry, Faculty of Science and Technology, UiT - the Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Jens G Hjörleifsson
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
18
|
Favarin BZ, Bolean M, Ramos AP, Magrini A, Rosato N, Millán JL, Bottini M, Costa-Filho AJ, Ciancaglini P. Lipid composition modulates ATP hydrolysis and calcium phosphate mineral propagation by TNAP-harboring proteoliposomes. Arch Biochem Biophys 2020; 691:108482. [PMID: 32710882 DOI: 10.1016/j.abb.2020.108482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023]
Abstract
Bone biomineralization is mediated by a special class of extracellular vesicles, named matrix vesicles (MVs), released by osteogenic cells. The MV membrane is enriched in sphingomyelin (SM), cholesterol (Chol) and tissue non-specific alkaline phosphatase (TNAP) compared with the parent cells' plasma membrane. TNAP is an ATP phosphohydrolase bound to cell and MV membranes via a glycosylphosphatidylinositol (GPI) anchor. Previous studies have shown that the lipid microenvironment influences the catalytic activity of enzymes incorporated into lipid bilayers. However, there is a lack of information about how the lipid microenvironment controls the ability of MV membrane-bound enzymes to induce mineral precipitation. Herein, we used TNAP-harboring proteoliposomes made of either pure dimyristoylphosphatidylcholine (DMPC) or DMPC mixed with either Chol, SM or both of them as MV biomimetic systems to evaluate how the composition modulates the lipid microenvironment and, in turn, TNAP incorporation into the lipid bilayer by means of calorimetry. These results were correlated with the proteoliposomes' catalytic activity and ability to induce the precipitation of amorphous calcium phosphate (ACP) in vitro. DMPC:SM proteoliposomes displayed the highest efficiency of mineral propagation, apparent affinity for ATP and substrate hydrolysis efficiency, which correlated with their highest degree of membrane organization (highest ΔH), among the tested proteoliposomes. Results obtained from turbidimetry and Fourier transformed infrared (FTIR) spectroscopy showed that the tested proteoliposomes induced ACP precipitation with the order DMPC:SM>DMPC:Chol:SM≈DMPC:Chol>DMPC which correlated with the lipid organization and the presence of SM in the proteoliposome membrane. Our study arises important insights regarding the physical properties and role of lipid organization in MV-mediated mineralization.
Collapse
Affiliation(s)
- B Z Favarin
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - M Bolean
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - A P Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - A Magrini
- Department of Biopathology and Imaging Diagnostics, University of Rome Tor Vergata, Rome, Italy
| | - N Rosato
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - J L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - M Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - A J Costa-Filho
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - P Ciancaglini
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Mumtaz A, Saeed K, Mahmood A, Zaib S, Saeed A, Pelletier J, Sévigny J, Iqbal J. Bisthioureas of pimelic acid and 4-methylsalicylic acid derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP): Synthesis and molecular docking studies. Bioorg Chem 2020; 101:103996. [PMID: 32563965 DOI: 10.1016/j.bioorg.2020.103996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatases (ALPs) are membrane bound metalloenzymes, distributed all over the body. Recent studies have revealed that by targeting ALPs can lead towards the treatment of many deadliest diseases including cardiac, cancerous and brain diseases. Thioureas and their derivatives are of considerable significance and are privileged scaffolds in medicinal chemistry. They show a wide range of pharmacological activities such as antibacterial, antiparasitic, anti-inflammatory and antioxidants etc. On the other hand, salicylic acid and its derivatives are known for its broad spectrum of activities. The work presented comprises of synthesis of N-acyl-N'-aryl substituted bisthioureas of pimelic acid (1-7) and 3,5-dimethyl pyrazole (11), 1-aroyl-3-aryl thiourea (12) and 1,3,4-oxadiazole (13) derivatives of 4-methyl salicylic acid. Structures of all the synthesized compounds were characterized by FT-IR and 1H NMR spectroscopic analysis. Synthesized compounds were evaluated for their alkaline phosphatases inhibition potential and exhibited high potency as well as selectivity towards h-TNAP and h-IAP. Compound 7 and 12 which were the bisthiourea derivative of pimmelic acid and thiourea derivative of 4-methyl salicylic acid, respectively, showed excellent selectivity against h-TNAP and h-IAP, respectively.
Collapse
Affiliation(s)
- Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Kiran Saeed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Abid Mahmood
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sumera Zaib
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Since the adoption of the classification of acute kidney injury (AKI) through changes in serum creatinine and/or urine output, much data have accumulated as to the associated risks in terms of morbidity and mortality after the development of AKI. However, until recently, a nihilistic approach persisted which implied that little could be done to alter the clinical course of a patient with AKI even where early identification was achieved. This view is reinforced by the opinion that given the broad cause underlying the syndrome of AKI, a 'one size fits all' approach is unlikely to be successful. RECENT FINDINGS Recent evidence suggests that the management of AKI may be improved somewhat by simple measures, such as the use of care bundles particularly in the intensive care setting. Moreover, there are other interventions using common treatments, which may prove to be of benefit as well as some early evidence that specific therapeutics may be on the horizon. SUMMARY Although a syndrome of significantly differing causes, the application of standardized care bundles appears promising and this approach may be improved by the use of specific therapies, including recombinant alkaline phosphatase, the use of intravenous bicarbonate and remote ischaemic preconditioning may also ameliorate the effects of AKI.
Collapse
|
21
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
22
|
Zaher DM, El‐Gamal MI, Omar HA, Aljareh SN, Al‐Shamma SA, Ali AJ, Zaib S, Iqbal J. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000011. [DOI: 10.1002/ardp.202000011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
| | - Mohammed I. El‐Gamal
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of Medicinal ChemistryFaculty of PharmacyMansoura Egypt
| | - Hany A. Omar
- Sharjah Institute for Medical ResearchSharjah United Arab Emirates
- College of PharmacySharjah United Arab Emirates
- Department of PharmacologyFaculty of PharmacyBeni‐Suef Egypt
| | | | | | - Aya J. Ali
- College of PharmacySharjah United Arab Emirates
| | - Sumera Zaib
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug ResearchCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| |
Collapse
|
23
|
Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure. Sci Rep 2020; 10:389. [PMID: 31942020 PMCID: PMC6962206 DOI: 10.1038/s41598-019-57284-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The lipopolysaccharide (LPS)– toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure.
Collapse
|
24
|
Komazin G, Maybin M, Woodard RW, Scior T, Schwudke D, Schombel U, Gisch N, Mamat U, Meredith TC. Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. J Biol Chem 2019; 294:19405-19423. [PMID: 31704704 DOI: 10.1074/jbc.ra119.010836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Lipopolysaccharide (LPS) from the Gram-negative bacterial outer membrane potently activates the human innate immune system. LPS is recognized by the Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD2) complex, leading to the release of pro-inflammatory cytokines. Alkaline phosphatase (AP) is currently being investigated as an anti-inflammatory agent for detoxifying LPS through dephosphorylating lipid A, thus providing a potential treatment for managing both acute (sepsis) and chronic (metabolic endotoxemia) pathologies wherein aberrant TLR4/MD2 activation has been implicated. Endogenous LPS preparations are chemically heterogeneous, and little is known regarding the LPS chemotype substrate range of AP. Here, we investigated the activity of AP on a panel of structurally defined LPS chemotypes isolated from Escherichia coli and demonstrate that calf intestinal AP (cIAP) has only minimal activity against unmodified enteric LPS chemotypes. Pi was only released from a subset of LPS chemotypes harboring spontaneously labile phosphoethanolamine (PEtN) modifications connected through phosphoanhydride bonds. We demonstrate that the spontaneously hydrolyzed O-phosphorylethanolamine is the actual substrate for AP. We found that the 1- and 4'-lipid A phosphate groups critical in TLR4/MD2 signaling become susceptible to hydrolysis only after de-O-acylation of ester linked primary acyl chains on lipid A. Furthermore, PEtN modifications on lipid A specifically enhanced hTLR4 agonist activity of underacylated LPS preparations. Computational binding models are proposed to explain the limitation of AP substrate specificity imposed by the acylation state of lipid A, and the mechanism of PEtN in enhancing hTLR4/MD2 signaling.
Collapse
Affiliation(s)
- Gloria Komazin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ronald W Woodard
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas Scior
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Nicolas Gisch
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
25
|
Hümmeke-Oppers F, Hemelaar P, Pickkers P. Innovative Drugs to Target Renal Inflammation in Sepsis: Alkaline Phosphatase. Front Pharmacol 2019; 10:919. [PMID: 31507417 PMCID: PMC6716471 DOI: 10.3389/fphar.2019.00919] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis-related mortality roughly doubles when acute kidney injury (AKI) occurs and end-stage renal disease is more common in sepsis-associated AKI survivors. So far, no licensed treatment for the prevention of AKI is available, however the data on alkaline phosphatase (AP) is promising and might change this. Sepsis-associated AKI is believed to be the result of inflammation and hypoxia combined. Systemic inflammation started by recognition of ‘pathogen-associated molecular patterns’ (PAMPs) such as lipopolysaccharide (LPS) which binds to Toll-like receptor 4 and leads to the production of inflammatory mediators. Due to this inflammatory process renal microcirculation gets impaired leading to hypoxia resulting in cell damage or cell death. In the process of cell damage so called ‘danger-associated molecular patterns’ (DAMPs) are released resulting in a sustained inflammatory effect. Apart from the systemic inflammation DAMPs and PAMPs also interact with receptors in the proximal tubule of the kidney causing a local inflammatory response leading to leukocyte infiltration and tubular lesions, combined with renal cell apoptosis and ultimately to AKI. In the longer-term, inflammation-mediated inadequate repair mechanism may lead to fibrosis and development of chronic kidney disease. AP is an endogenous enzyme that dephosphorylates and thereby detoxifies several compounds, including LPS. A small phase 2 clinical trial in sepsis patients showed that urinary excretion of tubular injury markers was attenuated and creatinine clearance improved in sepsis patients treated with AP. This renal protective effect was confirmed in a second small clinical phase 2 trial in sepsis patients with AKI. Subsequently, a large trial in sepsis patients with AKI was conducted using a human recombinant AP. In 301 patients no improvement of kidney function within 7 days after enrolment was observed, but kidney function was significantly better on day 21 and day 28 and all-cause 28-day mortality was significantly lower (14.4% in AP group versus 26.7% in the placebo group). Possible explanations of this lack of short-term kidney function improvement are discussed and potential effects of AP on renal repair mechanisms, including inflammation-mediated induction of fibrosis, that may explain the beneficial longer-term effects of AP are proposed.
Collapse
Affiliation(s)
- Femke Hümmeke-Oppers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Pleun Hemelaar
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
26
|
Yang WH, Heithoff DM, Aziz PV, Haslund-Gourley B, Westman JS, Narisawa S, Pinkerton AB, Millán JL, Nizet V, Mahan MJ, Marth JD. Accelerated Aging and Clearance of Host Anti-inflammatory Enzymes by Discrete Pathogens Fuels Sepsis. Cell Host Microbe 2019; 24:500-513.e5. [PMID: 30308156 DOI: 10.1016/j.chom.2018.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 09/16/2018] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening inflammatory syndrome accompanying a bloodstream infection. Frequently secondary to pathogenic bacterial infections, sepsis remains difficult to treat as a singular disease mechanism. We compared the pathogenesis of murine sepsis experimentally elicited by five bacterial pathogens and report similarities among host responses to Gram-negative Salmonella and E. coli. We observed that a host protective mechanism involving de-toxification of lipopolysaccharide by circulating alkaline phosphatase (AP) isozymes was incapacitated during sepsis caused by Salmonella or E. coli through activation of host Toll-like receptor 4, which triggered Neu1 and Neu3 neuraminidase induction. Elevated neuraminidase activity accelerated the molecular aging and clearance of AP isozymes, thereby intensifying disease. Mice deficient in the sialyltransferase ST3Gal6 displayed increased disease severity, while deficiency of the endocytic lectin hepatic Ashwell-Morell receptor was protective. AP augmentation or neuraminidase inhibition diminished inflammation and promoted host survival. This study illuminates distinct routes of sepsis pathogenesis, which may inform therapeutic development.
Collapse
Affiliation(s)
- Won Ho Yang
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Douglas M Heithoff
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Peter V Aziz
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Benjamin Haslund-Gourley
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Julia S Westman
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Sonoko Narisawa
- Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Anthony B Pinkerton
- Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - José Luis Millán
- Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Mahan
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Jamey D Marth
- Center for Nanomedicine, University of California Santa Barbara, Santa Barbara, California 93106, USA; Sanford-Burham-Prebys Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA; Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA.
| |
Collapse
|
27
|
Boyd GW, Drew M, Ward S, Baird M, Connaboy C, Graham SM. The effect of the branched-chain amino acids on the in-vitro activity of bovine intestinal alkaline phosphatase. Appl Physiol Nutr Metab 2019; 44:632-636. [DOI: 10.1139/apnm-2018-0449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Branched-chain amino acids (BCAA) are used as nutritional support for patients with a range of conditions including liver cirrhosis and in-born errors of amino acid metabolism, and they are commonly used “sports” or exercise supplements. The effects of the BCAA on the in-vitro activity of calf intestinal alkaline phosphatase (EC. 3.1.3.1) were studied. All three BCAA were found to be uncompetitive inhibitors of the enzyme with L-leucine being the most potent ([Formula: see text] = 24.9 mmol/L) and L-valine, the least potent ([Formula: see text] = 37 mmol/L). Mixed BCAA are able to act in combination to inhibit the enzyme. Given the important role of intestinal alkaline phosphatase in gut homeostasis, these findings have potential implications for those taking high levels of BCAA as supplements.
Collapse
Affiliation(s)
- Gary William Boyd
- School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Marion Drew
- School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Shannon Ward
- School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Marianne Baird
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Christopher Connaboy
- School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Scott Murray Graham
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| |
Collapse
|
28
|
Brichacek AL, Brown CM. Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metab Brain Dis 2019; 34:3-19. [PMID: 30284677 PMCID: PMC6351214 DOI: 10.1007/s11011-018-0322-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death in the U.S., with more than 100,000 deaths annually. There are a multitude of risks associated with stroke, including aging, cardiovascular disease, hypertension, Alzheimer's disease (AD), and immune suppression. One of the many challenges, which has so far proven to be unsuccessful, is the identification of a cost-effective diagnostic or prognostic biomarker for stroke. Alkaline phosphatase (AP), an enzyme first discovered in the 1920s, has been evaluated as a potential biomarker in many disorders, including many of the co-morbidities associated with stroke. This review will examine the basic biology of AP, and its most common isoenzyme, tissue nonspecific alkaline phosphatase (TNAP), with a specific focus on the central nervous system. It examines the preclinical and clinical evidence which supports a potential role for AP in stroke and suggests potential mechanism(s) of action for AP isoenzymes in stroke. Lastly, the review speculates on the clinical utility of AP isoenzymes as potential blood biomarkers for stroke or as AP-targeted treatments for stroke patients.
Collapse
Affiliation(s)
- Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9177, Morgantown, WV, 26506, USA.
- Department of Neuroscience, Emergency Medicine, and Microbiology, Immunology and Cell Biology, Center for Basic and Translational Stroke Research, WVU Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Box 9303, Morgantown, WV, 26506, USA.
| |
Collapse
|
29
|
Bowden SA, Foster BL. Alkaline Phosphatase Replacement Therapy for Hypophosphatasia in Development and Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:279-322. [PMID: 31482504 DOI: 10.1007/978-981-13-7709-9_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disorder that affects bone and tooth mineralization characterized by low serum alkaline phosphatase. HPP is caused by loss-of-function mutations in the ALPL gene encoding the protein, tissue-nonspecific alkaline phosphatase (TNSALP). TNSALP is expressed by mineralizing cells of the skeleton and dentition and is associated with the mineralization process. Generalized reduction of activity of the TNSALP leads to accumulation of its substrates, including inorganic pyrophosphate (PPi) that inhibits physiological mineralization. This leads to defective skeletal mineralization, with manifestations including rickets, osteomalacia, fractures, and bone pain, all of which can result in multi-systemic complications with significant morbidity, as well as mortality in severe cases. Dental manifestations are nearly universal among affected individuals and feature most prominently premature loss of deciduous teeth. Management of HPP has been limited to supportive care until the introduction of a TNSALP enzyme replacement therapy (ERT), asfotase alfa (AA). AA ERT has proven to be transformative, improving survival in severely affected infants and increasing overall quality of life in children and adults with HPP. This chapter provides an overview of TNSALP expression and functions, summarizes HPP clinical types and pathologies, discusses early attempts at therapies for HPP, summarizes development of HPP mouse models, reviews design and validation of AA ERT, and provides up-to-date accounts of AA ERT efficacy in clinical trials and case reports, including therapeutic response, adverse effects, limitations, and potential future directions in therapy.
Collapse
Affiliation(s)
- S A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH, USA.
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Pickkers P, Mehta RL, Murray PT, Joannidis M, Molitoris BA, Kellum JA, Bachler M, Hoste EAJ, Hoiting O, Krell K, Ostermann M, Rozendaal W, Valkonen M, Brealey D, Beishuizen A, Meziani F, Murugan R, de Geus H, Payen D, van den Berg E, Arend J. Effect of Human Recombinant Alkaline Phosphatase on 7-Day Creatinine Clearance in Patients With Sepsis-Associated Acute Kidney Injury: A Randomized Clinical Trial. JAMA 2018; 320:1998-2009. [PMID: 30357272 PMCID: PMC6248164 DOI: 10.1001/jama.2018.14283] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Sepsis-associated acute kidney injury (AKI) adversely affects long-term kidney outcomes and survival. Administration of the detoxifying enzyme alkaline phosphatase may improve kidney function and survival. OBJECTIVE To determine the optimal therapeutic dose, effect on kidney function, and adverse effects of a human recombinant alkaline phosphatase in patients who are critically ill with sepsis-associated AKI. DESIGN, SETTING, AND PARTICIPANTS The STOP-AKI trial was an international (53 recruiting sites), randomized, double-blind, placebo-controlled, dose-finding, adaptive phase 2a/2b study in 301 adult patients admitted to the intensive care unit with a diagnosis of sepsis and AKI. Patients were enrolled between December 2014 and May 2017, and follow-up was conducted for 90 days. The final date of follow-up was August 14, 2017. INTERVENTIONS In the intention-to-treat analysis, in part 1 of the trial, patients were randomized to receive recombinant alkaline phosphatase in a dosage of 0.4 mg/kg (n = 31), 0.8 mg/kg (n = 32), or 1.6 mg/kg (n = 29) or placebo (n = 30), once daily for 3 days, to establish the optimal dose. The optimal dose was identified as 1.6 mg/kg based on modeling approaches and adverse events. In part 2, 1.6 mg/kg (n = 82) was compared with placebo (n = 86). MAIN OUTCOMES AND MEASURES The primary end point was the time-corrected area under the curve of the endogenous creatinine clearance for days 1 through 7, divided by 7 to provide a mean daily creatinine clearance (AUC1-7 ECC). Incidence of fatal and nonfatal (serious) adverse events ([S]AEs) was also determined. RESULTS Overall, 301 patients were enrolled (men, 70.7%; median age, 67 years [interquartile range {IQR}, 59-73]). From day 1 to day 7, median ECC increased from 26.0 mL/min (IQR, 8.8 to 59.5) to 65.4 mL/min (IQR, 26.7 to 115.4) in the recombinant alkaline phosphatase 1.6-mg/kg group vs from 35.9 mL/min (IQR, 12.2 to 82.9) to 61.9 mL/min (IQR, 22.7 to 115.2) in the placebo group (absolute difference, 9.5 mL/min [95% CI, -23.9 to 25.5]; P = .47). Fatal adverse events occurred in 26.3% of patients in the 0.4-mg/kg recombinant alkaline phosphatase group; 17.1% in the 0.8-mg/kg group, 17.4% in the 1.6-mg/kg group, and 29.5% in the placebo group. Rates of nonfatal SAEs were 21.0% for the 0.4-mg/kg recombinant alkaline phosphatase group, 14.3% for the 0.8-mg/kg group, 25.7% for the 1.6-mg/kg group, and 20.5% for the placebo group. CONCLUSIONS AND RELEVANCE Among patients who were critically ill with sepsis-associated acute kidney injury, human recombinant alkaline phosphatase compared with placebo did not significantly improve short-term kidney function. Further research is necessary to assess other clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02182440.
Collapse
Affiliation(s)
- Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Ravindra L. Mehta
- Department of Medicine, University of California, San Diego, Medical Center
| | | | - Michael Joannidis
- Department of Internal Medicine, Division of Intensive Care and Emergency Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - John A. Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mirjam Bachler
- Department of General and Surgical Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Eric A. J. Hoste
- Intensive Care, Ghent University, Ghent, Belgium
- Clinical Research Foundation Flanders, Brussels, Belgium
| | - Oscar Hoiting
- Intensive Care, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Kenneth Krell
- Internal Medicine, Eastern Idaho Regional Medical Center, Idaho Falls
| | - Marlies Ostermann
- Guy’s and St Thomas’ Hospital, King’s College London, London, United Kingdom
| | - Wim Rozendaal
- Intensive Care, Jeroen Bosch Hospital, ‘s-Hertogenbosch, the Netherlands
| | - Miia Valkonen
- Division of Anesthesia and Intensive Care Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - David Brealey
- Division of Critical Care, University College London Hospitals National Institute for Health Research Biomedical Research Centre, London, United Kingdom
- Bloomsbury Institute of Intensive Care Medicine, University College Hospital, London, United Kingdom
| | | | - Ferhat Meziani
- Faculté de Médecine, Service de Réanimation, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Raghavan Murugan
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hilde de Geus
- Department of Intensive Care, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Didier Payen
- Unité Mixte de Recherche INSERM 1160, University Paris 7 Denis Diderot, Paris, France
- Department of Anaesthesiology and Critical Care, Hôpital Lariboisière, Assistance Publique—Hôpitaux de Paris, Paris, France
| | | | - Jacques Arend
- Clinical Department, AM-Pharma BV, Bunnik, the Netherlands
| |
Collapse
|
31
|
Ashraf A, Ejaz SA, Rahman SU, Siddiqui WA, Arshad MN, Lecka J, Sévigny J, Zayed MEM, Asiri AM, Iqbal J, Hartinger CG, Hanif M. Hybrid compounds from chalcone and 1,2-benzothiazine pharmacophores as selective inhibitors of alkaline phosphatase isozymes. Eur J Med Chem 2018; 159:282-291. [DOI: 10.1016/j.ejmech.2018.09.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
|
32
|
Bowden SA, Foster BL. Profile of asfotase alfa in the treatment of hypophosphatasia: design, development, and place in therapy. Drug Des Devel Ther 2018; 12:3147-3161. [PMID: 30288020 PMCID: PMC6161731 DOI: 10.2147/dddt.s154922] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypophosphatasia (HPP) is a multi-systemic metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the mineralization-associated enzyme, tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by defective bone and dental mineralization, leading to skeletal abnormalities with complications resulting in significant morbidity and mortality. Management of HPP has been limited to supportive care until the introduction of a recently approved enzyme replacement therapy employing bone-targeted recombinant human TNSALP, asfotase alfa (AA). This new therapy has been transformative as it improves survival in severely affected infants, and overall quality of life in children and adults with HPP. This review provides an overview of HPP, focusing on important steps in the development of AA enzyme replacement therapy, including the drug design, preclinical studies in the HPP mouse model, and outcomes from clinical trials and case report publications to date, with special attention given to response to therapy of skeletal manifestations, biochemical features, and other clinical manifestations. The limitations, adverse effects, and outcomes of AA are outlined and the place in therapy for individuals with HPP is discussed.
Collapse
Affiliation(s)
- Sasigarn A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH 43205, USA,
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
33
|
Ghosh SS, He H, Wang J, Korzun W, Yannie PJ, Ghosh S. Intestine-specific expression of human chimeric intestinal alkaline phosphatase attenuates Western diet-induced barrier dysfunction and glucose intolerance. Physiol Rep 2018; 6:e13790. [PMID: 30058275 PMCID: PMC6064712 DOI: 10.14814/phy2.13790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 01/16/2023] Open
Abstract
Intestinal epithelial cell derived alkaline phosphatase (IAP) dephosphorylates/detoxifies bacterial endotoxin lipopolysaccharide (LPS) in the gut lumen. We have earlier demonstrated that consumption of high-fat high-cholesterol containing western type-diet (WD) significantly reduces IAP activity, increases intestinal permeability leading to increased plasma levels of LPS and glucose intolerance. Furthermore, oral supplementation with curcumin that increased IAP activity improved intestinal barrier function as well as glucose tolerance. To directly test the hypothesis that targeted increase in IAP would protect against WD-induced metabolic consequences, we developed intestine-specific IAP transgenic mice where expression of human chimeric IAP is under the control of intestine-specific villin promoter. This chimeric human IAP contains domains from human IAP and human placental alkaline phosphatase, has a higher turnover number, narrower substrate specificity, and selectivity for bacterial LPS. Chimeric IAP was specifically and uniformly overexpressed in these IAP transgenic (IAPTg) mice along the entire length of the intestine. While IAP activity reduced from proximal P1 segment to distal P9 segment in wild-type (WT) mice, this activity was maintained in the IAPTg mice. Dietary challenge with WD impaired glucose tolerance in WT mice and this intolerance was attenuated in IAPTg mice. Significant decrease in fecal zonulin, a marker for intestinal barrier dysfunction, in WD fed IAPTg mice and a corresponding decrease in translocation of orally administered nonabsorbable 4 kDa FITC dextran to plasma suggests that IAP overexpression improves intestinal barrier function. Thus, targeted increase in IAP activity represents a novel strategy to improve WD-induced intestinal barrier dysfunction and glucose intolerance.
Collapse
Affiliation(s)
| | - Hongliang He
- Department of Internal MedicineVCU Medical CenterRichmondVirginia
| | - Jing Wang
- Department of Internal MedicineVCU Medical CenterRichmondVirginia
| | - William Korzun
- Department of Clinical and Laboratory SciencesVCU Medical CenterRichmondVirginia
| | | | - Shobha Ghosh
- Department of Internal MedicineVCU Medical CenterRichmondVirginia
- Hunter Homes McGuire VA Medical CenterRichmondVirginia
| |
Collapse
|
34
|
Iqbal J, El-Gamal MI, Ejaz SA, Lecka J, Sévigny J, Oh CH. Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: in vitro and docking studies. J Enzyme Inhib Med Chem 2018; 33:479-484. [PMID: 29390901 PMCID: PMC6009858 DOI: 10.1080/14756366.2018.1428193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is an important isozyme of alkaline phosphatases, which plays different pivotal roles within the human body. Most importantly, it is responsible for maintaining the balanced ratio of phosphate and inorganic pyrophosphate, thus regulates the extracellular matrix calcification during bone formation and growth. The elevated level of TNAP has been linked to vascular calcification and end-stage renal diseases. Consequently, there is a need to search for highly potent and selective inhibitors of alkaline phosphatases (APs) for treatment of disorders associated with the over-expression of APs. Herein, a series of tricyclic coumarin sulphonate 1a-za with known antiproliferative activity, was evaluated for AP inhibition against human tissue nonspecific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). The methylbenzenesulphonate derivative 1f (IC50 = 0.38 ± 0.01 μM) was found to be the most active h-TNAP inhibitor. Another 4-fluorobenzenesulphonate derivative 1i (IC50 = 0.45 ± 0.02 μM) was found as the strongest inhibitor of h-IAP. Some of the derivatives were also identified as highly selective inhibitors of APs. Detailed structure-activity relationship (SAR) was investigated to identify the functional groups responsible for the effective inhibition of AP isozymes. The study was also supported by the docking studies to rationalise the most possible binding site interactions of the identified inhibitors with the targeted enzymes.
Collapse
Affiliation(s)
- Jamshed Iqbal
- a Centre for Advanced Drug Research , COMSATS Institute of Information Technology , Abbottabad , Pakistan
| | - Mohammed I El-Gamal
- b Department of Medicinal Chemistry, College of Pharmacy , University of Sharjah , Sharjah , United Arab Emirates.,c Sharjah Institute for Medical Research , University of Sharjah , Sharjah , United Arab Emirates.,d Department of Medicinal Chemistry , University of Mansoura , Mansoura , Egypt
| | - Syeda Abida Ejaz
- a Centre for Advanced Drug Research , COMSATS Institute of Information Technology , Abbottabad , Pakistan
| | - Joanna Lecka
- e Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine , Université Laval , Québec , Canada.,f Centre de Recherche du CHU de Québec , Université Laval , Québec , Canada
| | - Jean Sévigny
- e Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine , Université Laval , Québec , Canada.,f Centre de Recherche du CHU de Québec , Université Laval , Québec , Canada
| | - Chang-Hyun Oh
- g Center for Biomaterials , Korea Institute of Science and Technology , Seoul , Republic of Korea.,h Department of Biomolecular Science , University of Science and Technology , Daejeon , Republic of Korea
| |
Collapse
|
35
|
Ghosh SS, He H, Wang J, Gehr TW, Ghosh S. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers 2018; 6:e1425085. [PMID: 29420166 PMCID: PMC5823546 DOI: 10.1080/21688370.2018.1425085] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.
Collapse
Affiliation(s)
- Siddhartha S. Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Hongliang He
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Todd W. Gehr
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| |
Collapse
|
36
|
Peters E, Heuberger JAAC, Tiessen R, van Elsas A, Masereeuw R, Arend J, Stevens J, Pickkers P. Pharmacokinetic Modeling and Dose Selection in a Randomized, Double-Blind, Placebo-Controlled Trial of a Human Recombinant Alkaline Phosphatase in Healthy Volunteers. Clin Pharmacokinet 2017; 55:1227-1237. [PMID: 27147514 PMCID: PMC5021756 DOI: 10.1007/s40262-016-0399-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and Objective Previous clinical trials have suggested that bovine intestinal alkaline phosphatase has renal protective effects in patients with sepsis-associated acute kidney injury. We conducted a first-in-human study to investigate the pharmacokinetics, safety and tolerability of a novel human recombinant alkaline phosphatase (recAP), and we developed a population pharmacokinetic model to support dose selection for future patient studies. Methods In a randomized, double-blind, placebo-controlled, phase I trial, healthy volunteers received a single dose of recAP (200, 500, 1000 or 2000 U/kg; n = 33; 3:1 ratio) or multiple doses of recAP (500 or 1000 U/kg; n = 18; 2:1 ratio) via a 1-h intravenous infusion on three consecutive days. Serum recAP concentrations, alkaline phosphatase (AP) activity levels and anti-drug antibodies were measured, and safety parameters were monitored. A population pharmacokinetic model was developed, and simulations were performed to guide dose selection for a phase IIa/b trial. Results Peak concentrations of recAP and peak AP activity were reached at the end of the 1-h infusion and showed a rapid decline, with about 10 % of the maximum concentration remaining at 4 h and less than 5 % remaining 24 h post-start. RecAP treatment was generally well tolerated, and anti-drug antibodies could not be detected in the serum up to 2 weeks post-injection after a single dose, or up to 3 weeks post-injection after multiple doses. A four-compartment model best described the pharmacokinetics of recAP administration, with moderate inter-individual variability on the central volume of distribution and elimination rate constant. Simulations showed that 1-h intravenous infusions of 250, 500 and 1000 U/kg recAP once every 24 h for three consecutive days constituted the dosing regimen that best met the criteria for dose selection in patient studies. Conclusion RecAP did not raise any safety concerns when administered to healthy volunteers. A population pharmacokinetic model was developed to support dose selection for patient studies. Trial Registration 2013-002694-21 (EudraCT). Electronic supplementary material The online version of this article (doi:10.1007/s40262-016-0399-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox, 710, 6500 HB Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | | | | | | | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | | | | | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox, 710, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
37
|
Effect of the presence of cholesterol in the interfacial microenvironment on the modulation of the alkaline phosphatase activity during in vitro mineralization. Colloids Surf B Biointerfaces 2017; 155:466-476. [PMID: 28472750 DOI: 10.1016/j.colsurfb.2017.04.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023]
Abstract
Mineralization of the skeleton starts within cell-derived matrix vesicles (MVs); then, minerals propagate to the extracellular collagenous matrix. Tissue-nonspecific alkaline phosphatase (TNAP) degrades inorganic pyrophosphate (PPi), a potent inhibitor of mineralization, and contributes Pi (Phosphate) from ATP to initiate mineralization. Compared to the plasma membrane, MVs are rich in Cholesterol (Chol) (∼32%) and TNAP, but how Chol influences TNAP activity remains unclear. We have reconstituted TNAP in liposomes of dipalmitoylphosphatidylcholine (DPPC) or dioleoylphosphatidylcholine (DOPC) combined with Chol or its derivatives Cholestenone (Achol) and Ergosterol (Ergo). DPPC plus 36% sterols in liposome increased the catalytic activity of TNAP toward ATP. The presence of Chol also increased the propagation of minerals by 3.4-fold. The catalytic efficiency of TNAP toward ATP was fourfold lower in DOPC proteoliposomes as compared to DPPC proteoliposomes. DOPC proteoliposomes also increased biomineralization by 2.8-fold as compared to DPPC proteoliposomes. TNAP catalyzed the hydrolysis of ATP more efficiently in the case of the proteoliposome consisting of DOPC with 36% Chol. The same behavior emerged with Achol and Ergo. The organization of the lipid and the structure of the sterol influenced the surface tension (γ), the TNAP phosphohydrolytic activity in the monolayer, and the TNAP catalytic efficiency in the bilayers. Membranes in the Lα phase (Achol) provided better kinetic parameters as compared to membranes in the Lo phase (Chol and Ergo). In conclusion, the physical properties and the lateral organization of lipids in proteoliposomes are crucial to control mineral propagation mediated by TNAP activity during mineralization.
Collapse
|
38
|
The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators Inflamm 2017; 2017:9074601. [PMID: 28316376 PMCID: PMC5339520 DOI: 10.1155/2017/9074601] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past few years, the role of intestinal alkaline phosphatase (IAP) as a crucial mucosal defence factor essential for maintaining gut homeostasis has been established. IAP is an important apical brush border enzyme expressed throughout the gastrointestinal tract and secreted both into the intestinal lumen and into the bloodstream. IAP exerts its effects through dephosphorylation of proinflammatory molecules including lipopolysaccharide (LPS), flagellin, and adenosine triphosphate (ATP) released from cells during stressful events. Diminished activity of IAP could increase the risk of disease through changes in the microbiome, intestinal inflammation, and intestinal permeability. Exogenous IAP exerts a protective effect against intestinal and systemic inflammation in a variety of diseases and represents a potential therapeutic agent in diseases driven by gut barrier dysfunction such as IBD. The intestinal protective mechanisms are impaired in IBD patients due to lower synthesis and activity of endogenous IAP, but the pathomechanism of this enzyme deficiency remains unclear. IAP has been safely administered to humans and the human recombinant form of IAP has been developed. This review was designed to provide an update in recent research on the involvement of IAP in intestinal inflammatory processes with focus on IBD in experimental animal models and human patients.
Collapse
|
39
|
Yamamoto-Nemoto S, Ogawa K, Yokoi E, Sawamoto K, Yamaguchi A, Tuna EB, Shimizu T. Improvement of Bone and Dental Phenotype of Murine Hypophosphatasia Mediated by a Single Injection of Lentiviral Gene Therapy. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojst.2017.71005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Peters E, Schirris T, van Asbeck AH, Gerretsen J, Eymael J, Ashikov A, Adjobo-Hermans MJW, Russel F, Pickkers P, Masereeuw R. Effects of a human recombinant alkaline phosphatase during impaired mitochondrial function in human renal proximal tubule epithelial cells. Eur J Pharmacol 2016; 796:149-157. [PMID: 28012971 DOI: 10.1016/j.ejphar.2016.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023]
Abstract
Sepsis-associated acute kidney injury is a multifactorial syndrome in which inflammation and renal microcirculatory dysfunction play a profound role. Subsequently, renal tubule mitochondria reprioritize cellular functions to prevent further damage. Here, we investigated the putative protective effects of human recombinant alkaline phosphatase (recAP) during inhibition of mitochondrial respiration in conditionally immortalized human proximal tubule epithelial cells (ciPTEC). Full inhibition of mitochondrial oxygen consumption was obtained after 24h antimycin A treatment, which did not affect cell viability. While recAP did not affect the antimycin A-induced decreased oxygen consumption and increased hypoxia-inducible factor-1α or adrenomedullin gene expression levels, the antimycin A-induced increase of pro-inflammatory cytokines IL-6 and IL-8 was attenuated. Antimycin A tended to induce the release of detrimental purines ATP and ADP, which reached statistical significance when antimycin A was co-incubated with lipopolysaccharide, and were completely converted into cytoprotective adenosine by recAP. As the adenosine A2A receptor was up-regulated after antimycin A exposure, an adenosine A2A receptor knockout ciPTEC cell line was generated in which recAP still provided protection. Together, recAP did not affect oxygen consumption but attenuated the inflammatory response during impaired mitochondrial function, an effect suggested to be mediated by dephosphorylating ATP and ADP into adenosine.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands; Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Tom Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Mitochondrial Medicine, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Alexander H van Asbeck
- Department of Biochemistry, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Jennifer Eymael
- Department of Intensive Care Medicine, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Angel Ashikov
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Frans Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Mitochondrial Medicine, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, PO Box 9101, Internal Mailbox 710, 6500 HB Nijmegen, The Netherlands.
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO BOX 80082, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
41
|
Peters E, Ergin B, Kandil A, Gurel-Gurevin E, van Elsas A, Masereeuw R, Pickkers P, Ince C. Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury. Toxicol Appl Pharmacol 2016; 313:88-96. [DOI: 10.1016/j.taap.2016.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 01/24/2023]
|
42
|
Peters E, Mehta RL, Murray PT, Hummel J, Joannidis M, Kellum JA, Arend J, Pickkers P. Study protocol for a multicentre randomised controlled trial: Safety, Tolerability, efficacy and quality of life Of a human recombinant alkaline Phosphatase in patients with sepsis-associated Acute Kidney Injury (STOP-AKI). BMJ Open 2016; 6:e012371. [PMID: 27678541 PMCID: PMC5051490 DOI: 10.1136/bmjopen-2016-012371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) occurs in 55-60% of critically ill patients, and sepsis is the most common underlying cause. No pharmacological treatment options are licensed to treat sepsis-associated AKI (SA-AKI); only supportive renal replacement therapy (RRT) is available. One of the limited number of candidate compounds in clinical development to treat SA-AKI is alkaline phosphatase (AP). The renal protective effect of purified bovine intestinal AP has been demonstrated in critically ill sepsis patients. To build on these observations, a human recombinant AP (recAP) was developed, of which safety and efficacy in patients with SA-AKI will be investigated in this trial. METHODS This is a randomised, double-blind, placebo-controlled, 4-arm, proof-of-concept, dose-finding adaptive phase IIa/IIb study, conducted in critically ill patients with SA-AKI. A minimum of 290 patients will be enrolled at ∼50 sites in the European Union and North America. The study involves 2 parts. Patients enrolled during Part 1 will be randomly assigned to receive either placebo (n=30) or 1 of 3 different doses of recAP (n=30 per group) once daily for 3 days (0.4, 0.8 or 1.6 mg/kg). In Part 2, patients will be randomly assigned to receive the most efficacious dose of recAP (n=85), selected during an interim analysis, or placebo (n=85). Treatment must be administered within 24 hours after SA-AKI is first diagnosed and within 96 hours from first diagnosis of sepsis. The primary end point is the area under the time-corrected endogenous creatinine clearance curve from days 1 to 7. The key secondary end point is RRT incidence during days 1-28. ETHICS AND DISSEMINATION This study is approved by the relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this study will reveal the efficacy of recAP for the improvement of renal function in critically ill patients with SA-AKI and will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER NCT02182440; Pre-results.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - Ravindra L Mehta
- Division of Nephrology, Department of Medicine, University of California, San Diego, California, USA
| | - Patrick T Murray
- School of Medicine, University College Dublin, Health Sciences Centre, Belfield, Dublin, Ireland
| | | | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Tunjungputri RN, Peters E, van der Ven A, de Groot PG, de Mast Q, Pickkers P. Human recombinant alkaline phosphatase inhibits ex vivo platelet activation in humans. Thromb Haemost 2016; 116:1111-1121. [PMID: 27656709 DOI: 10.1160/th16-03-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
Abstract
Sepsis-associated acute kidney injury (AKI) is associated with high morbidity and mortality. Excessive platelet activation contributes to AKI through the formation of microthrombi and amplification of systemic inflammation. Two phase II trials demonstrated that bovine-intestinal alkaline phosphatase (AP) improved renal function in critically ill patients with sepsis-associated AKI. In this study, we characterised the platelet-inhibiting effects of a human recombinant AP. Whole blood and platelet-rich plasma (PRP) of healthy volunteers (n=6) was pre-treated ex vivo with recAP, whereafter platelet reactivity to ADP, collagen-related peptide (CRP-XL) and Pam3CSK4 was determined by flow cytometry. RecAP (40 U/ml) reduced the platelet reactivity to ADP (inhibition with a median of 47 %, interquartile range 43-49 %; p<0.001) and tended to reduce platelet reactivity to CRP-XL (9 %, 2-25 %; p=0.08) in whole blood. The platelet-inhibiting effects of recAP were more pronounced in PRP both for ADP- (64 %, 54-68 %; p=0.002) and CRP-XL-stimulated samples (60 %, 46-71 %; p=0.002). RecAP rapidly converted ADP into adenosine, whereas antagonism of the A2A adenosine receptor partially reversed the platelet inhibitory effects of recAP. Platelets of septic shock patients (n=5) showed a 31% (22-34%; p=0.03) more pronounced reactivity compared to healthy volunteers, and this was completely reversed by recAP treatment. In conclusion, we demonstrate that recAP inhibits ex vivo human platelet activation through dephosphorylation of ADP and formation of adenosine as its turnover product. RecAP is able to reverse the platelet hyperreactivity present in septic shock patients. These effects may contribute to the beneficial effects of recAP as a new therapeutic candidate for sepsis-associated AKI.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Pickkers
- Peter Pickkers, Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbag 710, 6500 HB Nijmegen, The Netherlands, Tel.: +31 24 36 15363, Fax: +31 24 36 68058, E-mail:
| |
Collapse
|
44
|
Zhan F, Watanabe Y, Shimoda A, Hamada E, Kobayashi Y, Maekawa M. Evaluation of serum bone alkaline phosphatase activity in patients with liver disease: Comparison between electrophoresis and chemiluminescent enzyme immunoassay. Clin Chim Acta 2016; 460:40-5. [DOI: 10.1016/j.cca.2016.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
|
45
|
Garcia AF, Simão AMS, Bolean M, Hoylaerts MF, Millán JL, Ciancaglini P, Costa-Filho AJ. Effects of GPI-anchored TNAP on the dynamic structure of model membranes. Phys Chem Chem Phys 2016; 17:26295-301. [PMID: 26389140 DOI: 10.1039/c5cp02377g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) plays a crucial role during skeletal mineralization, and TNAP deficiency leads to the soft bone disease hypophosphatasia. TNAP is anchored to the external surface of the plasma membranes by means of a GPI (glycosylphosphatidylinositol) anchor. Membrane-anchored and solubilized TNAP displays different kinetic properties against physiological substrates, indicating that membrane anchoring influences the enzyme function. Here, we used Electron Spin Resonance (ESR) measurements along with spin labeled phospholipids to probe the possible dynamic changes prompted by the interaction of GPI-anchored TNAP with model membranes. The goal was to systematically analyze the ESR data in terms of line shape changes and of alterations in parameters such as rotational diffusion rates and order parameters obtained from non-linear least-squares simulations of the ESR spectra of probes incorporated into DPPC liposomes and proteoliposomes. Overall, the presence of TNAP increased the dynamics and decreased the ordering in the three distinct regions probed by the spin labeled lipids DOPTC (headgroup), and 5- and 16-PCSL (acyl chains). The largest change was observed for 16-PCSL, thus suggesting that GPI-anchored TNAP can give rise to long reaching modifications that could influence membrane processes halfway through the bilayer.
Collapse
Affiliation(s)
- A F Garcia
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Hypophosphatasia (HPP) results from ALPL mutations leading to deficient activity of the tissue-non-specific alkaline phosphatase isozyme (TNAP) and thereby extracellular accumulation of inorganic pyrophosphate (PPi), a natural substrate of TNAP and potent inhibitor of mineralization. Thus, HPP features rickets or osteomalacia and hypomineralization of teeth. Enzyme replacement using mineral-targeted TNAP from birth prevented severe HPP in TNAP-knockout mice and was then shown to rescue and substantially treat infants and young children with life-threatening HPP. Clinical trials are revealing aspects of HPP pathophysiology not yet fully understood, such as craniosynostosis and muscle weakness when HPP is severe. New treatment approaches are under development to improve patient care.
Collapse
Affiliation(s)
- José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, 63110, USA
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, 63110, USA
| |
Collapse
|
47
|
Peters E, Geraci S, Heemskerk S, Wilmer MJ, Bilos A, Kraenzlin B, Gretz N, Pickkers P, Masereeuw R. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate. Br J Pharmacol 2015. [PMID: 26222228 DOI: 10.1111/bph.13261] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection of alkaline phosphatase. EXPERIMENTAL APPROACH The effect of human recombinant alkaline phosphatase (recAP) on LPS-induced renal injury was studied in Sprague-Dawley rats. Renal function was assessed by transcutaneous measurement of FITC-sinistrin elimination in freely moving, awake rats. The mechanism of action of recAP was further investigated in vitro using conditionally immortalized human proximal tubular epithelial cells (ciPTEC). KEY RESULTS In vivo, LPS administration significantly prolonged FITC-sinistrin half-life and increased fractional urea excretion, which was prevented by recAP co-administration. Moreover, recAP prevented LPS-induced increase in proximal tubule injury marker, kidney injury molecule-1 expression and excretion. In vitro, LPS-induced production of TNF-α, IL-6 and IL-8 was significantly attenuated by recAP. This effect was linked to dephosphorylation, as enzymatically inactive recAP had no effect on LPS-induced cytokine production. RecAP-mediated protection resulted in increased adenosine levels through dephosphorylation of LPS-induced extracellular ADP and ATP. Also, recAP attenuated LPS-induced increased expression of adenosine A2A receptor. However, the A2A receptor antagonist ZM-241385 did not diminish the effects of recAP. CONCLUSIONS AND IMPLICATIONS These results indicate that the ability of recAP to reduce renal inflammation may account for the beneficial effect observed in septic acute kidney injury patients, and that dephosphorylation of ATP and LPS are responsible for this protective effect.
Collapse
Affiliation(s)
- E Peters
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - S Geraci
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - S Heemskerk
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - M J Wilmer
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - A Bilos
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - B Kraenzlin
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - N Gretz
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - P Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - R Masereeuw
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| |
Collapse
|
48
|
Peters E, Stevens J, Arend J, Guan Z, Raaben W, Laverman P, Elsas AV, Masereeuw R, Pickkers P. Biodistribution and translational pharmacokinetic modeling of a human recombinant alkaline phosphatase. Int J Pharm 2015; 495:122-131. [PMID: 26325308 DOI: 10.1016/j.ijpharm.2015.08.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022]
Abstract
Clinical trials showed renal protective effects of bovine intestinal alkaline phosphatase (AP) in patients with sepsis-associated acute kidney injury (AKI). Subsequently, a human recombinant chimeric AP (recAP) was developed as a pharmaceutically acceptable alternative. Here, we investigated the biodistribution and pharmacokinetics (PK) of recAP and developed a translational population PK model. Biodistribution was studied during LPS-induced AKI in rats. Iodine-125-labeled recAP was primarily taken up by liver, spleen, adrenals, heart, lungs and kidneys followed by the gastro-intestinal tract and thyroid. Tissue distribution was not critically affected by endotoxemia. PK parameters were determined in rats and minipigs during IV bolus injections of recAP, administered once, or once daily during seven consecutive days. Plasma concentrations of recAP increased with increasing dose and disappeared in a biphasic manner. Exposure to recAP, estimated by AUC and Cmax, was similar on days 1 and 7. Subsequently, population approach nonlinear mixed effects modeling was performed with recAP rat and minipig and biAP phase I PK data. Concentration versus time data was accurately described in all species by a two-compartmental model with allometric scaling based on body weight. This model provides a solid foundation for determining the optimal dose and duration of first-in-man recAP studies.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500HB Nijmegen, The Netherlandsc; Department of Pharmacology and Toxicology, Radboud university medical center, PO Box 9101, Internal Mailbox 149, 6500HB Nijmegen, The Netherlands
| | - Jasper Stevens
- Centre for Human Drug Research, Zernikedreef 8, 2333CL Leiden, The Netherlands
| | - Jacques Arend
- AM-Pharma, Rumpsterweg 6, 3981AK Bunnik, The Netherlands
| | - Zheng Guan
- Centre for Human Drug Research, Zernikedreef 8, 2333CL Leiden, The Netherlands
| | - Willem Raaben
- AM-Pharma, Rumpsterweg 6, 3981AK Bunnik, The Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 756, 6500HB Nijmegen, The Netherlands
| | | | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud university medical center, PO Box 9101, Internal Mailbox 149, 6500HB Nijmegen, The Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO Box 80082, 3508TB Utrecht, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500HB Nijmegen, The Netherlandsc.
| |
Collapse
|
49
|
Simultaneous retention of thermostability and specific activity in chimeric human alkaline phosphatases. Mol Biotechnol 2015; 56:953-61. [PMID: 24906817 DOI: 10.1007/s12033-014-9774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alkaline phosphatases (APs) are a family of dimeric metalloenzymes that has been utilized in many areas due to its ability to hydrolyze a variety of phosphomonoesters. While mammalian APs have higher specific activity than prokaryotic APs, they are generally less thermostable. To cultivate the possibility to confer mammalian APs with higher thermostability as well as high activity, we focused on human AP isozymes. Among the four isozymes of human APs, placental AP (PLAP) retains the highest thermostability, while intestinal AP (IAP) has the highest specific activity. Since the two APs display high homology, a series of chimeric enzymes were made in a secreted form to analyze their properties. Surprisingly, chimeric APs with IAP residues at the N-terminal and PLAP residues at the C-terminal regions showed higher specific activity than PLAP, while keeping thermostability as high as PLAP. Especially, one showed similar specific activity to IAP, while showing slower inactivation than PLAP after incubation at 75°C. Interestingly, the mutant also showed higher resistance to uncompetitive inhibitors Phe and Leu than their parent enzymes, possibly due to increased hydrophilicity of the active site entrance residues. The obtained chimera will be useful as a novel reporter in various assays including gene hybridization.
Collapse
|
50
|
Hoylaerts MF, Van kerckhoven S, Kiffer-Moreira T, Sheen C, Narisawa S, Millán JL. Functional significance of calcium binding to tissue-nonspecific alkaline phosphatase. PLoS One 2015; 10:e0119874. [PMID: 25775211 PMCID: PMC4361680 DOI: 10.1371/journal.pone.0119874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022] Open
Abstract
The conserved active site of alkaline phosphatases (AP) contains catalytically important Zn2+ (M1 and M2) and Mg2+-sites (M3) and a fourth peripheral Ca2+ site (M4) of unknown significance. We have studied Ca2+ binding to M1-4 of tissue-nonspecific AP (TNAP), an enzyme crucial for skeletal mineralization, using recombinant TNAP and a series of M4 mutants. Ca2+ could substitute for Mg2+ at M3, with maximal activity for Ca2+/Zn2+-TNAP around 40% that of Mg2+/Zn2+-TNAP at pH 9.8 and 7.4. At pH 7.4, allosteric TNAP-activation at M3 by Ca2+ occurred faster than by Mg2+. Several TNAP M4 mutations eradicated TNAP activity, while others mildly influenced the affinity of Ca2+ and Mg2+ for M3 similarly, excluding a catalytic role for Ca2+ in the TNAP M4 site. At pH 9.8, Ca2+ competed with soluble Zn2+ for binding to M1 and M2 up to 1 mM and at higher concentrations, it even displaced M1- and M2-bound Zn2+, forming Ca2+/Ca2+-TNAP with a catalytic activity only 4–6% that of Mg2+/Zn2+-TNAP. At pH 7.4, competition with Zn2+ and its displacement from M1 and M2 required >10-fold higher Ca2+ concentrations, to generate weakly active Ca2+/Ca2+-TNAP. Thus, in a Ca2+-rich environment, such as during skeletal mineralization at pH 7.4, Ca2+ adequately activates Zn2+-TNAP at M3, but very high Ca2+ concentrations compete with available Zn2+ for binding to M1 and M2 and ultimately displace Zn2+ from the active site, virtually inactivating TNAP. Those ALPL mutations that substitute critical TNAP amino acids involved in coordinating Ca2+ to M4 cause hypophosphatasia because of their 3D-structural impact, but M4-bound Ca2+ is catalytically inactive. In conclusion, during skeletal mineralization, the building Ca2+ gradient first activates TNAP, but gradually inactivates it at high Ca2+ concentrations, toward completion of mineralization.
Collapse
Affiliation(s)
- Marc F. Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Soetkin Van kerckhoven
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Tina Kiffer-Moreira
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, United States of America
| | - Campbell Sheen
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, United States of America
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, United States of America
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|