1
|
Shigematsu Y, Kanda H, Takahashi Y, Takeuchi K, Inamura K. Relationships between tumor CD147 expression, tumor-infiltrating lymphocytes, and oncostatin M in hepatocellular carcinoma. Virchows Arch 2024:10.1007/s00428-024-03939-w. [PMID: 39395054 DOI: 10.1007/s00428-024-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
In hepatocellular carcinoma (HCC), CD147 expression contributes to tumor malignancy; however, its relationship with the tumor-immune microenvironment (TIME) remains unclear. This study aimed to elucidate the clinicopathological characteristics associated with CD147 expression in HCC and investigate its association with the TIME, specifically its association with tumor-infiltrating lymphocytes (TILs) and oncostatin M (OSM). Using 397 HCC specimens from patients undergoing curative-intent resection, we assessed CD147 expression in tumor cells and quantified OSM-positive cells and various TILs (CD8+, CD4+, FOXP3+, and CD20+ cells) in the TIME. Using tissue microarrays, these assessments were performed through immunohistochemical analysis. We investigated the associations between CD147 expression status, the density of OSM-positive cells, and the densities of various TILs. High CD147 expression, found in 332 specimens (83.6%), was associated with advanced clinical stage (P = 0.029), fibrosis (P = 0.036), and higher densities of FOXP3+ cells (P = 0.0039), CD4+ cells (P = 0.0012), and OSM-positive cells (P = 0.0017). In CD147-high tumors, OSM-positive cell density was associated with all assessed TIL subsets (CD8+, CD4+, FOXP3+, and CD20+ cells; all Ps < 0.001), whereas in CD147-low tumors, OSM-positive cell density was associated only with FOXP3+ cells (P = 0.0004). In HCC, CD147 expression is associated with an immunosuppressive TIME, characterized by increased FOXP3+ regulatory T cells and a correlation with OSM-positive cells. These results elucidate the potential mechanisms through which CD147 facilitates tumor-immune evasion, suggesting the CD147 - OSM axis as a promising target for therapeutic intervention in HCC.
Collapse
Affiliation(s)
- Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
- Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, 780 Komuro, Ina, Kita-adachi-gun, Saitama, 362-0806, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
- Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
- Division of Tumor Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
2
|
Schonfeld M, O’Neil M, Weinman SA, Tikhanovich I. Alcohol-induced epigenetic changes prevent fibrosis resolution after alcohol cessation in miceresolution. Hepatology 2024; 80:119-135. [PMID: 37943941 PMCID: PMC11078890 DOI: 10.1097/hep.0000000000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease is a major cause of alcohol-associated mortality. Recently, we identified hepatic demethylases lysine demethylase (KDM)5B and KDM5C as important epigenetic regulators of alcohol response in the liver. In this study, we aimed to investigate the role of KDM5 demethylases in alcohol-associated liver disease resolution. APPROACH AND RESULTS We showed that alcohol-induced liver steatosis rapidly resolved after alcohol cessation. In contrast, fibrosis persisted in the liver for up to 8 weeks after the end of alcohol exposure. Defects in fibrosis resolution were in part due to alcohol-induced KDM5B and KDM5C-dependent epigenetic changes in hepatocytes. Using cell-type-specific knockout mice, we found that adeno-associated virus-mediated knockout of KDM5B and KDM5C demethylases in hepatocytes at the time of alcohol withdrawal promoted fibrosis resolution. Single-cell ATAC sequencing analysis showed that during alcohol-associated liver disease resolution epigenetic cell states largely reverted to control conditions. In addition, we found unique epigenetic cell states distinct from both control and alcohol states and identified associated transcriptional regulators, including liver X receptor (LXR) alpha (α). In vitro and in vivo analysis confirmed that knockout of KDM5B and KDM5C demethylases promoted LXRα activity, likely through regulation of oxysterol biosynthesis, and this activity was critical for the fibrosis resolution process. Reduced LXR activity by small molecule inhibitors prevented fibrosis resolution in KDM5-deficient mice. CONCLUSIONS In summary, KDM5B and KDM5C demethylases prevent liver fibrosis resolution after alcohol cessation in part through suppression of LXR activity.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maura O’Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Hao Y, Feng D, Ye H, Liao W. Nobiletin Alleviated Epithelial-Mesenchymal Transition of Hepatocytes in Liver Fibrosis Based on Autophagy-Hippo/YAP Pathway. Mol Nutr Food Res 2024; 68:e2300529. [PMID: 38044268 DOI: 10.1002/mnfr.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Indexed: 12/05/2023]
Abstract
SCOPE The current researches indicated that the epithelial-mesenchymal transition (EMT) of hepatocytes plays a crucial role in the development of liver fibrosis. To date, there is a paucity of literature regarding the impact of nobiletin (NOB) on liver fibrosis. This study investigates the inhibitory effect of NOB on EMT in hepatocytes during the progression of liver fibrosis and its underlying mechanism. METHODS AND RESULTS The findings demonstrated that NOB significantly suppresses liver fibrosis in carbon tetrachloride (CCl4 )-induced mice by reducing inflammation and fiber deposition in the liver. Moreover, NOB mitigates EMT in hepatocytes, concurrently alleviating inflammatory status and reducing the production of reactive oxygen species (ROS) generation. The comprehensive investigation reveals that the hepatoprotective effect of NOB in liver fibrosis is attributed to autophagy activation, as evidenced by a significant increase in LC3 II expression and p62 degradation upon NOB treatment. Additionally, NOB activates the Hippo/YAP pathway by downregulating YAP and its downstream targets in liver fibrosis, which is regulated by autophagy based on experiments with chloroquine (CQ), 3-methyladenine (3-MA), and siYAP intervention. CONCLUSION Therefore, this study provides evidences that NOB can protect hepatocytes from undergoing EMT during liver fibrosis by inducing autophagy and subsequently modulating the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Dongliang Feng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huarui Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Choi HJ, Kim YA, Ryu J, Park KK, Lee SJ, Kim BS, Song JE, Kim JD. STAT3 Decoy Oligodeoxynucleotides Suppress Liver Inflammation and Fibrosis in Liver Cancer Cells and a DDC-Induced Liver Injury Mouse Model. Molecules 2024; 29:593. [PMID: 38338338 PMCID: PMC10856653 DOI: 10.3390/molecules29030593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Liver damage caused by various factors results in fibrosis and inflammation, leading to cirrhosis and cancer. Fibrosis results in the accumulation of extracellular matrix components. The role of STAT proteins in mediating liver inflammation and fibrosis has been well documented; however, approved therapies targeting STAT3 inhibition against liver disease are lacking. This study investigated the anti-fibrotic and anti-inflammatory effects of STAT3 decoy oligodeoxynucleotides (ODN) in hepatocytes and liver fibrosis mouse models. STAT3 decoy ODN were delivered into cells using liposomes and hydrodynamic tail vein injection into 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice in which liver injury was induced. STAT3 target gene expression changes were verified using qPCR and Western blotting. Liver tissue fibrosis and bile duct proliferation were assessed in animal experiments using staining techniques, and macrophage and inflammatory cytokine distribution was verified using immunohistochemistry. STAT3 decoy ODN reduced fibrosis and inflammatory factors in liver cancer cell lines and DDC-induced liver injury mouse model. These results suggest that STAT3 decoy ODN may effectively treat liver fibrosis and must be clinically investigated.
Collapse
Affiliation(s)
- Hye Jin Choi
- Department of Surgery, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Young-Ah Kim
- Seoul Clinical Laboratories of Daegu, Daegu 41238, Republic of Korea
| | - Junghwa Ryu
- Department of Radiology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.-K.P.)
| | - Sun-Jae Lee
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.-K.P.)
| | - Byung Seok Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (B.S.K.)
| | - Jeong-En Song
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (B.S.K.)
| | - Joo Dong Kim
- Department of Surgery, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
5
|
Kronborg TM, Schierwagen R, Trošt K, Gao Q, Moritz T, Bendtsen F, Gantzel RH, Andersen ML, Teisner AS, Grønbæk H, Hobolth L, Møller S, Trebicka J, Kimer N. Atorvastatin for patients with cirrhosis. A randomized, placebo-controlled trial. Hepatol Commun 2023; 7:e0332. [PMID: 38051553 PMCID: PMC10697620 DOI: 10.1097/hc9.0000000000000332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Patients with cirrhosis and portal hypertension face a high risk of complications. Besides their anti-inflammatory and antifibrotic effects, statins may reduce portal pressure and thus the risk of complications and mortality. We aimed to investigate the effects of atorvastatin on hospital admissions, mortality, inflammation, and lipidomics in cirrhosis with portal hypertension. METHODS We performed a double-blinded, randomized, placebo-controlled clinical trial among patients with cirrhosis and portal hypertension. Atorvastatin (10-20 mg/d) was administered for 6 months. We measured splanchnic hemodynamics, analyzed inflammatory markers, and performed lipidomics at baseline and after 6 months. RESULTS Seventy-eight patients were randomized, with 38 patients allocated to atorvastatin and 40 patients to placebo. Fifty-nine patients completed 6 months of intervention. Comparisons between changes in each group were calculated. Liver-related complications and mortality were similar between the groups. The HVPG and Model for End-stage Liver Disease score did not change between groups (p=0.95 and 0.87, respectively). Atorvastatin decreased 3 of 42 inflammatory markers, CD62-L-selectin, matrix metalloproteinases-2, and TNF-α (p-values: 0.005, 0.011, and 0.023, respectively), while lipidomics was not significantly changed. CONCLUSIONS In patients with cirrhosis, atorvastatin was safe to use, but did not reduce mortality, the risk of liver-related complications, or the HVPG. Atorvastatin induced minor anti-inflammatory effects and minor effects on lipids during a 6-month treatment period.
Collapse
Affiliation(s)
- Thit M. Kronborg
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Kajetan Trošt
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qian Gao
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus H. Gantzel
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Mette L. Andersen
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Herlev, Denmark
| | - Ane S. Teisner
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Herlev, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Lise Hobolth
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Centre of Functional Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Nina Kimer
- Gastro Unit, Medical Division, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
6
|
Ali FEM, Abd El-Aziz MK, Sharab EI, Bakr AG. Therapeutic interventions of acute and chronic liver disorders: A comprehensive review. World J Hepatol 2023; 15:19-40. [PMID: 36744165 PMCID: PMC9896501 DOI: 10.4254/wjh.v15.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/16/2023] Open
Abstract
Liver disorders are one of the most common pathological problems worldwide. It affects more than 1.5 billion worldwide. Many types of hepatic cells have been reported to be involved in the initiation and propagation of both acute and chronic liver diseases, including hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells (HSCs). In addition, oxidative stress, cytokines, fibrogenic factors, microRNAs, and autophagy are also involved. Understanding the molecular mechanisms of liver diseases leads to discovering new therapeutic interventions that can be used in clinics. Recently, antioxidant, anti-inflammatory, anti-HSCs therapy, gene therapy, cell therapy, gut microbiota, and nanoparticles have great potential for preventing and treating liver diseases. Here, we explored the recent possible molecular mechanisms involved in the pathogenesis of acute and chronic liver diseases. Besides, we overviewed the recent therapeutic interventions that targeted liver diseases and summarized the recent studies concerning liver disorders therapy.
Collapse
Affiliation(s)
- Fares EM Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | | | - Elham I Sharab
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
7
|
Li Z, Huang F, Chen L, Huang T, Cai YD. Identifying In Vitro Cultured Human Hepatocytes Markers with Machine Learning Methods Based on Single-Cell RNA-Seq Data. Front Bioeng Biotechnol 2022; 10:916309. [PMID: 35706505 PMCID: PMC9189284 DOI: 10.3389/fbioe.2022.916309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cell transplantation is an effective method for compensating for the loss of liver function and improve patient survival. However, given that hepatocytes cultivated in vitro have diverse developmental processes and physiological features, obtaining hepatocytes that can properly function in vivo is difficult. In the present study, we present an advanced computational analysis on single-cell transcriptional profiling to resolve the heterogeneity of the hepatocyte differentiation process in vitro and to mine biomarkers at different periods of differentiation. We obtained a batch of compressed and effective classification features with the Boruta method and ranked them using the Max-Relevance and Min-Redundancy method. Some key genes were identified during the in vitro culture of hepatocytes, including CD147, which not only regulates terminally differentiated cells in the liver but also affects cell differentiation. PPIA, which encodes a CD147 ligand, also appeared in the identified gene list, and the combination of the two proteins mediated multiple biological pathways. Other genes, such as TMSB10, TMEM176B, and CD63, which are involved in the maturation and differentiation of hepatocytes and assist different hepatic cell types in performing their roles were also identified. Then, several classifiers were trained and evaluated to obtain optimal classifiers and optimal feature subsets, using three classification algorithms (random forest, k-nearest neighbor, and decision tree) and the incremental feature selection method. The best random forest classifier with a 0.940 Matthews correlation coefficient was constructed to distinguish different hepatic cell types. Finally, classification rules were created for quantitatively describing hepatic cell types. In summary, This study provided potential targets for cell transplantation associated liver disease treatment strategies by elucidating the process and mechanism of hepatocyte development at both qualitative and quantitative levels.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Ferdek PE, Krzysztofik D, Stopa KB, Kusiak AA, Paw M, Wnuk D, Jakubowska MA. When healing turns into killing ‐ the pathophysiology of pancreatic and hepatic fibrosis. J Physiol 2022; 600:2579-2612. [DOI: 10.1113/jp281135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/12/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Pawel E. Ferdek
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Daria Krzysztofik
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Kinga B. Stopa
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Agnieszka A. Kusiak
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Milena Paw
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Dawid Wnuk
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | | |
Collapse
|
9
|
Alzheimer's disease protease-containing plasma extracellular vesicles transfer to the hippocampus via the choroid plexus. EBioMedicine 2022; 77:103903. [PMID: 35220044 PMCID: PMC8889140 DOI: 10.1016/j.ebiom.2022.103903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background Plasma extracellular vesicles (pEV) can harbor a diverse array of factors including active proteases and the amyloid-precursor-protein (APP) cleavage product Aβ, involved in plaque formation in Alzheimer`s diseases (AD). A potential role of such vesicles in AD pathology is unexplored. Methods In a case-control study of randomly selected patients with AD and other neurological diseases (n = 14), and healthy controls (n = 7), we systematically analyzed the content of pEV, using different assay systems. In addition, we determined their entry path into brain tissue, employing animal (mice) injection experiments with ex vivo generated EV that were similar to AD-pEV, followed by multi antigen analysis (MAA) of brain tissue (n = 4 per condition). The results were compared with an IHC staining of human brain tissue in a small cohort of AD patients (n = 3) and controls with no neurodegenerative diseases (n = 3). Findings We show that pEV levels are considerably upregulated in AD patients. Besides numerous inflammatory effectors, AD-pEV contained α-, β- and γ-secretases, able to cleave APP in in target cells. In vitro generated EV with similar characteristics as AD-pEV accumulated in the choroid plexus (CP) of injected animals and reached primarily hippocampal neurons. Corroborating findings were made in human brain samples. An inhibitor of hyaluronic-acid-synthetase (HAS) blocked uploading of proteases and Hyaluronan onto EV in vitro and abolished CP targeting in animal injection experiments. Interpretation We conclude that protease-containing pEV could be part of a communication axis between the periphery and the brain that could be become detrimental depending on pEV concentration and duration of target cell impact.
Collapse
|
10
|
Migdał M, Tralle E, Nahia KA, Bugajski Ł, Kędzierska KZ, Garbicz F, Piwocka K, Winata CL, Pawlak M. Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift. BMC Genomics 2021; 22:904. [PMID: 34920711 PMCID: PMC8684102 DOI: 10.1186/s12864-021-08173-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Liver fibrosis is a wound-healing response to tissue injury and inflammation hallmarked by the extracellular matrix (ECM) protein deposition in the liver parenchyma and tissue remodelling. Different cell types of the liver are known to play distinct roles in liver injury response. Hepatocytes and liver endothelial cells receive molecular signals indicating tissue injury and activate hepatic stellate cells which produce ECM proteins upon their activation. Despite the growing knowledge on the molecular mechanism underlying hepatic fibrosis in general, the cell-type-specific gene regulatory network associated with the initial response to hepatotoxic injury is still poorly characterized. Results In this study, we used thioacetamide (TAA) to induce hepatic injury in adult zebrafish. We isolated three major liver cell types - hepatocytes, endothelial cells and hepatic stellate cells - and identified cell-type-specific chromatin accessibility and transcriptional changes in an early stage of liver injury. We found that TAA induced transcriptional shifts in all three cell types hallmarked by significant alterations in the expression of genes related to fatty acid and carbohydrate metabolism, as well as immune response-associated and vascular-specific genes. Interestingly, liver endothelial cells exhibit the most pronounced response to liver injury at the transcriptome and chromatin level, hallmarked by the loss of their angiogenic phenotype. Conclusion Our results uncovered cell-type-specific transcriptome and epigenome responses to early stage liver injury, which provide valuable insights into understanding the molecular mechanism implicated in the early response of the liver to pro-fibrotic signals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08173-1.
Collapse
|
11
|
Li T, Liu J, Wang Y, Zhou C, Shi Q, Huang S, Yang C, Chen Y, Bai Y, Xiong B. Liver fibrosis promotes immunity escape but limits the size of liver tumor in a rat orthotopic transplantation model. Sci Rep 2021; 11:22846. [PMID: 34819565 PMCID: PMC8613241 DOI: 10.1038/s41598-021-02155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Liver fibrosis plays a crucial role in promoting tumor immune escape and tumor aggressiveness for liver cancer. However, an interesting phenomenon is that the tumor size of liver cancer patients with liver fibrosis is smaller than that of patients without liver fibrosis. In this study, 16 SD rats were used to establish orthotopic liver tumor transplantation models with Walker-256 cell lines, respectively on the fibrotic liver (n = 8, LF group) and normal liver (n = 8, control group). MRI (magnetic resonance imaging) was used to monitor the size of the tumors. All rats were executed at the third week after modeling, and the immunohistochemical staining was used to reflect the changes in the tumor microenvironment. The results showed that, compared to the control group, the PD-L1 (programmed cell death protein receptor-L1) expression was higher, and the neutrophil infiltration increased while the effector (CD8+) T cell infiltration decreased in the LF group. Additionally, the expression of MMP-9 (matrix metalloproteinase-9) of tumor tissue in the LF group increased. Three weeks after modeling, the size of tumors in the LF group was significantly smaller than that in the control group (382.47 ± 195.06 mm3 vs. 1736.21 ± 657.25 mm3, P < 0.001). Taken together, we concluded that liver fibrosis facilitated tumor immunity escape but limited the expansion of tumor size.
Collapse
Affiliation(s)
- Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qin Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yang Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
12
|
ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond) 2020; 134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.
Collapse
|
13
|
Wang SJ, Chao D, Wei W, Nan G, Li JY, Liu FL, Li L, Jiang JL, Cui HY, Chen ZN. CD147 promotes collective invasion through cathepsin B in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:145. [PMID: 32727598 PMCID: PMC7391525 DOI: 10.1186/s13046-020-01647-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Background Mounting evidence suggests that solid tumors display the features of collective invasion, however, the molecular mechanisms are far from clear. This study aims to verify the role and the underlying mechanisms of CD147 in collective invasion in hepatocellular carcinoma. Methods Immunostaining was used to analyze human hepatocellular carcinoma specimens and three-dimensional cultures. Three-dimensional invasion model was established to mimic in vivo invasion. RNA-sequencing was used to identify downstream effectors. Results Human hepatocellular carcinoma underwent collective invasion and CD147 was observed to be upregulated at the invasive front of tumor cell groups. CD147 was demonstrated to promote collective invasion using the modified three-dimensional invasion model, which recapitulated the main features of collective invasion. Through transcriptome analysis and enzyme activity assay, we found that CD147 enhanced cathepsin B expression and activity. Upregulated cathepsin B in hepatocellular carcinoma cells facilitated migration and invasion, which mediated CD147-induced invasive phenotype in hepatocellular carcinoma. In terms of mechanism, we found that CD147 promoted cathepsin B transcription by activating β-catenin signaling as a result of reduced GSK-3β expression. Furthermore, we found that elevated expression of CD147 as well as cathepsin B were correlated with poor prognosis in patients with hepatocellular carcinoma. Conclusions CD147 promotes hepatocellular carcinoma cells collective invasion via upregulating cathepsin B expression and targeting CD147 would be valuable for the development of novel therapeutic modalities against invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Shi-Jie Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Dong Chao
- Department of thoracic surgery, the 940th hospital of joint logistics support force of Chinese People's Liberation Army, Lanzhou, 730050, P. R. China
| | - Wei Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jia-Yue Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Fen-Ling Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ling Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| |
Collapse
|
14
|
Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases. Cells 2020; 9:E1212. [PMID: 32414178 PMCID: PMC7290342 DOI: 10.3390/cells9051212] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic liver diseases, characterized by an excessive accumulation of extracellular matrix (ECM) resulting in scar tissue formation, are a growing health problem causing increasing morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only treatment for the end-stage liver diseases. During liver damage, injured hepatocytes release proinflammatory factors resulting in the recruitment and activation of immune cells that activate quiescent hepatic stellate cells (HSCs). Upon activation, HSCs transdifferentiate into highly proliferative, migratory, contractile and ECM-producing myofibroblasts. The disrupted balance between ECM deposition and degradation leads to the formation of scar tissue referred to as fibrosis. This balance can be restored either by reducing ECM deposition (by inhibition of HSCs activation and proliferation) or enhancing ECM degradation (by increased expression of matrix metalloproteinases (MMPs)). MMPs play an important role in ECM remodeling and represent an interesting target for therapeutic drug discovery. In this review, we present the current knowledge about ECM remodeling and role of the different MMPs in liver diseases. MMP expression patterns in different stages of liver diseases have also been reviewed to determine their role as biomarkers. Finally, we highlight MMPs as promising therapeutic targets for the resolution of liver diseases.
Collapse
Affiliation(s)
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
15
|
Yee C, Main NM, Terry A, Stevanovski I, Maczurek A, Morgan AJ, Calabro S, Potter AJ, Iemma TL, Bowen DG, Ahlenstiel G, Warner FJ, McCaughan GW, McLennan SV, Shackel NA. CD147 mediates intrahepatic leukocyte aggregation and determines the extent of liver injury. PLoS One 2019; 14:e0215557. [PMID: 31291257 PMCID: PMC6619953 DOI: 10.1371/journal.pone.0215557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Chronic inflammation is the driver of liver injury and results in progressive fibrosis and eventual cirrhosis with consequences including both liver failure and liver cancer. We have previously described increased expression of the highly multifunctional glycoprotein CD147 in liver injury. This work describes a novel role of CD147 in liver inflammation and the importance of leukocyte aggregates in determining the extent of liver injury. Methods Non-diseased, progressive injury, and cirrhotic liver from humans and mice were examined using a mAb targeting CD147. Inflammatory cell subsets were assessed by multiparameter flow cytometry. Results In liver injury, we observe abundant, intrahepatic leukocyte clusters defined as ≥5 adjacent CD45+ cells which we have termed “leukocyte aggregates”. We have shown that these leukocyte aggregates have a significant effect in determining the extent of liver injury. If CD147 is blocked in vivo, these leukocyte aggregates diminish in size and number, together with a marked significant reduction in liver injury including fibrosis. This is accompanied by no change in overall intrahepatic leukocyte numbers. Further, blocking of aggregation formation occurs prior to an appreciable increase in inflammatory markers or fibrosis. Additionally, there were no observed, “off-target” or unpredicted effects in targeting CD147. Conclusion CD147 mediates leukocyte aggregation which is associated with the development of liver injury. This is not a secondary effect, but a cause of injury as aggregate formation proceeds other markers of injury. Leukocyte aggregation has been previously described in inflammation dating back over many decades. Here we demonstrate that leukocyte aggregates determine the extent of liver injury.
Collapse
Affiliation(s)
- Christine Yee
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Nathan M. Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Alexandra Terry
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Igor Stevanovski
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Annette Maczurek
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
| | - Alison J. Morgan
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
| | - Sarah Calabro
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
| | - Alison J. Potter
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
| | - Tina L. Iemma
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
| | - David G. Bowen
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Golo Ahlenstiel
- Western Sydney School of Medicine, Blacktown Hospital, Blacktown, NSW, Australia
| | - Fiona J. Warner
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Susan V. McLennan
- Department of Endocrinology, Department of Medicine and Bosch Institute, Royal Prince Alfred Hospital, The University of Sydney, NSW, Australia
| | - Nicholas A. Shackel
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, NSW, Australia
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Liverpool Hospital, Liverpool, NSW, Australia
- * E-mail:
| |
Collapse
|
16
|
Abstract
Previous studies have shown that interleukin-24 (IL-24) has tumor-suppressing activity by multiple pathways. However, the immunogenicity moderation effect of IL-24 on malignant cells has not been explored extensively. In this study, we investigated the role of IL-24 in immunogenicity modulation of the myelogenous leukemia cells. Data show that myelogenous leukemia cells express low levels of immunogenicity molecules. Treatment with IL-24 could enhance leukemia cell immunogenicity, predominantly regulate leukemia cells to produce immune-associated cytokines, and improve the cytotoxic sensitivity of these cells to immune effector cells. IL-24 expression could retard transplanted leukemia cell tumor growth in vivo in athymic nude mice. Moreover, IL-24 had marked effects on downregulating the expression of angiogenesis-related proteins vascular endothelial growth factor, cluster of differentiation (CD) 31, CD34, collagen IV and metastasis-related factors CD147, membrane type-1 matrix metalloproteinase (MMP), and MMP-2 and MMP-9 in transplanted tumors. These findings indicated novel functions of this antitumor gene and characterized IL-24 as a promising agent for further clinical trial for hematologic malignancy immunotherapy.
Collapse
|
17
|
Sun J, Wu Y, Long C, He P, Gu J, Yang L, Liang Y, Wang Y. Anthocyanins isolated from blueberry ameliorates CCl4 induced liver fibrosis by modulation of oxidative stress, inflammation and stellate cell activation in mice. Food Chem Toxicol 2018; 120:491-499. [DOI: 10.1016/j.fct.2018.07.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/15/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
|
18
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
19
|
3D Co-Culture with Vascular Cells Supports Long-Term Hepatocyte Phenotype and Function In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0046-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Curran CS, Sharon E. PD-1 immunobiology in autoimmune hepatitis and hepatocellular carcinoma. Semin Oncol 2018; 44:428-432. [PMID: 29935904 DOI: 10.1053/j.seminoncol.2017.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 02/08/2023]
Abstract
Disruption of liver immune tolerance allows for the development of autoimmune hepatitis (AIH) and hepatocellular carcinoma (HCC). AIH rarely progresses to HCC but the diseases similarly induce the production of IL-18 and matrix metalloproteinases. These molecules have distinct effects on the immune response, including the programmed cell-death 1 (PD-1) axis. In this review, differences in PD-1 function and possible cell signals in AIH and HCC are highlighted.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Elad Sharon
- Cancer Therapy Evaluation Program, Division of Cancer Treatment & Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
21
|
Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol 2017; 68-69:463-473. [PMID: 29289644 DOI: 10.1016/j.matbio.2017.12.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Liver fibrosis, a reversible wound-healing response to chronic cellular injury, reflects a balance between liver repair and progressive substitution of the liver parenchyma by scar tissue. Complex mechanisms that underlie liver fibrogenesis are summarized to provide the basis for generating targeted therapies to reverse fibrogenesis and improve the outcomes of patients with chronic liver disease. This minireview presents some pathophysiological aspects of liver fibrosis as a dynamic process and elucidates matrix metalloproteinases (MMPs) and their role within as well as beyond matrix degradation. Open questions remain, whether inhibition of fibrogenesis or induction of fibrolysis is the key mechanism to resolve fibrosis. And a point of principle might be whether regeneration of liver cirrhosis is possible. Will we ever cure fibrosis?
Collapse
|
22
|
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2017; 68-69:452-462. [PMID: 29221811 DOI: 10.1016/j.matbio.2017.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is the most common final outcome for chronic liver diseases. The complex pathogenesis includes hepatic parenchymal damage as a result of a persistent noxe, activation and recruitment of immune cells, activation of hepatic stellate cells, and the synthesis of fibrotic extracellular matrix (ECM) components leading to scar formation. Clinical studies and animal models demonstrated that fibrosis can be reversible. In this regard matrix metalloproteinases (MMPs) have been focused as therapeutic targets due to their ability to modulate tissue turnover during fibrogenesis as well as regeneration and, of special interest, due to their influence on cellular behavior like proliferation, gene expression, and apoptosis that, in turn, impact fibrosis and regeneration. The current review aims to summarize and update the knowledge about expression pattern and the central roles of MMPs in hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University Giessen, Gaffkystr. 11c, D-35392 Giessen, Germany.
| |
Collapse
|
23
|
Helal TESA, Ehsan NA, Radwan NA, Abdelsameea E. Relationship between hepatic progenitor cells and stellate cells in chronic hepatitis C genotype 4. APMIS 2017; 126:14-20. [PMID: 29155473 DOI: 10.1111/apm.12787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection represents a major health problem in many areas of the world, especially Egypt. Hepatic progenitor cells (HPCs) and hepatic stellate cells (HSCs) have been implicated in fibrosis progression in chronic HCV. The aim of this study was to investigate the role of HPCs and HSCs in chronic HCV infection and the relationship between both cell types. This retrospective study was conducted on 100 chronic HCV patients. Immunohistochemistry was performed on liver tissue sections for cytokeratin 19 (progenitor cell markers), smooth muscle actin (stellate cell markers), matrix metalloproteinase-9 (MMP-9), and transforming growth factor beta (TGF-ß). The necroinflammatory activity was significantly related to the number of isolated HPCs and TGF-ß expression (p = 0.003 and p = 0.001 respectively). Advanced stages of fibrosis showed significantly increase number of HPCs (p = 0.001), higher ratio of HSCs (p = 0.004), more expression of TGF-ß (p = 0.001) and MMP-9 (p = 0.001). There was a significant direct correlation between immunoexpression of HPCs and HSCs for isolated cells (r = 0.569, p = 0.001) and ductular reaction (r = 0.519, p = 0.001). Hepatic progenitor cells and stellate cells play a significant role in the development and progression of fibrosis in chronic HCV. More interestingly, the significant direct correlation between HPCs and HSCs suggests a synergistic interrelation.
Collapse
Affiliation(s)
| | - Nermine Ahmed Ehsan
- Department of Pathology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Nehal Ahmed Radwan
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Abdelsameea
- Department of Hepatology, National Liver Institute, Menoufia University, Menoufia, Egypt
| |
Collapse
|
24
|
Zang J, Sha M, Zhang C, Ye J, Zhang K, Gao J. Senescent hepatocyte secretion of matrix metalloproteinases is regulated by nuclear factor-κB signaling. Life Sci 2017; 191:205-210. [PMID: 29054454 DOI: 10.1016/j.lfs.2017.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
AIMS Cellular senescence and matrix metalloproteinases (MMPs) play an important role in liver diseases. The source and regulating factors of MMPs in senescent hepatocytes are not known. We investigated whether senescent hepatocytes secreted MMPs and if this was regulated by nuclear factor (NF)-κB. MATERIALS AND METHODS The TGF-α transgenic mouse hepatocyte line AML12 was treated with H2O2 to induce senescence. NF-κB signaling was examined by Western blotting and luciferase reporter assays. Quantitative reverse transcription polymerase chain reaction was used to evaluated expression of MMP-2, -9 and -13. KEY FINDINGS AML12 cells treated with H2O2 showed the characteristic morphology of senescence. The activity of NF-κB and expression of MMP-2, -9 and -13 were increased in senescent AML12 cells. The NF-κB inhibitor BAY 11-7082 decreased the levels of MMPs. SIGNIFICANCE These results suggest that senescent hepatocytes are involved in the pathology of liver diseases through remodeling the extracellular matrix.
Collapse
Affiliation(s)
- Jinfeng Zang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China.
| | - Min Sha
- Central Laboratory, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Jun Ye
- Central Laboratory, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Kezhi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| | - Junye Gao
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, China
| |
Collapse
|
25
|
Zhong HH, Hu SJ, Yu B, Jiang SS, Zhang J, Luo D, Yang MW, Su WY, Shao YL, Deng HL, Hong FF, Yang SL. Apoptosis in the aging liver. Oncotarget 2017; 8:102640-102652. [PMID: 29254277 PMCID: PMC5731987 DOI: 10.18632/oncotarget.21123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
Various changes in the liver during aging can reduce hepatic function and promote liver injury. Aging is associated with high morbidity and a poor prognosis in patients with various liver diseases, including nonalcoholic fatty liver disease, hepatitis C and liver cancer, as well as with surgeries such as partial hepatectomy and liver transplantation. In addition, apoptosis increases with liver aging. Because apoptosis is involved in regeneration, fibrosis and cancer prevention during liver aging, and restoration of the appropriate level of apoptosis can alleviate the adverse effects of liver aging, it is important to understand the mechanisms underlying this process. Herein, we elaborate on the causes of apoptosis during liver aging, with a focus on oxidative stress, genomic instability, lipotoxicity, endoplasmic reticulum stress, dysregulation of nutrient sensing, and liver stem/progenitor cell activity.
Collapse
Affiliation(s)
- Hua-Hua Zhong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Shao-Jie Hu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Bo Yu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Sha-Sha Jiang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jin Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Dan Luo
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mei-Wen Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Wan-Ying Su
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Ya-Lan Shao
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hao-Lin Deng
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
26
|
Kim JY, An HJ, Kim WH, Gwon MG, Gu H, Park YY, Park KK. Anti-fibrotic Effects of Synthetic Oligodeoxynucleotide for TGF-β1 and Smad in an Animal Model of Liver Cirrhosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:250-263. [PMID: 28918026 PMCID: PMC5511593 DOI: 10.1016/j.omtn.2017.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is characterized by changes in tissue architecture and extracellular matrix composition. Liver fibrosis affects not only hepatocytes but also the non-parenchymal cells such as hepatic stellate cells (HSCs), which are essential for maintaining an intact liver structure and function. Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine that induces liver fibrosis through activation of Smad signaling pathways. To improve a new therapeutic approach, synthetic TGF-β1/Smad oligodeoxynucleotide (ODN) was used to suppress both TGF-β1 expression and Smad transcription factor using a combination of antisense ODN and decoy ODN. The aims of this study are to investigate the anti-fibrotic effects of TGF-β1/Smad ODN on simultaneous suppressions of both Smad transcription factor and TGF-β1 mRNA expression in the hepatic fibrosis model in vitro and in vivo. Synthetic TGF-β1/Smad ODN effectively inhibits Smad binding activity and TGF-β1 expression. TGF-β1/Smad ODN attenuated the epithelial mesenchymal transition (EMT) and activation of HSCs in TGF-β1-induced AML12 and HSC-T6 cells. TGF-β1/Smad ODN prevented the fibrogenesis and deposition of collagen in CCl4-treated mouse model. Synthetic TGF-β1/Smad ODN demonstrates anti-fibrotic effects that are mediated by the suppression of fibrogenic protein and inflammatory cytokines. Therefore, synthetic TGF-β1/Smad ODN has substantial therapeutic feasibility for the treatment of liver fibrotic diseases.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Yoon-Yub Park
- Department of Physiology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea.
| |
Collapse
|
27
|
Serum Cyclophilin A Correlates with Increased Tissue MMP-9 in Patients with Ulcerative Colitis, but Not with Crohn's Disease. Dig Dis Sci 2017; 62:1511-1517. [PMID: 28391416 DOI: 10.1007/s10620-017-4568-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/01/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cyclophilin A (CyPA) is an immunomodulatory protein, high expression of which correlates with poor outcome of patients with inflammatory diseases. However, its role in inflammatory bowel disease (IBD) has not been studied. AIM This study analyzes the correlation between cyclophilin A, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP (TIMP)/MMP-9 complexes in the inflamed and non-inflamed colon mucosa of UC and CD patients. METHODS Serum and biopsy specimens from inflamed and non-inflamed colonic mucosa of 38 patients with IBD (19 with UC and 19 with CD) and 16 controls were included in our study. We measured serum and tissue level of CyPA, and tissue level of TNF-α, MMP-9, TIMP-1/MMP-9, and TIMP-2/MMP-9 using ELISA method. RESULTS Our results indicated that serum, but not tissue CyPA is increased in UC, rather than in CD patients, compared to the control. The increase correlated with higher tissue concentration of MMP-9 and TNF-α, especially in the UC group. Moreover, we observed significantly higher level of TIMP-1/MMP-9 in UC and CD group, which overlapped with the change in MMP-9. There was no change in TIMP-2/MMP-9 in the analyzed groups. CONCLUSION The current study suggests that serum CyPA may be an independent additional marker of IBD, especially of UC. Higher CyPA level may be followed by increased MMP-9 in those patients. However, further studies are necessary to verify the role of CyPA in IBD development.
Collapse
|
28
|
Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci Rep 2016; 36:BSR20160107. [PMID: 27247426 PMCID: PMC4945993 DOI: 10.1042/bsr20160107] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis.
Collapse
|
29
|
Extracellular Vesicles: A New Frontier in Biomarker Discovery for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17:376. [PMID: 26985892 PMCID: PMC4813235 DOI: 10.3390/ijms17030376] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the global burden of obesity and diabetes has seen a parallel rise in other metabolic complications, such as non-alcoholic fatty liver disease (NAFLD). This condition, once thought to be a benign accumulation of hepatic fat, is now recognized as a serious and prevalent disorder that is conducive to inflammation and fibrosis. Despite the rising incidence of NAFLD, there is currently no reliable method for its diagnosis or staging besides the highly invasive tissue biopsy. This limitation has resulted in the study of novel circulating markers as potential candidates, one of the most popular being extracellular vesicles (EVs). These submicron membrane-bound structures are secreted from stressed and activated cells, or are formed during apoptosis, and are known to be involved in intercellular communication. The cargo of EVs depends upon the parent cell and has been shown to be changed in disease, as is their abundance in the circulation. The role of EVs in immunity and epigenetic regulation is widely attested, and studies showing a correlation with disease severity have made these structures a favorable target for diagnostic as well as therapeutic purposes. This review will highlight the research that is available on EVs in the context of NAFLD, the current limitations, and projections for their future utility in a clinical setting.
Collapse
|
30
|
Tu T, Calabro SR, Lee A, Maczurek AE, Budzinska MA, Warner FJ, McLennan SV, Shackel NA. Hepatocytes in liver injury: Victim, bystander, or accomplice in progressive fibrosis? J Gastroenterol Hepatol 2015; 30:1696-704. [PMID: 26239824 DOI: 10.1111/jgh.13065] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/26/2015] [Indexed: 12/11/2022]
Abstract
Chronic liver disease causes significant morbidity and mortality through progressive fibrosis, cirrhosis, and liver cancer. The classical theory of fibrogenesis has hepatic stellate cells (HSCs) as the principal and only significant source of abnormal extracellular matrix (ECM). Further, HSCs have the major role in abnormal ECM turnover. It is the death of hepatocytes, as the initial target of injury, that initiates a sequence of events including the recruitment of inflammatory cells and activation of HSCs. Following this initial response, the ongoing insult to hepatocytes is regarded as perpetuating injury, but otherwise, hepatocytes are regarded as "victims" and "bystanders" in progressive fibrosis. Recent developments, however, challenge this view and suggest the concept of the hepatocyte being an active participant in liver injury. It is clear now that hepatocytes undergo phenotypic changes, adapt to injury, and react to the altered microenvironment. In this review, we describe studies showing that hepatocytes contribute to progressive fibrosis by direct manipulation of the surrounding ECM and through signaling to effector cells, particularly HSCs and intrahepatic immune cells. Together, these findings suggest an active "accomplice" role for the hepatocyte in progressive liver fibrosis and highlight novel pathways that could be targeted for development of future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Thomas Tu
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah R Calabro
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Aimei Lee
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Annette E Maczurek
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Magdalena A Budzinska
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona J Warner
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Susan V McLennan
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Nicholas A Shackel
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Palladini G, Ferrigno A, Richelmi P, Perlini S, Vairetti M. Role of matrix metalloproteinases in cholestasis and hepatic ischemia/reperfusion injury: A review. World J Gastroenterol 2015; 21:12114-12124. [PMID: 26576096 PMCID: PMC4641129 DOI: 10.3748/wjg.v21.i42.12114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/28/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases using zinc-dependent catalysis to break down extracellular matrix (ECM) components, allowing cell movement and tissue reorganization. Like many other proteases, MMPs are produced as zymogens, an inactive form, which are activated after their release from cells. Hepatic ischemia/reperfusion (I/R) is associated with MMP activation and release, with profound effects on tissue integrity: their inappropriate, prolonged or excessive expression has harmful consequences for the liver. Kupffer cells and hepatic stellate cells can secrete MMPs though sinusoidal endothelial cells are a further source of MMPs. After liver transplantation, biliary complications are mainly attributable to cholangiocytes, which, compared with hepatocytes, are particularly susceptible to injury and ultimately a major cause of increased graft dysfunction and patient morbidity. This paper focuses on liver I/R injury and cholestasis and reviews factors and mechanisms involved in MMP activation together with synthetic compounds used in their regulation. In this respect, recent data have demonstrated that the role of MMPs during I/R may go beyond the mere destruction of the ECM and may be much more complex than previously thought. We thus discuss the role of MMPs as an important factor in cholestasis associated with I/R injury.
Collapse
|
32
|
CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells. Clin Sci (Lond) 2015. [PMID: 26201021 DOI: 10.1042/cs20140823] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis.
Collapse
|
33
|
Duarte S, Baber J, Fujii T, Coito AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol 2015; 44-46:147-56. [PMID: 25599939 PMCID: PMC4495728 DOI: 10.1016/j.matbio.2015.01.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/18/2023]
Abstract
The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression.
Collapse
Affiliation(s)
- Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - John Baber
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Takehiro Fujii
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ana J Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Tu T, Budzinska MA, Maczurek AE, Cheng R, Di Bartolomeo A, Warner FJ, McCaughan GW, McLennan SV, Shackel NA. Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci 2014; 15:9422-58. [PMID: 24871369 PMCID: PMC4100103 DOI: 10.3390/ijms15069422] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer that is derived from hepatocytes and is characterised by high mortality rate and poor prognosis. While HCC is driven by cumulative changes in the hepatocyte genome, it is increasingly recognised that the liver microenvironment plays a pivotal role in HCC propensity, progression and treatment response. The microenvironmental stimuli that have been recognised as being involved in HCC pathogenesis are diverse and include intrahepatic cell subpopulations, such as immune and stellate cells, pathogens, such as hepatitis viruses, and non-cellular factors, such as abnormal extracellular matrix (ECM) and tissue hypoxia. Recently, a number of novel environmental influences have been shown to have an equally dramatic, but previously unrecognized, role in HCC progression. Novel aspects, including diet, gastrointestinal tract (GIT) microflora and circulating microvesicles, are now being recognized as increasingly important in HCC pathogenesis. This review will outline aspects of the HCC microenvironment, including the potential role of GIT microflora and microvesicles, in providing new insights into tumourigenesis and identifying potential novel targets in the treatment of HCC.
Collapse
Affiliation(s)
- Thomas Tu
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | | | - Robert Cheng
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | - Anna Di Bartolomeo
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Fiona J Warner
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | - Susan V McLennan
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|