1
|
Thorball CW, Oudot-Mellakh T, Ehsan N, Hammer C, Santoni FA, Niay J, Costagliola D, Goujard C, Meyer L, Wang SS, Hussain SK, Theodorou I, Cavassini M, Rauch A, Battegay M, Hoffmann M, Schmid P, Bernasconi E, Günthard HF, Mohammadi P, McLaren PJ, Rabkin CS, Besson C, Fellay J. Genetic variation near CXCL12 is associated with susceptibility to HIV-related non-Hodgkin lymphoma. Haematologica 2021; 106:2233-2241. [PMID: 32675224 PMCID: PMC8327743 DOI: 10.3324/haematol.2020.247023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is associated with an increased risk of non-Hodgkin lymphoma (NHL). Even in the era of suppressive antiretroviral treatment, HIV-infected individuals remain at higher risk of developing NHL compared to the general population. In order to identify potential genetic risk loci, we performed case-control genome-wide association studies and a meta-analysis across three cohorts of HIV-infected patients of European ancestry, including a total of 278 cases and 1,924 matched controls. We observed a significant association with NHL susceptibility in the C-X-C motif chemokine ligand 12 (CXCL12) region on chromosome 10. A fine mapping analysis identified rs7919208 as the most likely causal variant (P=4.77e-11), with the G>A polymorphism creating a new transcription factor binding site for BATF and JUND. These results suggest a modulatory role of CXCL12 regulation in the increased susceptibility to NHL observed in the HIV-infected population.
Collapse
Affiliation(s)
- Christian W Thorball
- Ecole Polytechnique Federale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tiphaine Oudot-Mellakh
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Nava Ehsan
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Christian Hammer
- Dept. of Cancer Immunology and Human Genetics, Genentech, South San Francisco, CA, USA
| | - Federico A Santoni
- Dept. of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Switzerland
| | - Jonathan Niay
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | | | - Cécile Goujard
- Paris-Sud University and Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Shehnaz K Hussain
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ioannis Theodorou
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Andri Rauch
- Dept. of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Manuel Battegay
- Dept. of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | | | | | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Caroline Besson
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne and University of Lausanne, Switzerland
| |
Collapse
|
2
|
Graff RE, Cavazos TB, Thai KK, Kachuri L, Rashkin SR, Hoffman JD, Alexeeff SE, Blatchins M, Meyers TJ, Leong L, Tai CG, Emami NC, Corley DA, Kushi LH, Ziv E, Van Den Eeden SK, Jorgenson E, Hoffmann TJ, Habel LA, Witte JS, Sakoda LC. Cross-cancer evaluation of polygenic risk scores for 16 cancer types in two large cohorts. Nat Commun 2021; 12:970. [PMID: 33579919 PMCID: PMC7880989 DOI: 10.1038/s41467-021-21288-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Even distinct cancer types share biological hallmarks. Here, we investigate polygenic risk score (PRS)-specific pleiotropy across 16 cancers in European ancestry individuals from the Genetic Epidemiology Research on Adult Health and Aging cohort (16,012 cases, 50,552 controls) and UK Biobank (48,969 cases, 359,802 controls). Within cohorts, each PRS is evaluated in multivariable logistic regression models against all other cancer types. Results are then meta-analyzed across cohorts. Ten positive and one inverse cross-cancer associations are found after multiple testing correction. Two pairs show bidirectional associations; the melanoma PRS is positively associated with oral cavity/pharyngeal cancer and vice versa, whereas the lung cancer PRS is positively associated with oral cavity/pharyngeal cancer, and the oral cavity/pharyngeal cancer PRS is inversely associated with lung cancer. Overall, we validate known, and uncover previously unreported, patterns of pleiotropy that have the potential to inform investigations of risk prediction, shared etiology, and precision cancer prevention strategies.
Collapse
Affiliation(s)
- Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Khanh K Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Joshua D Hoffman
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Maruta Blatchins
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Travis J Meyers
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Lancelote Leong
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Caroline G Tai
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Nima C Emami
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.,Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA. .,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA. .,Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA. .,Department of Health System Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA.
| |
Collapse
|
3
|
Cong P, Hou HY, Wei W, Zhou Y, Yu XM. MiR-920 and LSP1 co-regulate the growth and migration of glioblastoma cells by modulation of JAK2/STAT5 pathway. J Bioenerg Biomembr 2020; 52:311-320. [PMID: 32770294 DOI: 10.1007/s10863-020-09848-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
This study probes the function and mechanism of lymphocyte-specific protein 1 (LSP1) in glioblastoma pathogenesis. According to the data acquired from TCGA, Oncomine and GEO databases, the expression and prognostic value of LSP1 and miR-920 in glioblastoma patients were analyzed. The expression levels of LSP1 in U251 and A172 cell lines were analyzed by qRT-PCR and western blotting. CCK8, colony formation and transwell assays were utilized to test glioblastoma cell malignant abilities. Furthermore, the associations between LSP1 and miR-920 were indentified by bioinformatics analysis and rescue assays. Moreover, the protein expression levels of p-JAK2, JAK2, p-STAT5 and STAT5, as the hallmark of JAK/STAT5 signaling, were detected by western blotting. The observations showed that LSP1 was highly augmented in glioblastoma samples. Additionally, up-regulation of LSP1 was associated with a unfavorable prognosis in glioblastoma patients. Biological experiments revealed that depletion of LSP1 significantly suppressed the proliferation, invasion and migration of U251 and A172 cells. MiR-920, as an upstream regulator of LSP1, negatively modulated LSP1 expression and promoted U251 cells malignant behaviors after miR-920 inhibitor treatment. However, together knockdown LSP1 and miR-920 inhibited these effects. Moreover, the expression levels of p-JAK2 and p-STAT5 were increased or decreased in U251 cells after transfection of miR-920 inhibitor or si-LPS1. Taken together, miR-920 might blocked the malignant development of glioblastoma cells, which is possibly realized by targeting LSP1 and modulation of JAK/STAT5 pathway. These findings implied that miR-920/LSP1 was a potential therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Ping Cong
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Hua-Ying Hou
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Wei Wei
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Yong Zhou
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Xiao-Ming Yu
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
4
|
Özgöz A, Mutlu İçduygu F, Yükseltürk A, ŞamlI H, Hekİmler Öztürk K, Başkan Z. Low-penetrance susceptibility variants and postmenopausal oestrogen receptor positive breast cancer. J Genet 2020. [DOI: 10.1007/s12041-019-1174-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Abstract
Nordic twin studies have played a critical role in understanding cancer etiology and elucidating the nature of familial effects on site-specific cancers. The NorTwinCan consortium is a collaborative effort that capitalizes on unique research advantages made possible through the Nordic system of registries. It was constructed by linking the population-based twin registries of Denmark, Finland, Norway and Sweden to their country-specific national cancer and cause-of-death registries. These linkages enable the twins to be followed many decades for cancer incidence and mortality. To date, two major linkages have been conducted: NorTwinCan I in 2011-2012 and NorTwinCan II in 2018. Overall, there are 315,413 eligible twins, 57,236 incident cancer cases and 58 years of follow-up, on average. In the initial phases of our work, NorTwinCan established the world's most comprehensive twin database for studying cancer, developed novel analytical approaches tailored to address specific research considerations within the context of the Nordic data and leveraged these models and data in research publications that provide the most accurate estimates of heritability and familial risk of cancers reported in the literature to date. Our findings indicate an excess familial risk for nearly all cancers and demonstrate that the incidence of cancer among twins mirrors the rate in the general population. They also revealed that twin concordance for cancer most often manifests across, rather than within, cancer sites, and we are currently focusing on the analysis of these cross-cancer associations.
Collapse
|
6
|
Zhong C, Cozen W, Bolanos R, Song J, Wang SS. The role of HLA variation in lymphoma aetiology and survival. J Intern Med 2019; 286:154-180. [PMID: 31155783 DOI: 10.1111/joim.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiologic and laboratory evidence has consistently supported a strong inflammatory and immune component for lymphoma aetiology. These studies have consistently implicated variation in the immune gene, human leucocyte antigen (HLA), to be associated with lymphoma risk. In this review, we summarize the historical and recent evidence of HLA in both lymphoma aetiology and survival. The recent momentum in uncovering HLA associations has been propelled by the conduct of genome-wide association studies (GWAS), which has permitted the evaluation of imputed HLA alleles in much larger sample sizes than historically feasible with allelotyping studies. Based on the culmination of smaller HLA typing studies and larger GWAS, we now recognize several HLA associations with Hodgkin (HL) and non-Hodgkin lymphomas (NHLs) and their subtypes. Although other genetic variants have also been implicated with lymphoma risk, it is notable that HLA associations have been reported in every NHL and HL subtype evaluated to date. Both HLA class I and class II alleles have been linked with NHL and HL risk. It is notable that the associations identified are largely specific to each lymphoma subtype. However, pleiotropic HLA associations have also been observed. For example, rs10484561, which is in linkage disequilibrium with HLA-DRB1*01:01˜DQA1*01:01˜DQB1*05:01, has been implicated in increased FL and DLBCL risk. Opposing HLA associations across subtypes have also been reported, such as for HLA-A*01:01 which is associated with increased risk of EBV-positive cHL but decreased risk of EBV-negative cHL and chronic lymphocytic leukaemia/small cell lymphoma. Due to extensive linkage disequilibrium and allele/haplotypic variation across race/ethnicities, identification of causal alleles/haplotypes remains challenging. Follow-up functional studies are needed to identify the specific immunological pathways responsible in the multifactorial aetiology of HL and NHL. Correlative studies linking HLA alleles with known molecular subtypes and HLA expression in the tumours are also needed. Finally, additional association studies investigating HLA diversity and lymphoma survival are also required to replicate initial associations reported to date.
Collapse
Affiliation(s)
- C Zhong
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute and Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - W Cozen
- Genetic Epidemiology Center, Department of Preventive Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - R Bolanos
- Genetic Epidemiology Center, Department of Preventive Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - J Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - S S Wang
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute and Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| |
Collapse
|
7
|
Wu YH, Graff RE, Passarelli MN, Hoffman JD, Ziv E, Hoffmann TJ, Witte JS. Identification of Pleiotropic Cancer Susceptibility Variants from Genome-Wide Association Studies Reveals Functional Characteristics. Cancer Epidemiol Biomarkers Prev 2018; 27:75-85. [PMID: 29150481 PMCID: PMC5760292 DOI: 10.1158/1055-9965.epi-17-0516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background: There exists compelling evidence that some genetic variants are associated with the risk of multiple cancer sites (i.e., pleiotropy). However, the biological mechanisms through which the pleiotropic variants operate are unclear.Methods: We obtained all cancer risk associations from the National Human Genome Research Institute-European Bioinformatics Institute GWAS Catalog, and correlated cancer risk variants were clustered into groups. Pleiotropic variant groups and genes were functionally annotated. Associations of pleiotropic cancer risk variants with noncancer traits were also obtained.Results: We identified 1,431 associations between variants and cancer risk, comprised of 989 unique variants associated with 27 unique cancer sites. We found 20 pleiotropic variant groups (2.1%) composed of 33 variants (3.3%), including novel pleiotropic variants rs3777204 and rs56219066 located in the ELL2 gene. Relative to single-cancer risk variants, pleiotropic variants were more likely to be in genes (89.0% vs. 65.3%, P = 2.2 × 10-16), and to have somewhat larger risk allele frequencies (median RAF = 0.49 versus 0.39, P = 0.046). The 27 genes to which the pleiotropic variants mapped were suggestive for enrichment in response to radiation and hypoxia, alpha-linolenic acid metabolism, cell cycle, and extension of telomeres. In addition, we observed that 8 of 33 pleiotropic cancer risk variants were associated with 16 traits other than cancer.Conclusions: This study identified and functionally characterized genetic variants showing pleiotropy for cancer risk.Impact: Our findings suggest biological pathways common to different cancers and other diseases, and provide a basis for the study of genetic testing for multiple cancers and repurposing cancer treatments. Cancer Epidemiol Biomarkers Prev; 27(1); 75-85. ©2017 AACR.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Joshua D Hoffman
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| |
Collapse
|
8
|
Zhang H, Wang Y, Liu Z, Yao B, Dou C, Xu M, Li Q, Jia Y, Wu S, Tu K, Liu Q. Lymphocyte-specific protein 1 inhibits the growth of hepatocellular carcinoma by suppressing ERK1/2 phosphorylation. FEBS Open Bio 2016; 6:1227-1237. [PMID: 28255535 PMCID: PMC5324767 DOI: 10.1002/2211-5463.12139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Lymphocyte‐specific protein 1 (LSP1) has been reported to regulate cell biology in several human cancers including lymphoma and breast cancer. However, the functions of LSP1 in human hepatocellular carcinoma (HCC) are still unknown. In this study, we found that LSP1 expression was downregulated in HCC tissues and cell lines, and lower LSP1 expression was correlated with poor clinicopathological features including large tumor size, high Edmondson–Steiner grading and advanced tumor–node–metastasis (TNM) stage. Additionally, we demonstrated that patients with high LSP1 expression had significantly better overall survival and disease‐free survival. Moreover, LSP1 was found to be an independent factor for predicting the prognosis of HCC patients. In vitro and in vivo assays showed that overexpressing LSP1 inhibited HCC growth by inducing both apoptosis and growth arrest. Mechanistically, we found that expression of phosphorylated extracellular regulated protein kinases 1 and 2 (ERK1/2) was downregulated after LSP1 overexpression, indicating LSP1 could suppress HCC growth by inhibiting the ERK pathway in HCC cells. Taken together, these results indicate that LSP1 may serve as a prognostic marker and a potential therapeutic target in human HCC.
Collapse
Affiliation(s)
- Hongyong Zhang
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Bowen Yao
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Changwei Dou
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Meng Xu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Qing Li
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Yuli Jia
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Shengli Wu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University China
| |
Collapse
|
9
|
Scarbrough PM, Weber RP, Iversen ES, Brhane Y, Amos CI, Kraft P, Hung RJ, Sellers TA, Witte JS, Pharoah P, Henderson BE, Gruber SB, Hunter DJ, Garber JE, Joshi AD, McDonnell K, Easton DF, Eeles R, Kote-Jarai Z, Muir K, Doherty JA, Schildkraut JM. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2016; 25:193-200. [PMID: 26637267 PMCID: PMC4713268 DOI: 10.1158/1055-9965.epi-15-0649] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. METHODS We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. RESULTS We identified three susceptibility DNA repair genes, RAD51B (P < 5.09 × 10(-6)), MSH5 (P < 5.09 × 10(-6)), and BRCA2 (P = 5.70 × 10(-6)). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. CONCLUSIONS Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. IMPACT Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria.
Collapse
Affiliation(s)
- Peter M Scarbrough
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina. Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - John S Witte
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paul Pharoah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom. Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Stephen B Gruber
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amit D Joshi
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Kevin McDonnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Doug F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Ros Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London and Sutton, United Kingdom
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Royal Marsden NHS Foundation Trust, London and Sutton, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom. Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Prevention, Detection, and Control Research Program, Duke Cancer Institute, Durham, North Carolina. Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
10
|
Lee E, Stram DO, Ek WE, Onstad LE, MacGregor S, Gharahkhani P, Ye W, Lagergren J, Shaheen NJ, Murray LJ, Hardie LJ, Gammon MD, Chow WH, Risch HA, Corley DA, Levine DM, Whiteman DC, Bernstein L, Bird NC, Vaughan TL, Wu AH. Pleiotropic analysis of cancer risk loci on esophageal adenocarcinoma risk. Cancer Epidemiol Biomarkers Prev 2015; 24:1801-3. [PMID: 26364162 DOI: 10.1158/1055-9965.epi-15-0596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several cancer-associated loci identified from genome-wide association studies (GWAS) have been associated with risks of multiple cancer sites, suggesting pleiotropic effects. We investigated whether GWAS-identified risk variants for other common cancers are associated with risk of esophageal adenocarcinoma (EA) or its precursor, Barrett's esophagus. METHODS We examined the associations between risks of EA and Barrett's esophagus and 387 SNPs that have been associated with risks of other cancers, by using genotype imputation data on 2,163 control participants and 3,885 (1,501 EA and 2,384 Barrett's esophagus) case patients from the Barrett's and Esophageal Adenocarcinoma Genetic Susceptibility Study, and investigated effect modification by smoking history, body mass index (BMI), and reflux/heartburn. RESULTS After correcting for multiple testing, none of the tested 387 SNPs were statistically significantly associated with risk of EA or Barrett's esophagus. No evidence of effect modification by smoking, BMI, or reflux/heartburn was observed. CONCLUSIONS Genetic risk variants for common cancers identified from GWAS appear not to be associated with risks of EA or Barrett's esophagus. IMPACT To our knowledge, this is the first investigation of pleiotropic genetic associations with risks of EA and Barrett's esophagus.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Weronica E Ek
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lynn E Onstad
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. Division of Cancer Studies, King's College London, London, United Kingdom
| | - Nicholas J Shaheen
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Liam J Murray
- Centre for Public Health, Queen's University Belfast, United Kingdom
| | - Laura J Hardie
- Division of Epidemiology, University of Leeds, Leeds, United Kingdom
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Wong-Ho Chow
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas
| | - Harvey A Risch
- Yale School of Public Health, Department of Chronic Disease Epidemiology, New Haven, Connecticut
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California. San Francisco Medical Center, Kaiser Permanente Northern California, San Francisco, California
| | - David M Levine
- Department of Biostatistics, University of Washington School of Public Health, Seattle, Washington
| | - David C Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, California
| | - Nigel C Bird
- Department of Oncology, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
11
|
Tyler AL, Crawford DC, Pendergrass SA. The detection and characterization of pleiotropy: discovery, progress, and promise. Brief Bioinform 2015. [PMID: 26223525 DOI: 10.1093/bib/bbv050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The impact of a single genetic locus on multiple phenotypes, or pleiotropy, is an important area of research. Biological systems are dynamic complex networks, and these networks exist within and between cells. In humans, the consideration of multiple phenotypes such as physiological traits, clinical outcomes and drug response, in the context of genetic variation, can provide ways of developing a more complete understanding of the complex relationships between genetic architecture and how biological systems function in health and disease. In this article, we describe recent studies exploring the relationships between genetic loci and more than one phenotype. We also cover methodological developments incorporating pleiotropy applied to model organisms as well as humans, and discuss how stepping beyond the analysis of a single phenotype leads to a deeper understanding of complex genetic architecture.
Collapse
|
12
|
Crawford DC, Goodloe R, Farber-Eger E, Boston J, Pendergrass SA, Haines JL, Ritchie MD, Bush WS. Leveraging Epidemiologic and Clinical Collections for Genomic Studies of Complex Traits. Hum Hered 2015. [PMID: 26201699 DOI: 10.1159/000381805] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS Present-day limited resources demand DNA and phenotyping alternatives to the traditional prospective population-based epidemiologic collections. METHODS To accelerate genomic discovery with an emphasis on diverse populations, we--as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study--accessed all non-European American samples (n = 15,863) available in BioVU, the Vanderbilt University biorepository linked to de-identified electronic medical records, for genomic studies as part of the larger Population Architecture using Genomics and Epidemiology (PAGE) I study. Given previous studies have cautioned against the secondary use of clinically collected data compared with epidemiologically collected data, we present here a characterization of EAGLE BioVU, including the billing and diagnostic (ICD-9) code distributions for adult and pediatric patients as well as comparisons made for select health metrics (body mass index, glucose, HbA1c, HDL-C, LDL-C, and triglycerides) with the population-based National Health and Nutrition Examination Surveys (NHANES) linked to DNA samples (NHANES III, n = 7,159; NHANES 1999-2002, n = 7,839). RESULTS Overall, the distributions of billing and diagnostic codes suggest this clinical sample is a mixture of healthy and sick patients like that expected for a contemporary American population. CONCLUSION Little bias is observed among health metrics, suggesting this clinical collection is suitable for genomic studies along with traditional epidemiologic cohorts.
Collapse
Affiliation(s)
- Dana C Crawford
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Non-Hodgkin lymphoma (NHL) consists of many histologically and biologically distinct lymphoid malignancies with poorly understood, but possibly distinct, etiologies. The patterns of incidence and time trend vary not only by age, sex, and race/ethnicity in the USA, but also show significant geographic differences, suggesting the potential role of infectious agents, environmental factors, and lifestyle factors in addition to host genetic status in the development of NHL. Important pathogenetic mechanisms include immune modulation and chronic antigen stimulation. Epidemiologic studies in the past two decades have provided intriguing new insights on the possible causes of lymphoma and support the idea that there is some mechanistic commonality of lymphomagenesis, but significant etiologic heterogeneity clearly exists. This review presents a summary of the current understanding of the descriptive epidemiology and etiology of NHL and suggests areas of focus for future epidemiologic research.
Collapse
|