1
|
You B, Wen H, Jackson T. Pain resilience dimensions and regional gray matter volume as risk factors for poor outcomes of chronic pain: a prospective cohort study. Psychol Med 2024; 54:1-10. [PMID: 39439301 PMCID: PMC11536115 DOI: 10.1017/s0033291724001703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Pain resilience and regional gray matter volume (rGMV) are established correlates of adaptation to chronic pain within cross-sectional studies. Extending such work, this prospective cohort study tested the status of baseline pain resilience dimension scores and rGMV as risk factors for subsequent exacerbations in chronic pain disability and intensity. METHODS 142 adults with chronic musculoskeletal pain completed an initial assessment comprising a structural magnetic resonance imaging scan and self-report measures of cognitive/affective positivity and behavioral perseverance pain resilience dimensions, disability, pain intensity, and demographics. Disability and pain intensity were outcomes re-assessed at a 6-month follow-up. The impact of pain resilience dimension scores and identified rGMV sites on follow-up outcomes was examined after controlling for other baseline correlates of outcomes. Mediating effects of identified rGMV sites on pain resilience dimension-follow-up outcome relations were also evaluated. RESULTS Aside from the significant multivariate effect of lower behavioral perseverance and cognitive/affective positivity scores, augmented left precuneus, temporal pole, superior temporal gyrus (STG), and precentral gyrus rGMV combined to predict higher follow-up disability levels, independent of covariates. Higher left fusiform gyrus rGMV levels predicted follow-up exacerbations in pain intensity, but pain resilience dimension scores did not. Finally, left precuneus and left temporal pole STG rGMV partially mediated cognitive/affective positivity-follow-up disability relations. CONCLUSIONS Findings underscore deficits in pain resilience and increased rGMV as potential risk factors for poorer subsequent outcomes of chronic musculoskeletal pain and provide foundations for further prospective extensions as well as targeted intervention research.
Collapse
Affiliation(s)
- Beibei You
- School of Nursing, Guizhou Medical University, Guiyang, 561113, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa, 999078, Macau, SAR, China
| |
Collapse
|
2
|
Du HG, Wen Y, Dong JX, Chen S, Jin X, Liu C, Ling DY, Lv LJ. Brain plasticity following lumbar disc herniation treatment with spinal manipulation therapy based on resting-state functional magnetic resonance imaging. Heliyon 2024; 10:e37703. [PMID: 39315226 PMCID: PMC11417269 DOI: 10.1016/j.heliyon.2024.e37703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
As a prevalent spine disorder, Lumbar disc herniation (LDH) has been affecting more than 2 % of the worldwide population and is characterised by uncertain causes and recurring episodes. Studying the brain activity of patients could potentially provide insights into its pathogenesis and significantly enhance therapy. Therefore, we here examined brain function in patients under Spinal Manipulative Therapy (SMT). By analysing regional homogeneity (ReHo) at different frequency bands, we identified the discrepancies in brain activity between LDH patients and healthy people, highlighting the frequency dependence of spontaneous low-frequency oscillations among patients with LDH. Choosing seeds based on the peak ReHo differences helped to elucidate the functional connectivity alterations in the brain regions of LDH. Overall, this study showed that SMT significantly reduced pain, improved dysfunction, and partially rectified aberrant local consistency and functional connection in patients with LDH, not only offering insights into the pathophysiology of LDH from a neurological standpoint, but also providing inspiration for the development of new therapies based on neurobiology.
Collapse
Affiliation(s)
- Hong-Gen Du
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Ya Wen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Jun-Xiang Dong
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Shao Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Chen Liu
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Dong-Ya Ling
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Li-Jiang Lv
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
- Research Institute of Tuina (Spinal disease), Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
3
|
Jiang C, Huang H, Chen L, Jiang J, Zhang H, Chen J, Chen S, Lin Z. Functional Magnetic Resonance Imaging Analysis of the Clinical Effect and Cerebral Mechanism of Tuina in Lumbar Disc Herniation: Protocol for a Randomized Controlled Parallel Group Trial. JMIR Res Protoc 2024; 13:e63852. [PMID: 39348675 PMCID: PMC11474116 DOI: 10.2196/63852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 08/30/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) has become a serious public health and socioeconomic problem. Tuina is a Chinese medicine treatment method based on meridian acupuncture theory and modern anatomy. Tuina can relieve pain and muscle tension and improve functional disorders; this massage is performed by pressing, kneading, pushing, pulling, and shaking the skin, muscles, and bones. However, the mechanism of action and the effect of Tuina as an external treatment on the activities of the central nervous system to relieve LDH pain is unclear. Therefore, we performed functional magnetic resonance imaging (fMRI), which is widely used in pain-related research, as it can detect the effects of different types of pain on brain activity. OBJECTIVE Our randomized controlled parallel-group trial aims to compare the effects of Tuina with those of transcutaneous electrical nerve stimulation (TENS) with traction in patients with LDH. METHODS This trial will be conducted between May 2024 and April 2025 in the Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine. Seventy-six participants with LDH will be enrolled for this trial and randomly assigned to 2 groups: Tuina intervention group and TENS with traction intervention group. Participants in both groups will receive treatment for 14 days. fMRI will be performed for the main pain measurements by assessing the effect of the intervention on brain activity before and after the end of the intervention. Short-Form McGill Pain Questionnaire, pressure pain thresholds, and the Oswestry disability index will be used to reflect the degree of pain and lumbar dysfunction, and the results will be used as secondary outcome measurements. RESULTS The study protocol has been approved by the ethics review committee of The Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine. This study was registered on May 1, 2024, with the Chinese Clinical Trial Registry. Data collection began on May 2024 and is expected to end on April 2025. Currently, data from this trial are in the collection phase, and no data analysis has been performed. As of July 1, 2024, we have collected data from 21 patients. The results of this trial are expected to be submitted for publication in September 2025. CONCLUSIONS This clinical trial will compare the effectiveness of Tuina with that of TENS with traction in the treatment of patients with LDH and will show the cerebral mechanism of Tuina in LDH treatment by using fMRI. The results of our trial will be helpful in clarifying the cerebral mechanism of Tuina in the treatment of LDH and provide a solid foundation for Tuina therapy research. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2400083784; https://www.chictr.org.cn/showproj.html?proj=225157. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/63852.
Collapse
Affiliation(s)
- Changzheng Jiang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongye Huang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lechun Chen
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jingjing Jiang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huanzhen Zhang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jincheng Chen
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuijin Chen
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhigang Lin
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Yang Y, Xia C, Xu Z, Hu Y, Huang M, Li D, Zheng Y, Li Y, Xu F, Wang J. rTMS applied to the PFC relieves neuropathic pain and modulates neuroinflammation in CCI rats. Neuroscience 2024; 554:137-145. [PMID: 38992566 DOI: 10.1016/j.neuroscience.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The study aimed to assess the analgesic effect of 10 Hz repetitive transcranial magnetic stimulation (rTMS) targeted to the prefrontal cortex (PFC) region on neuropathic pain (NPP) in rats with chronic constriction injury (CCI) of the sciatic nerve, and to investigate the possible underlying mechanism. Rats were randomly divided into three groups: sham operation, CCI, and rTMS. In the latter group, rTMS was applied to the left PFC. Von Frey fibres were used to measure the paw withdrawal mechanical threshold (PWMT). At the end of the treatment, immunofluorescence and western blotting were applied to detect the expression of M1 and M2 polarisation markers in microglia in the left PFC and sciatic nerve. ELISA was further used to detect the concentrations of inflammation-related cytokines. The results showed that CCI caused NPP in rats, reduced the pain threshold, promoted microglial polarisation to the M1 phenotype, and increased the secretion of pro-inflammatory and anti-inflammatory factors. Moreover, 10 Hz rTMS to the PFC was shown to improve NPP induced by CCI, induce microglial polarisation to M2, reduce the secretion of pro-inflammatory factors, and further increase the secretion of anti-inflammatory factors. Our data suggest that 10 Hz rTMS can alleviate CCI-induced neuropathic pain, while the underlying mechanism may potentially be related to the regulation of microglial M1-to-M2-type polarisation to regulate neuroinflammation.
Collapse
Affiliation(s)
- Yue Yang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Cuihong Xia
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Zhangyu Xu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Yue Hu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Maomao Huang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Dan Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China
| | - Yadan Zheng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Yang Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fangyuan Xu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China.
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, PR China; Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, PR China.
| |
Collapse
|
5
|
Gilliam JR, Sahu PK, Vendemia JMC, Silfies SP. Association between seated trunk control and cortical sensorimotor white matter brain changes in patients with chronic low back pain. PLoS One 2024; 19:e0309344. [PMID: 39208294 PMCID: PMC11361694 DOI: 10.1371/journal.pone.0309344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Trunk control involves integration of sensorimotor information in the brain. Individuals with chronic low back pain (cLBP) have impaired trunk control and show differences in brain structure and function in sensorimotor areas compared with healthy controls (HC). However, the relationship between brain structure and trunk control in this group is not well understood. This cross-sectional study aimed to compare seated trunk control and sensorimotor white matter (WM) structure in people with cLBP and HC and explore relationships between WM properties and trunk control in each group. Thirty-two people with cLBP and 35 HC were tested sitting on an unstable chair to isolate trunk control; performance was measured using the 95% confidence ellipse area (CEA95) of center-of-pressure tracing. A WM network between cortical sensorimotor regions of interest was derived using probabilistic tractography. WM microstructure and anatomical connectivity between cortical sensorimotor regions were assessed. A mixed-model ANOVA showed that people with cLBP had worse trunk control than HC (F = 12.96; p < .001; ηp2 = .091). There were no differences in WM microstructure or anatomical connectivity between groups (p = 0.564 to 0.940). In the cLBP group, WM microstructure was moderately correlated (|r| = .456 to .565; p ≤ .009) with trunk control. Additionally, the cLBP group demonstrated stronger relationships between anatomical connectivity and trunk control (|r| = .377 to .618 p < .034) compared to the HC group. Unique to the cLBP group, WM connectivity between right somatosensory and left motor areas highlights the importance of interhemispheric information exchange for trunk control. Parietal areas associated with attention and spatial reference frames were also relevant to trunk control. These findings suggest that people with cLBP adopt a more cortically driven sensorimotor integration strategy for trunk control. Future research should replicate these findings and identify interventions to effectively modulate this strategy.
Collapse
Affiliation(s)
- John R. Gilliam
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Pradeep K. Sahu
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Jennifer M. C. Vendemia
- Department of Psychology, University of South Carolina, Columbia, SC, United States of America
| | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
6
|
Gu SY, Shi FC, Wang S, Wang CY, Yao XX, Sun YF, Luo CX, Liu WT, Hu JB, Chen F, Pan PL, Li WH. Altered cortical thickness and structural covariance networks in chronic low back pain. Brain Res Bull 2024; 212:110968. [PMID: 38679110 DOI: 10.1016/j.brainresbull.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Despite regional brain structural changes having been reported in patients with chronic low back pain (CLBP), the topological properties of structural covariance networks (SCNs), which refer to the organization of the SCNs, remain unclear. This study applied graph theoretical analysis to explore the alterations of the topological properties of SCNs, aiming to comprehend the integration and separation of SCNs in patients with CLBP. METHODS A total of 38 patients with CLBP and 38 healthy controls (HCs), balanced for age and sex, were scanned using three-dimensional T1-weighted magnetic resonance imaging. The cortical thickness was extracted from 68 brain regions, according to the Desikan-Killiany atlas, and used to reconstruct the SCNs. Subsequently, graph theoretical analysis was employed to evaluate the alterations of the topological properties in the SCNs of patients with CLBP. RESULTS In comparison to HCs, patients with CLBP had less cortical thickness in the left superior frontal cortex. Additionally, the cortical thickness of the left superior frontal cortex was negatively correlated with the Visual Analogue Scale scores of patients with CLBP. Furthermore, patients with CLBP, relative to HCs, exhibited lower global efficiency and small-worldness, as well as a longer characteristic path length. This indicates a decline in the brain's capacity to transmit and process information, potentially impacting the processing of pain signals in patients with CLBP and contributing to the development of CLBP. In contrast, there were no significant differences in the clustering coefficient, local efficiency, nodal efficiency, nodal betweenness centrality, or nodal degree between the two groups. CONCLUSIONS From the regional cortical thickness to the complex brain network level, our study demonstrated changes in the cortical thickness and topological properties of the SCNs in patients with CLBP, thus aiding in a better understanding of the pathophysiological mechanisms of CLBP.
Collapse
Affiliation(s)
- Si-Yu Gu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Feng-Chao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Shu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Cheng-Yu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xin-Xin Yao
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yi-Fan Sun
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Chuan-Xu Luo
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wan-Ting Liu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Ping-Lei Pan
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wen-Hui Li
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China; The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, PR China.
| |
Collapse
|
7
|
Yang CX, Yu ZR, Li G, Liang XH, Li CD. Gray Matter Abnormalities in Patients with Chronic Low Back Pain: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. World Neurosurg 2024; 184:e397-e407. [PMID: 38307195 DOI: 10.1016/j.wneu.2024.01.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Numerous studies utilizing voxel-based morphometry (VBM) have documented gray matter (GM) alterations in patients with chronic low back pain (CLBP) compared to healthy controls. However, the inconsistency in GM abnormalities observed across different studies has hindered their potential application as objective neuroimaging biomarkers or therapeutic targets. To address this issue, we conducted a comprehensive meta-analysis of VBM studies to identify robust GM differences between CLBP patients and healthy controls. METHODS The databases including PubMed, Embase, and Web of Science were systematically searched from January 2000 to September 2022 to identify eligible neuroimaging studies. In this coordinate-based meta-analysis of VBM studies, the Seed-based d Mapping with Permutation of Subject Images method was used to quantitatively assess regional differences in GM between CLBP patients and healthy controls. RESULTS Thirteen VBM studies, involving a total of 574 CLBP patients and 1239 healthy controls, were included in the meta-analysis. The findings revealed that CLBP patients exhibited increased GM in the left striatum and left postcentral gyrus and decreased GM in the left superior frontal gyrus, left cerebellum, right striatum, left insula, and right middle occipital gyrus compared to healthy controls. The jackknife sensitivity analysis confirmed the robustness of these neuroimaging findings. CONCLUSIONS This study provides new insights into potential treatment strategies for CLBP and identifies neuroimaging biomarkers for pain chronification. These findings highlight the importance of considering regional GM abnormalities in the development of clinical interventions for CLBP.
Collapse
Affiliation(s)
- Cheng-Xian Yang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Zheng-Rong Yu
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Ge Li
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiao-Hang Liang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chun-De Li
- Department of Orthopaedics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
8
|
Gu SY, Shi FC, Wang S, Wang CY, Yao XX, Sun YF, Hu JB, Chen F, Pan PL, Li WH. Altered volume of the amygdala subregions in patients with chronic low back pain. Front Neurol 2024; 15:1351335. [PMID: 38606278 PMCID: PMC11007205 DOI: 10.3389/fneur.2024.1351335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Background Neuroimaging studies have suggested a pivotal role for the amygdala involvement in chronic low back pain (CLBP). However, the relationship between the amygdala subregions and CLBP has not yet been delineated. This study aimed to analyze whether the amygdala subregions were linked to the development of CLBP. Methods A total of 45 patients with CLBP and 45 healthy controls (HCs) were included in this study. All subjects were asked to complete a three-dimensional T1-weighted magnetic resonance imaging (3D-T1 MRI) scan. FreeSurfer 7.3.2 was applied to preprocess the structural MRI images and segment the amygdala into nine subregions. Afterwards, comparisons were made between the two groups in terms of the volumes of the amygdala subregions. Correlation analysis is utilized to examine the relationship between the amygdala subregion and the scale scores, as well as the pain duration in patients with CLBP. Additionally, logistic regression was used to explore the risk of the amygdala and its subregions for CLBP. Results In comparison to HCs, patients with CLBP exhibited a significant enlargement of the left central nucleus (Ce) and left cortical nucleus (Co). Furthermore, the increased volume of the left Ce was associated with a higher risk of CLBP. Conclusion Our study suggests that the left Ce and left Co may be involved in the pathophysiological processes of CLBP. Moreover, the volume of the left Ce may be a biomarker for detecting the risk of CLBP.
Collapse
Affiliation(s)
- Si-Yu Gu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Feng-Chao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Shu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Cheng-Yu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Xin-Xin Yao
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yi-Fan Sun
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Ping-Lei Pan
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Wen-Hui Li
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
9
|
Mei YD, Gao H, Chen WF, Zhu W, Gu C, Zhang JP, Tao JM, Hua XY. Research on the multidimensional brain remodeling mechanisms at the level of brain regions, circuits, and networks in patients with chronic lower back pain caused by lumbar disk herniation. Front Neurosci 2024; 18:1357269. [PMID: 38516315 PMCID: PMC10956359 DOI: 10.3389/fnins.2024.1357269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Chronic lower back pain (cLBP), frequently attributed to lumbar disk herniation (LDH), imposes substantial limitations on daily activities. Despite its prevalence, the neural mechanisms underlying lower back pain remain incompletely elucidated. Functional magnetic resonance imaging (fMRI) emerges as a non-invasive modality extensively employed for investigating neuroplastic changes in neuroscience. In this study, task-based and resting-state fMRI methodologies are employed to probe the central mechanisms of lower back pain. Methods The study included 71 chronic lower back pain patients (cLBP group) due to LDH and 80 age, gender, and education-matched healthy volunteers (HC group). The subjects are mainly middle-aged and elderly individuals. Visual Analog Scale (VAS), Oswestry Disability Index (ODI), and Japanese Orthopedic Association Scores (JOA) were recorded. Resting-state and task-based fMRI data were collected. Results/discussion No significant differences were observed in age, gender, and education level between the two groups. In the cLBP group during task execution, there was diffuse and reduced activation observed in the primary motor cortex and supplementary motor area. Additionally, during resting states, notable changes were detected in brain regions, particularly in the frontal lobe, primary sensory area, primary motor cortex, precuneus, and caudate nucleus, accompanied by alterations in Amplitude of Low Frequency Fluctuation, Regional Homogeneity, Degree Centrality, and functional connectivity. These findings suggest that chronic lower back pain may entail reduced excitability in sensory-motor areas during tasks and heightened activity in the sensory-motor network during resting states, along with modified functional connectivity in various brain regions.
Collapse
Affiliation(s)
- Yuan-Dong Mei
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Hang Gao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Fei Chen
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Wei Zhu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Chen Gu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Ming Tao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Vande Vyvere T, De Groote A, De Groef A, Haenen V, Tjalma W, Van Dyck P, Meeus M. Morphological and functional brain changes in chronic cancer-related pain: A systematic review. Anat Rec (Hoboken) 2024; 307:285-297. [PMID: 36342941 DOI: 10.1002/ar.25113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to perform a systematic review of the available literature on morphological and functional brain changes measured by modern neuroimaging techniques in patients suffering from chronic cancer-related pain. A systematic search was conducted in PubMed, Embase, and Web of Science using different keyword combinations. In addition, a hand search was performed on the reference lists and several databases to retrieve supplementary primary studies. Eligible articles were assessed for methodological quality and risk of bias and reviewed by two independent researchers. The search yielded only four studies, three of which used MRI and one PET-CT. None of the studies measured longitudinal morphological (i.e., gray or white matter) changes. All studies investigated functional brain changes and found differences in specific brain regions and networks between patients with chronic cancer-related pain and pain-free cancer patients or healthy volunteers. Some of these alterations were found in brain networks that also show changes in non-cancer populations with chronic pain (e.g., the default mode network and salience network). However, specific findings were inconsistent, and there was substantial variation in imaging methodology, analysis, sample size, and study quality. There is a striking lack of research on morphological brain changes in patients with chronic cancer-related pain. Moreover, only a few studies investigated functional brain changes. In the retrieved studies, there is some evidence that alterations occur in brain networks also involved in other chronic non-cancer pain syndromes. However, the low sample sizes of the studies, finding inconsistencies, and methodological heterogeneity do not allow for robust conclusions.
Collapse
Affiliation(s)
- Thijs Vande Vyvere
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - Amber De Groote
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - An De Groef
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Vincent Haenen
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Wiebren Tjalma
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
- Multidisciplinary Breast Clinic, Antwerp University Hospital, Antwerp, Belgium
| | - Pieter Van Dyck
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- mVISION, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mira Meeus
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
da Silva ML, Fernandes AM, Silva VA, Galhardoni R, Felau V, de Araujo JO, Rosi J, Brock RS, Kubota GT, Teixeira MJ, Yeng LT, de Andrade DC. Motor corticospinal excitability abnormalities differ between distinct chronic low back pain syndromes. Neurophysiol Clin 2023; 53:102853. [PMID: 37018953 DOI: 10.1016/j.neucli.2023.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVES It is not known whether cortical plastic changes reported in low-back pain (LBP) are present in all etiologies of LBP. Here we report on the assessment of patients with three LBP conditions: non-specific-LBP (ns-LBP), failed back surgery syndrome (FBSS), and sciatica (Sc). METHODS Patients underwent a standardized assessment of clinical pain, conditioned pain modulation (CPM), and measures of motor evoked potential (MEPs)-based motor corticospinal excitability (CE) by transcranial magnetic stimulation, including short interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Comparisons were also made with normative data from sex- and age-matched healthy volunteers. RESULTS 60 patients (42 women, 55.1±9.1 years old) with LBP were included (20 in each group). Pain intensity was higher in patients with neuropathic pain [FBSS (6.8±1.3), and Sc (6.4±1.4)] than in those with ns-LBP (4.7±1.0, P<0.001). The same was shown for pain interference (5.9±2.0, 5.9±1.8, 3.2±1.9, P<0.001), disability (16.4±3.3, 16.3±4.3, 10.4±4.3, P<0.001), and catastrophism (31.1±12.3, 33.0±10.4, 17.4±10.7, P<0.001) scores for FBSS, Sc, and ns-LBP groups, respectively. Patients with neuropathic pain (FBSS, Sc) had lower CPM (-14.8±1.9, -14.1±16.7, respectively) compared to ns-LBP (-25.4±16.6; P<0.02). 80.0% of the FBSS group had defective ICF compared to the other two groups (52.5% for ns-LBP, P=0.025 and 52.5% for Sc, P=0.046). MEPs (140%-rest motor threshold) were low in 50.0% of patients in the FBSS group compared to 20.0% of ns-LBP (P=0.018) and 15.0% of Sc (P=0.001) groups. Higher MEPs were correlated with mood scores (r=0.489), and with lower neuropathic pain symptom scores(r=-0.415) in FBSS. CONCLUSIONS Different types of LBP were associated with different clinical, CPM and CE profiles, which were not uniquely related to the presence of neuropathic pain. These results highlight the need to further characterize patients with LBP in psychophysics and cortical neurophysiology studies.
Collapse
Affiliation(s)
- Marcelo Luiz da Silva
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Ana Mércia Fernandes
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Valquíria A Silva
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Ricardo Galhardoni
- School of Medicine, University of City of São Paulo (UNICID), São Paulo, Brazil
| | - Valter Felau
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Joaci O de Araujo
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Jefferson Rosi
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Roger S Brock
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Gabriel T Kubota
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Manoel J Teixeira
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Lin T Yeng
- Pain Center, Institute of Orthopedics and Traumatology, University of São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
12
|
Henn AT, Larsen B, Frahm L, Xu A, Adebimpe A, Scott JC, Linguiti S, Sharma V, Basbaum AI, Corder G, Dworkin RH, Edwards RR, Woolf CJ, Habel U, Eickhoff SB, Eickhoff CR, Wagels L, Satterthwaite TD. Structural imaging studies of patients with chronic pain: an anatomical likelihood estimate meta-analysis. Pain 2023; 164:e10-e24. [PMID: 35560117 PMCID: PMC9653511 DOI: 10.1097/j.pain.0000000000002681] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Neuroimaging is a powerful tool to investigate potential associations between chronic pain and brain structure. However, the proliferation of studies across diverse chronic pain syndromes and heterogeneous results challenges data integration and interpretation. We conducted a preregistered anatomical likelihood estimate meta-analysis on structural magnetic imaging studies comparing patients with chronic pain and healthy controls. Specifically, we investigated a broad range of measures of brain structure as well as specific alterations in gray matter and cortical thickness. A total of 7849 abstracts of experiments published between January 1, 1990, and April 26, 2021, were identified from 8 databases and evaluated by 2 independent reviewers. Overall, 103 experiments with a total of 5075 participants met the preregistered inclusion criteria. After correction for multiple comparisons using the gold-standard family-wise error correction ( P < 0.05), no significant differences associated with chronic pain were found. However, exploratory analyses using threshold-free cluster enhancement revealed several spatially distributed clusters showing structural alterations in chronic pain. Most of the clusters coincided with regions implicated in nociceptive processing including the amygdala, thalamus, hippocampus, insula, anterior cingulate cortex, and inferior frontal gyrus. Taken together, these results suggest that chronic pain is associated with subtle, spatially distributed alterations of brain structure.
Collapse
Affiliation(s)
- Alina T. Henn
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - Lennart Frahm
- Institute of Neuroscience and Medicine (INM7), Forschungszentrum Jülich, Jülich, Germany
| | - Anna Xu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
- Department of Psychology, Stanford University, Stanford, Carlifornia, US
| | - Azeez Adebimpe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - J. Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA (Veterans Affairs) Medical Center, Philadelphia, Pennsylvania, US
| | - Sophia Linguiti
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - Vaishnavi Sharma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| | - Allan I. Basbaum
- Department of Anatomy, University of California, San Francisco, US
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
| | - Robert H. Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, US
| | - Robert R. Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, US
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, US
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, US
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM7), Forschungszentrum Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia R. Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM1), Forschungszentrum Jülich, Jülich, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, US
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
13
|
Zhou Z, Hui ES, Kranz GS, Chang JR, de Luca K, Pinto SM, Chan WW, Yau SY, Chau BK, Samartzis D, Jensen MP, Wong AYL. Potential mechanisms underlying the accelerated cognitive decline in people with chronic low back pain: A scoping review. Ageing Res Rev 2022; 82:101767. [PMID: 36280211 DOI: 10.1016/j.arr.2022.101767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
A growing body of evidence has shown that people with chronic low back pain (CLBP) demonstrate significantly greater declines in multiple cognitive domains than people who do not have CLBP. Given the high prevalence of CLBP in the ever-growing aging population that may be more vulnerable to cognitive decline, it is important to understand the mechanisms underlying the accelerated cognitive decline observed in this population, so that proper preventive or treatment approaches can be developed and implemented. The current scoping review summarizes what is known regarding the potential mechanisms underlying suboptimal cognitive performance and cognitive decline in people with CLBP and discusses future research directions. Five potential mechanisms were identified based on the findings from 34 included studies: (1) altered activity in the cortex and neural networks; (2) grey matter atrophy; (3) microglial activation and neuroinflammation; (4) comorbidities associated with CLBP; and (5) gut microbiota dysbiosis. Future studies should deepen the understanding of mechanisms underlying this association so that proper prevention and treatment strategies can be developed.
Collapse
Affiliation(s)
- Zhixing Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Edward S Hui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; The State Key Laboratory of Brain and Cognitive Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Jeremy R Chang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Katie de Luca
- School of Health, Medical and Applied Sciences, CQ University, Brisbane, Australia
| | - Sabina M Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Winnie Wy Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Bolton Kh Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Centre, Chicago, IL, USA
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Adminstrative Region, China.
| |
Collapse
|
14
|
Wei X, Wang L, Yu F, Lee C, Liu N, Ren M, Tu J, Zhou H, Shi G, Wang X, Liu CZ. Identifying the neural marker of chronic sciatica using multimodal neuroimaging and machine learning analyses. Front Neurosci 2022; 16:1036487. [PMID: 36532276 PMCID: PMC9748090 DOI: 10.3389/fnins.2022.1036487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Introduction Sciatica is a pain disorder often caused by the herniated disk compressing the lumbosacral nerve roots. Neuroimaging studies have identified functional abnormalities in patients with chronic sciatica (CS). However, few studies have investigated the neural marker of CS using brain structure and the classification value of multidimensional neuroimaging features in CS patients is unclear. Methods Here, structural and resting-state functional magnetic resonance imaging (fMRI) was acquired for 34 CS patients and 36 matched healthy controls (HCs). We analyzed cortical surface area, cortical thickness, amplitude of low-frequency fluctuation (ALFF), regional homogeneity (REHO), between-regions functional connectivity (FC), and assessed the correlation between neuroimaging measures and clinical scores. Finally, the multimodal neuroimaging features were used to differentiate the CS patients and HC individuals by support vector machine (SVM) algorithm. Results Compared to HC, CS patients had a larger cortical surface area in the right banks of the superior temporal sulcus and rostral anterior cingulate; higher ALFF value in the left inferior frontal gyrus; enhanced FCs between somatomotor and ventral attention network. Three FCs values were associated with clinical pain scores. Furthermore, the three multimodal neuroimaging features with significant differences between groups and the SVM algorithm could classify CS patients and HC with an accuracy of 90.00%. Discussion Together, our findings revealed extensive reorganization of local functional properties, surface area, and network metrics in CS patients. The success of patient identification highlights the potential of using artificial intelligence and multimodal neuroimaging markers in chronic pain research.
Collapse
Affiliation(s)
- Xiaoya Wei
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Liqiong Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Fangting Yu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Chihkai Lee
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ni Liu
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Mengmeng Ren
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Jianfeng Tu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hang Zhou
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxia Shi
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Decreased cognitive function is associated with impaired spatiotemporal gait performance in community dwelling older adults with chronic musculoskeletal pain. Brain Cogn 2022; 159:105862. [DOI: 10.1016/j.bandc.2022.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
|
16
|
Brain Network Changes in Lumbar Disc Herniation Induced Chronic Nerve Roots Compression Syndromes. Neural Plast 2022; 2022:7912410. [PMID: 35607420 PMCID: PMC9124092 DOI: 10.1155/2022/7912410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Lumbar disc herniation (LDH) induced nerve compression syndromes have been a prevalent problem with complex neural mechanisms. Changes in distributed brain areas are involved in the occurrence and persistence of syndromes. The present study aimed to investigate the changes of brain functional network in LDH patients with chronic sciatica using graph theory analysis. A total of thirty LDH adults presenting L4 and/or L5 root (s) compression syndromes (LDH group) and thirty age-, sex-, BMI- and education-matched healthy control (HC group) were recruited for functional MRI scan. Whole-brain functional network was constructed for each participant using Pearson's correlation. Global and nodal properties were calculated and compared between two groups, including small-worldness index, clustering coefficient, characteristic path length, degree centrality (DC), betweenness centrality (BC) and nodal efficiency. Both LDH and HC groups showed small-world architecture in the functional network of brain. However, LDH group showed that nodal centralities (DC, BC and nodal efficiency) increased in opercular part of inferior frontal gyrus; and decreased in orbital part of inferior frontal gyrus, lingual cortex and inferior occipital gyrus. The DC and efficiency in the right inferior occipital gyrus were negatively related with the Oswestry Disability Index in LDH group. In conclusion, the LDH-related chronic sciatica syndromes may induce regional brain alterations involving self-referential, emotional responses and pain regulation functions. But the whole-brain small-world architecture was not significantly disturbed. It may provide new insights into LDH patients with radicular symptoms from new perspectives.
Collapse
|
17
|
Association between chronic low back pain and regional brain atrophy in a Japanese older population: the Hisayama Study. Pain 2022; 163:2185-2193. [PMID: 35333827 DOI: 10.1097/j.pain.0000000000002612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic low back pain (CLBP) is the leading cause of years lived with disability. Recently, it has been reported that CLBP is associated with alterations in the central nervous system. The present study aimed to investigate the association between CLBP and regional brain atrophy in an older Japanese population. A total of 1106 community-dwelling participants aged ≥65 years underwent brain magnetic resonance imaging scans and a health examination in 2017 to 2018. We used the FreeSurfer software for the analysis of brain magnetic resonance imaging. Chronic pain was defined as subjective pain for ≥3 months. Participants were divided into 3 groups according to the presence or absence of chronic pain and the body part that mainly suffered from pain: a "no chronic pain (NCP)" group (n = 541), "CLBP" group (n = 189), and "chronic pain in body parts other than the lower back (OCP)" group (n = 376). The brain volumes of the ventrolateral and dorsolateral prefrontal cortex, the posterior cingulate gyrus, and the amygdala were significantly lower in the CLBP group than in the NCP group after adjustment for sociodemographic, physical, and lifestyle factors and depressive symptoms. In addition, the left superior frontal gyrus was identified as a significant cluster by the Query, Design, Estimate, Contrast interface. There were no significant differences in the brain volumes of pain-related regions between the NCP and the OCP groups. The present study suggests that CLBP is associated with lower brain volumes of pain-related regions in a general older population of Japanese.
Collapse
|
18
|
Individually unique dynamics of cortical connectivity reflect the ongoing intensity of chronic pain. Pain 2022; 163:1987-1998. [PMID: 35082250 DOI: 10.1097/j.pain.0000000000002594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Chronic pain diseases are characterised by an ongoing and fluctuating endogenous pain, yet it remains to be elucidated how this is reflected by the dynamics of ongoing functional cortical connections.Here, we investigated the cortical encoding of 20 chronic back pain patients and 20 chronic migraineurs in four repeated fMRI sessions. A brain parcellation approach subdivided the whole brain into 408 regions. Linear mixed effects models were fitted for each pair of brain regions to explore the relationship between the dynamic cortical connectivity and the observed trajectory of the patients' ratings of fluctuating endogenous pain.Overall, we found that periods of high and increasing pain were predominantly related to low cortical connectivity. The change of pain intensity in chronic back pain was subserved by connections in left parietal opercular regions, right insular regions, as well as large parts of the parietal, cingular and motor cortices. The change of pain intensity direction in chronic migraine was reflected by decreasing connectivity between the anterior insular cortex and orbitofrontal areas, as well as between the PCC and frontal and ACC regions.Interestingly, the group results were not mirrored by the individual patterns of pain-related connectivity, which is suggested to deny the idea of a common neuronal core problem for chronic pain diseases. The diversity of the individual cortical signatures of chronic pain encoding results adds to the understanding of chronic pain as a complex and multifaceted disease. The present findings support recent developments for more personalised medicine.
Collapse
|
19
|
Qiu J, Du M, Yang J, Lin Z, Qin N, Sun X, Li L, Zou R, Wei J, Wu B, Liu J, Zhang Z. The brain's structural differences between postherpetic neuralgia and lower back pain. Sci Rep 2021; 11:22455. [PMID: 34789811 PMCID: PMC8599674 DOI: 10.1038/s41598-021-01915-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
The purpose is to explore the brain's structural difference in local morphology and between-region networks between two types of peripheral neuropathic pain (PNP): postherpetic neuralgia (PHN) and lower back pain (LBP). A total of 54 participants including 38 LBP and 16 PHN patients were enrolled. The average pain scores were 7.6 and 7.5 for LBP and PHN. High-resolution structural T1 weighted images were obtained. Both grey matter volume (GMV) and morphological connectivity (MC) were extracted. An independent two-sample t-test with false discovery rate (FDR) correction was used to identify the brain regions where LBP and PHN patients showed significant GMV difference. Next, we explored the differences of MC network between LBP and PHN patients and detected the group differences in network properties by using the two-sample t-test and FDR correction. Compared with PHN, LBP patients had significantly larger GMV in temporal gyrus, insula and fusiform gyrus (p < 0.05). The LBP cohort had significantly stronger MC in the connection between right precuneus and left opercular part of inferior frontal gyrus (p < 0.05). LBP patients had significantly stronger degree in left anterior cingulate gyrus and left rectus gyrus (p < 0.05) while had significantly weaker degree than PHN patients in left orbital part of middle frontal gyrus, left supplementary motor area and left superior parietal lobule (p < 0.05). LBP and PHN patients had significant differences in the brain's GMV, MC, and network properties, which implies that different PNPs have different neural mechanisms concerning pain modulation.
Collapse
Affiliation(s)
- Jianxing Qiu
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Mengjiao Du
- grid.263488.30000 0001 0472 9649School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Junzhe Yang
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Zengmao Lin
- grid.411472.50000 0004 1764 1621Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Naishan Qin
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Xiaowei Sun
- grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034 China
| | - Linling Li
- grid.263488.30000 0001 0472 9649School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Rushi Zou
- grid.263488.30000 0001 0472 9649School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Juan Wei
- GE Healthcare China, Beijing, China
| | - Bing Wu
- GE Healthcare China, Beijing, China
| | - Jing Liu
- Department of Radiology, Peking University First Hospital, 8 XiShiKu Avenue, XiCheng District, Beijing, 100034, China.
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China. .,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China. .,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China. .,Peng Cheng Laboratory, Shenzhen, China.
| |
Collapse
|
20
|
Schmid AB, Fundaun J, Tampin B. [Entrapment neuropathies: a contemporary approach to pathophysiology, clinical assessment, and management : German version]. Schmerz 2021; 35:419-433. [PMID: 34505948 DOI: 10.1007/s00482-021-00584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Entrapment neuropathies such as carpal tunnel syndrome, radiculopathies, or radicular pain are the most common peripheral neuropathies and also the most common cause for neuropathic pain. Despite their high prevalence, they often remain challenging to diagnose and manage in a clinical setting. Summarising the evidence from both preclinical and clinical studies, this review provides an update on the aetiology and pathophysiology of entrapment neuropathies. Potenzial mechanisms are put in perspective with clinical findings. The contemporary assessment is discussed and diagnostic pitfalls highlighted. The evidence for the noninvasive and surgical management of common entrapment neuropathies is summarised and future areas of research are identified.
Collapse
Affiliation(s)
- Annina B Schmid
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford University, West Wing Level 6, OX3 9DU, Oxford, Großbritannien.
| | - Joel Fundaun
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford University, West Wing Level 6, OX3 9DU, Oxford, Großbritannien.,High Country Physical Therapy, Laramie, WY, USA
| | - Brigitte Tampin
- Department of Physiotherapy, Sir Charles Gairdner Hospital, Perth, Westaustralien, Australien.,School of Physiotherapy and Exercise Science, Curtin University, Westaustralien, Australien.,Fakultät Wirtschafts- und Sozialwissenschaften, Hochschule Osnabrück, Osnabrück, Deutschland
| |
Collapse
|
21
|
Kashanian A, Tsolaki E, Pouratian N, Bari AA. Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Chronic Low Back Pain. Neuromodulation 2021; 25:202-210. [PMID: 33872423 DOI: 10.1111/ner.13388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Despite converging basic scientific and clinical evidence of the link between chronic pain and depression, existing therapies do not often take advantage of this overlap. Here, we provide a critical review of the literature that highlights the intersection in brain networks between chronic low back pain (CLBP) and depression and discuss findings from previous deep brain stimulation (DBS) studies for pain. Based on a multidimensional model of pain processing and the connectivity of the subgenual cingulate cortex (SCC) with areas that are implicated in both CLBP and depression, we propose a novel approach to the treatment of CLBP using DBS of the SCC. MATERIALS AND METHODS A narrative review with literature assessment. RESULTS CLBP is associated with a shift away from somatosensory representation toward brain regions that mediate emotional processes. There is a high degree of overlap between these regions and those involved in depression, including the anterior cingulate cortex, medial prefrontal cortex, nucleus accumbens, and amygdala. Whereas targets sites from previous DBS trials for pain were not anatomically positioned to engage these areas and their associated networks, the SCC is structurally connected to all of these regions and as well as others involved in mediating sensory, cognitive, and affective processing in CLBP. CONCLUSIONS CLBP and depression share a common underlying brain network interconnected by the SCC. Current data and novel technology provide an optimal opportunity to develop clinically effective trials of SCC DBS for CLBP.
Collapse
Affiliation(s)
- Alon Kashanian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Evangelia Tsolaki
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ausaf A Bari
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
22
|
Yu GZ, Ly M, Karim HT, Muppidi N, Aizenstein HJ, Ibinson JW. Accelerated brain aging in chronic low back pain. Brain Res 2021; 1755:147263. [PMID: 33422525 DOI: 10.1016/j.brainres.2020.147263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Chronic low back pain (CLBP) is a leading cause of disability and is associated with neurodegenerative changes in brain structure. These changes lead to impairments in cognitive function and are consistent with those seen in aging, suggesting an accelerated aging pattern. In this study we assessed this using machine-learning estimated brain age (BA) as a holistic metric of morphometric changes associated with aging. Structural imaging data from 31 non-depressed CLBP patients and 32 healthy controls from the Pain and Interoception Imaging Network were included. Using our previously developed algorithm, we estimated BA per individual based on grey matter density. We then conducted multivariable linear modeling for effects of group, chronological age, and their interaction on BA. We also performed two voxel-wise analyses comparing grey matter density between CLBP and control individuals and the association between gray matter density and BA. There was an interaction between CLBP and greater chronological age on BA such that the discrepancy in BA between healthy and CLBP individuals was greater for older individuals. In CLBP individuals, BA was not associated with sex, current level of pain, duration of CLBP, or mild to moderate depressive symptoms. CLBP individuals had lower cerebellar grey matter density compared to healthy individuals. Brain age was associated with lower gray matter density in numerous brain regions. CLBP was associated with greater BA, which was more profound in later life. BA as a holistic metric was sensitive to differences in gray matter density in numerous regions which eluded direct comparison between groups.
Collapse
Affiliation(s)
- Gary Z Yu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Ly
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nishita Muppidi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard J Aizenstein
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - James W Ibinson
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
De Groote S, Goudman L, Van Schuerbeek P, Peeters R, Sunaert S, Linderoth B, De Andrés J, Rigoard P, De Jaeger M, Moens M. Effects of spinal cord stimulation on voxel-based brain morphometry in patients with failed back surgery syndrome. Clin Neurophysiol 2020; 131:2578-2587. [PMID: 32927213 DOI: 10.1016/j.clinph.2020.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Despite the clinical effectiveness of Spinal Cord Stimulation (SCS), potential structural brain modifications have not been explored. Our aim was to identify structural volumetric changes during subsensory SCS, in patients with Failed Back Surgery Syndrome (FBSS). METHODS In this cohort study, twenty-two FBSS patients underwent a magnetic resonance imaging protocol before SCS and 3 months after SCS. Clinical parameters were correlated with volumetric changes, calculated with voxel-based morphometry. RESULTS After 3 months, a significant volume decrease was found in the inferior frontal gyrus, precuneus, cerebellar posterior lobe and middle temporal gyrus. Significant increases were found in the inferior temporal gyrus, precentral gyrus and the middle frontal gyrus after SCS. Additionally, significant increases in volume of superior frontal and parietal white matter and a significant decrease in volume of white matter underlying the premotor/middle frontal gyrus were revealed after SCS. A significant correlation was highlighted between white matter volume underlying premotor/middle frontal gyrus and leg pain relief. CONCLUSIONS This study revealed for the first time that SCS is able to induce volumetric changes in gray and white matter, suggesting the reversibility of brain alterations after chronic pain treatment. SIGNIFICANCE Volumetric brain alterations are observable after 3 months of subsensory SCS in FBSS patients.
Collapse
Affiliation(s)
- Sander De Groote
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; STIMULUS consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.; Pain in Motion International Research Group, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Peter Van Schuerbeek
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ronald Peeters
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ Herestraat 49-bus 7003 54, 3000 Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ Herestraat 49-bus 7003 54, 3000 Leuven, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jose De Andrés
- Surgical Specialties Department Valencia University Medical School, and Department of Anesthesiology Critical Care and Pain Management, General University Hospital, Valencia, Spain
| | - Philippe Rigoard
- Department of Neurosurgery, Poitiers University Hospital, Poitiers, France; Institut Pprime UPR 3346, CNRS, University of Poitiers, Poitiers, ISAE-ENSMA, France; PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; STIMULUS consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.; Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
24
|
Schmid AB, Fundaun J, Tampin B. Entrapment neuropathies: a contemporary approach to pathophysiology, clinical assessment, and management. Pain Rep 2020; 5:e829. [PMID: 32766466 PMCID: PMC7382548 DOI: 10.1097/pr9.0000000000000829] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/04/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
Entrapment neuropathies such as carpal tunnel syndrome, radiculopathies, or radicular pain are the most common peripheral neuropathies and also the most common cause for neuropathic pain. Despite their high prevalence, they often remain challenging to diagnose and manage in a clinical setting. Summarising the evidence from both preclinical and clinical studies, this review provides an update on the aetiology and pathophysiology of entrapment neuropathies. Potential mechanisms are put in perspective with clinical findings. The contemporary assessment is discussed and diagnostic pitfalls highlighted. The evidence for the noninvasive and surgical management of common entrapment neuropathies is summarised and future areas of research are identified.
Collapse
Affiliation(s)
- Annina B. Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Joel Fundaun
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
- High Country Physical Therapy, Laramie, WY, USA
| | - Brigitte Tampin
- Department of Physiotherapy, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Western Australia, Australia
- Faculty of Business Management and Social Sciences, Hochschule Osnabrück, University of Applied Sciences, Osnabrück, Germany
| |
Collapse
|
25
|
Sawada M, Nakae T, Munemitsu T, Hojo M. Functional Connectivity Analysis and Prediction of Pain Relief in Association with Spinal Decompression Surgery. World Neurosurg 2020; 139:e316-e324. [PMID: 32298822 DOI: 10.1016/j.wneu.2020.03.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although spinal decompression surgery is an effective treatment for myelopathy-induced upper limb pain, some postoperative patients suffer from residual pain in spite of adequate decompression. However, the neural mechanism underlying the poor outcome of pain relief is still unclear. The goal of this study was to explore the brain mechanisms involved in the poor recovery of upper limb pain after the spinal decompression surgery by using functional connectivity (FC) analysis. METHODS In this cross-sectional study, 17 patients who underwent cervical spinal decompression surgery were included. Functional MRI (fMRI) during a tactile stimulus for each hand was performed at 1 day before and 7 days after the surgery. In total, 34 fMRI scans (17 left and right upper limbs, respectively) were obtained before and after the surgery, respectively. The patients were divided into poor-recovery and good-recovery groups, and then we searched for the FC that was related to poor-recovery. RESULTS The poor-recovery group (n = 15) showed significantly stronger connectivity between the postcentral gyrus (postCG) and dorsolateral prefrontal cortex (DLPFC) than the good-recovery group (n = 12) preoperatively. When the cutoff value of the preoperative FC between the left postCG and right middle frontal gyrus included in DLPFC was >0.17, the sensitivity and specificity for poor recovery were 73% and 75%, respectively. CONCLUSIONS Our study showed that FC between the postCG and DLPFC may be a predictor of pain relief. This result suggested that assessing FC can lead to more informed surgical interventions for cervical spondylotic myelopathy.
Collapse
Affiliation(s)
- Masahiro Sawada
- Department of Neurosurgery, Shiga General Hospital, Moriyama, Japan.
| | - Takuro Nakae
- Department of Neurosurgery, Shiga General Hospital, Moriyama, Japan
| | | | - Masato Hojo
- Department of Neurosurgery, Shiga General Hospital, Moriyama, Japan
| |
Collapse
|
26
|
Sleep quality and health related problems of shift work among resident physicians: a cross-sectional study. Sleep Med 2020; 66:201-206. [DOI: 10.1016/j.sleep.2019.11.1258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
|
27
|
|
28
|
Lai A, Ho L, Evashwick-Rogler TW, Watanabe H, Salandra J, Winkelstein BA, Laudier D, Hecht AC, Pasinetti GM, Iatridis JC. Dietary polyphenols as a safe and novel intervention for modulating pain associated with intervertebral disc degeneration in an in-vivo rat model. PLoS One 2019; 14:e0223435. [PMID: 31577822 PMCID: PMC6774529 DOI: 10.1371/journal.pone.0223435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/21/2019] [Indexed: 01/08/2023] Open
Abstract
Developing effective therapies for back pain associated with intervertebral disc (IVD) degeneration is a research priority since it is a major socioeconomic burden and current conservative and surgical treatments have limited success. Polyphenols are naturally occurring compounds in plant-derived foods and beverages, and evidence suggests dietary supplementation with select polyphenol preparations can modulate diverse neurological and painful disorders. This study tested whether supplementation with a select standardized Bioactive-Dietary-Polyphenol-Preparation (BDPP) may alleviate pain symptoms associated with IVD degeneration. Painful IVD degeneration was surgically induced in skeletally-mature rats by intradiscal saline injection into three consecutive lumbar IVDs. Injured rats were given normal or BDPP-supplemented drinking water. In-vivo hindpaw mechanical allodynia and IVD height were assessed weekly for 6 weeks following injury. Spinal column, dorsal-root-ganglion (DRG) and serum were collected at 1 and 6 weeks post-operative (post-op) for analyses of IVD-related mechanical and biological pathogenic processes. Dietary BDPP significantly alleviated the typical behavioral sensitivity associated with surgical procedures and IVD degeneration, but did not modulate IVD degeneration nor changes of pro-inflammatory cytokine levels in IVD. Gene expression analyses suggested BDPP might have an immunomodulatory effect in attenuating the expression of pro-inflammatory cytokines in DRGs. This study supports the idea that dietary supplementation with BDPP has potential to alleviate IVD degeneration-related pain, and further investigations are warranted to identify the mechanisms of action of dietary BDPP.
Collapse
Affiliation(s)
- Alon Lai
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
| | - Thomas W. Evashwick-Rogler
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | - Jonathan Salandra
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States of America
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Damien Laudier
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew C. Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
| | - James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
29
|
Kim KW, Park K, Park HJ, Jahng GH, Jo DJ, Cho JH, Song EM, Shin WC, Yoon YJ, Kim SJ, Eun S, Song MY. Effect and neurophysiological mechanism of acupuncture in patients with chronic sciatica: protocol for a randomized, patient-assessor blind, sham-controlled clinical trial. Trials 2019; 20:56. [PMID: 30651139 PMCID: PMC6335765 DOI: 10.1186/s13063-018-3164-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background Sciatica is a relatively frequent illness that easily becomes a chronic and relapsing condition. Although numerous systematic reviews have analyzed various therapies for sciatica, the validity of their included studies is limited. Considering the limitations of conventional treatment options for sciatica, acupuncture is a possible option; however, evidence supporting its efficacy and mechanism in patients with sciatica is lacking. The aim of this proposed protocol is to investigate the effect and neurophysiological mechanism of acupuncture in patients with chronic sciatica. Methods/design This study is a randomized, patient-assessor blind, two-arm, parallel, non-penetrating, sham-controlled clinical trial. Eligible participants will include adults (aged 19–70 years old) with a clinical diagnosis of chronic sciatica (40 mm or more of a 100-mm visual analog scale (VAS) for bothersomeness) blinded to the treatment received. Patients will be randomly allocated into the acupuncture treatment group (manual acupuncture plus electroacupuncture (EA), n = 34) or the sham acupuncture control group (sham acupuncture plus placebo EA without electrical stimulation, n = 34). Groups will receive treatment twice a week for a total of eight sessions over 4 weeks. Functional magnetic resonance imaging will be implemented at baseline and endpoint to investigate the mechanism of acupuncture. The primary outcome measure is the VAS for bothersomeness and secondary outcomes include the VAS for pain intensity, Oswestry Disability Index, EuroQol 5-Dimension, Coping Strategy Questionnaire, Beck’s Depression Inventory, and State-Trait Anxiety Inventory. Adverse events will be assessed at every visit. Discussion The results of this trial (which will be available in 2020) should provide important clinical evidence for the effect of acupuncture and demonstrate how acupuncture can be helpful for the treatment of chronic sciatica. Trial registration ClinicalTrials.gov, ID: NCT03350789. Registered on 15 November 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-3164-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koh-Woon Kim
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,East-West Medical Research Institute, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyungmo Park
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Hi-Joon Park
- Studies of Translational Acupuncture Research, Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea
| | - Dae-Jean Jo
- Department of Neurosurgery, Spine Center, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea
| | - Jae-Heung Cho
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Eun-Mo Song
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Woo-Chul Shin
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ye-Ji Yoon
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Soo-Jeon Kim
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seulgi Eun
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Mi-Yeon Song
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. .,East-West Medical Research Institute, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
30
|
Zhou F, Wu L, Guo L, Zhang Y, Zeng X. Local connectivity of the resting brain connectome in patients with low back-related leg pain: A multiscale frequency-related Kendall's coefficient of concordance and coherence-regional homogeneity study. NEUROIMAGE-CLINICAL 2019; 21:101661. [PMID: 30677731 PMCID: PMC6348392 DOI: 10.1016/j.nicl.2019.101661] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 01/25/2023]
Abstract
Increasing evidence has suggested that central plasticity plays a crucial role in the development and maintenance of (chronic) nonspecific low back pain. However, it is unclear how local or short-distance functional interactions contribute to persisting low back-related leg pain (LBLP) due to a specific condition (i.e., lumbar disc herniation). In particular, the multiscale nature of local connectivity properties in various brain regions is still unclear. Here, we used voxelwise Kendall's coefficient of concordance (KCC) and coherence (Cohe) regional homogeneity (ReHo) in the typical (0.01–0.1 Hz) and five specific frequency (slow-6 to slow-2) bands to analyze individual whole-brain resting-state functional magnetic resonance imaging scans in 25 persistent LBLP patients (duration: 36.7 ± 9.6 months) and 26 healthy control subjects. Between-group differences demonstrated significant alterations in the KCC- and Cohe- ReHo of the right cerebellum posterior lobe, brainstem, left medial prefrontal cortex and bilateral precuneus in LBLP patients in the typical and five specific frequency bands, respectively, along with interactions between disease status and the five specific frequency bands in several regions of the pain matrix and the default-mode network (P < .01, Gaussian random field theory correction). The altered ReHo in the five specific frequency bands was correlated with the duration of pain and two-point discrimination, which were assessed using partial correlational analysis. These results linked the course of disease to the local connectivity properties in specific frequency bands in persisting LBLP. In future studies exploring local connectome association in pain conditions, integrated frequency bands and analytical methods should be considered. This study demonstrated significant interactions between disease status and five specific frequency bands in several regions. The alterations in ReHo of five specific frequency bands were related to the duration of disease and 2-PD in LBLP patients. It is useful to select specific frequency or the method of analyses to improve the detection of LBLP-related brain activity.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, China.
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, China
| | - Linghong Guo
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, China
| | - Yong Zhang
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province 330006, China.
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, China
| |
Collapse
|
31
|
Yang J, Li B, Yu QY, Ye L, Zhu PW, Shi WQ, Yuan Q, Min YL, He YL, Shao Y. Altered intrinsic brain activity in patients with toothaches using the amplitude of low-frequency fluctuations: a resting-state fMRI study. Neuropsychiatr Dis Treat 2019; 15:283-291. [PMID: 30697053 PMCID: PMC6342150 DOI: 10.2147/ndt.s189962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The results of previous studies have indicated that pain-associated diseases can result in marked functional and anatomical alterations in the brain. However, differences in spontaneous brain activity occurring in toothache (TA) patients remain unclear. OBJECTIVE This study investigated intrinsic brain activity changes in TA subjects using the amplitude of low-frequency fluctuation (ALFF) technique. METHODS A total of 18 patients with TA (eight males, and 10 females) and 18 healthy controls (HCs) who were matched for gender, age, and educational status were enrolled. Resting-state functional MRI was used to examine the participants. Spontaneous cerebral activity variations were investigated using the ALFF technique. The mean ALFF values of the TA patients and the HCs were classified using receiver operating characteristic (ROC) curves. The correlations between ALFF signals of distinct regions of the cerebrum and the clinical manifestations of the TA patients were evaluated using Pearson's correlation analysis. RESULTS Compared with HCs, TA patients showed notably higher ALFF in the left postcentral gyrus, right paracentral lobule, right lingual gyrus, right inferior occipital gyrus, left fusiform gyrus, and right superior occipital gyrus. ROC curve analysis of each brain region showed that the accuracy area under the curve was excellent. In the TA group, the visual analog scale of the left side was positively correlated with the ALFF signal values of the right paracentral lobule (r=0.639, P=0.025). CONCLUSION Multiple brain regions, including pain- and vision-related areas, exhibited aberrant intrinsic brain activity patterns, which may help to explain the underlying neural mechanisms in TA.
Collapse
Affiliation(s)
- Jun Yang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Bin Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Qiu-Yue Yu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yu-Lin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
32
|
Petrusic I, Dakovic M, Zidverc-Trajkovic J. Subcortical Volume Changes in Migraine with Aura. J Clin Neurol 2019; 15:448-453. [PMID: 31591831 PMCID: PMC6785477 DOI: 10.3988/jcn.2019.15.4.448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Various features of the cerebral cortex and white matter have been extensively investigated in migraine with aura (MwA), but the morphological characteristics of subcortical structures have been largely neglected. The aim of this study was to identify possible differences in subcortical structures between MwA patients and healthy subjects (HS), and also to determine the correlations between the characteristics of migraine aura and the volumes of subcortical structures. Methods Thirty-two MwA patients and 32 HS matched by sex and age were analyzed in this study. Regional subcortical brain volumes were automatically calculated using the FSL/FMRIB Image Registration and Segmentation Tool software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Glossary). A general linear model analysis was used to investigate differences in the volume of subcortical structures between the MwA patients and HS. A partial correlation test was used to assess correlations between the volume of subcortical structures and characteristics of MwA. Results The volumes of the right globus pallidus, left globus pallidus, and left putamen were significantly smaller in MwA patients than in HS (mean±SD): 1,427±135 mm3 vs. 1,557±136 mm3 (p<0.001), 1,436±126 mm3 vs. 1,550±139 mm3 (p=0.001), and 4,235±437 mm3 vs. 4,522±412 mm3 (p=0.006), respectively. There were no significant relationships between subcortical structures and clinical parameters. Conclusions These findings suggest that both the globus pallidi and left putamen play significant roles in the pathophysiology of the MwA. Future studies should determine the cause-and-effect relationships, since these could not be discriminated in this study due to its cross-sectional design.
Collapse
Affiliation(s)
- Igor Petrusic
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia.
| | - Marko Dakovic
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Jasna Zidverc-Trajkovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Center for headaches, Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
33
|
Ruscheweyh R, Fritz A, Eggert T, Azad SC, Straube A. Oculomotor Disturbances in Patients with Chronic Nonspecific Spinal Pain. PAIN MEDICINE 2018; 19:2031-2038. [PMID: 29165689 DOI: 10.1093/pm/pnx291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective There is increasing evidence that the cerebellum has a role in pain processing. The present study investigates whether chronic pain patients, who are likely to have altered pain processing, exhibit signs of subtle cerebellar dysfunction. We used oculomotor tasks to assess dysfunction of the associated neuronal networks, including the cerebellum. Methods Thirty patients with chronic nonspecific spinal pain and 30 age- and sex-matched controls were enrolled. Using a head-mounted eye tracker (EyeSeeCam), eye movements were quantified during predictable and unpredictable saccade and smooth pursuit tasks in the horizontal plane. Results The initial latency and the velocity variability of smooth pursuit were significantly increased in the chronic spinal pain patients compared with controls (initial latency: 198 ± 20 vs 185 ± 11 ms, P < 0.01; slow phase velocity standard deviation: 3.31 ± 1.02 vs 2.70 ± 0.83°/s, P < 0.05). Moreover, the latency of predictable saccades was prolonged in patients (rightward: 161 ± 20 vs 152 ± 12 ms, P < 0.05; leftward: 164 ± 22 vs 153 ± 18 ms, P = 0.05). Conclusions Our results show that chronic spinal pain patients display subtle but significant oculomotor changes as compared with healthy controls. Considering the networks involved in the generation of saccades and smooth pursuit, the results would be consistent with a dysfunction of cerebellar regions, especially parts of the cerebellar hemispheres. Alternatively, they could also point toward a dysfunction in the frontal eye field and/or pontine oculomotor nuclei.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Department of Neurology, Ludwigs-Maximilians-Universität München, Munich, Germany
| | - Antonia Fritz
- Department of Neurology, Ludwigs-Maximilians-Universität München, Munich, Germany
| | - Thomas Eggert
- Department of Neurology, Ludwigs-Maximilians-Universität München, Munich, Germany
| | - Shahnaz-Christina Azad
- Department of Anesthesiology and Pain Medicine, Ludwigs-Maximilians-Universität München, Munich, Germany
| | - Andreas Straube
- Department of Neurology, Ludwigs-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
34
|
Li T, Zhang S, Kurata J. Suppressed descending pain modulatory and enhanced sensorimotor networks in patients with chronic low back pain. J Anesth 2018; 32:831-843. [PMID: 30264383 DOI: 10.1007/s00540-018-2561-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/22/2018] [Indexed: 02/01/2023]
Abstract
PURPOSE Although cerebral structural and functional changes were uncovered by neuroimaging in patients with chronic low back pain (CLBP), their associations remain to be clarified. We co-analyzed anatomical and functional magnetic resonance imaging data in those patients and tested whether cortical gray matter volume changes are associated with altered pain modulatory networks underlying chronification of pain. METHODS In 16 patients with CLBP and 16 heathy controls, we performed functional magnetic resonance imaging during mechanical pain stimulation on the lower back followed by anatomical imaging. We performed voxel-based morphometry and functional connectivity analysis from the seeds with altered gray matter volume, and examined correlations between imaging and psychophysical parameters. RESULTS Patients showed decreases in gray matter volume at the right dorsolateral prefrontal cortex, middle occipital gyrus, and cerebellum, and showed increases at the bilateral primary sensorimotor cortices, left fusiform gyrus, and right cerebellum compared with controls (P < 0.001). Dorsolateral prefrontal and fusiform volumes showed negative associations with affective comorbidity, whereas motor cortex volume with impaired daily activity (P < 0.05). Connectivity was decreased between the cerebellar and limbic, and increased between the bilateral sensorimotor regions (PFDR < 0.05). Higher pain intensity and unpleasantness correlated with enhanced bilateral sensorimotor and dorsolateral-medial prefrontal networks, respectively (P < 0.05). CONCLUSION Patients showed a decreased volume of cortical center for descending pain modulation and an increased volume of sensorimotor network, in association with suppressed descending pain modulatory and cerebellum-limbic networks and enhanced sensorimotor network during pain. Such structural and functional alterations might be part of cerebral pathophysiology of CLBP.
Collapse
Affiliation(s)
- Tianjiao Li
- Department of Anesthesiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Shuo Zhang
- Department of Anesthesiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Jiro Kurata
- Department of Anesthesiology and Pain Clinic, Tokyo Medical and Dental University Hospital of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
35
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
36
|
Husøy AK, Pintzka C, Eikenes L, Håberg AK, Hagen K, Linde M, Stovner LJ. Volume and shape of subcortical grey matter structures related to headache: A cross-sectional population-based imaging study in the Nord-Trøndelag Health Study. Cephalalgia 2018; 39:173-184. [PMID: 29848110 DOI: 10.1177/0333102418780632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relationship between subcortical nuclei and headache is unclear. Most previous studies were conducted in small clinical migraine samples. In the present population-based MRI study, we hypothesized that headache sufferers exhibit reduced volume and deformation of the nucleus accumbens compared to non-sufferers. In addition, volume and deformation of the amygdala, caudate, hippocampus, pallidum, putamen and thalamus were examined. METHODS In all, 1006 participants (50-66 years) from the third Nord-Trøndelag Health Survey, were randomly selected to undergo a brain MRI at 1.5 T. Volume and shape of the subcortical nuclei from T1 weighted 3D scans were obtained in FreeSurfer and FSL. The association with questionnaire-based headache categories (migraine and tension-type headache included) was evaluated using analysis of covariance. Individuals not suffering from headache were used as controls. Age, sex, intracranial volume and Hospital Anxiety and Depression Scale were used as covariates. RESULTS No effect of headache status on accumbens volume and shape was present. Exploratory analyses showed significant but small differences in volume of caudate and putamen and in putamen shape between those with non-migrainous headache and the controls. A post hoc analysis showed that caudate volume was strongly associated with white matter hyperintensities. CONCLUSION We did not confirm our hypothesis that headache sufferers have smaller volume and different shape of the accumbens compared to non-sufferers. No or only small differences in volume and shape of subcortical nuclei between headache sufferers and non-sufferers appear to exist in the general population.
Collapse
Affiliation(s)
- Andreas Kattem Husøy
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Carl Pintzka
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,2 Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- 2 Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,3 Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Knut Hagen
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,4 Norwegian Advisory Unit on Headache, St. Olav's University Hospital, Trondheim, Norway
| | - Mattias Linde
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,4 Norwegian Advisory Unit on Headache, St. Olav's University Hospital, Trondheim, Norway
| | - Lars Jacob Stovner
- 1 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,4 Norwegian Advisory Unit on Headache, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
37
|
Gray Matter Abnormalities Associated With Chronic Back Pain: A Meta-Analysis of Voxel-based Morphometric Studies. Clin J Pain 2018; 33:983-990. [PMID: 28234752 DOI: 10.1097/ajp.0000000000000489] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Studies employing voxel-based morphometry have reported inconsistent findings on the association of gray matter (GM) abnormalities with chronic back pain (CBP). We, therefore, performed a meta-analysis of available studies to identify the most consistent GM regions associated with CBP. METHODS The PubMed, Embase, and Web of Science databases were searched from January 2000 to May 29, 2016. Comprehensive meta-analyses of whole-brain voxel-based morphometry studies to identify the most robust GM abnormalities in CBP were conducted using the Seed-based d Mapping software package. RESULTS A total of 10 studies, comprising 293 patients with CBP and 624 healthy controls, were included in the meta-analyses. The most robust findings of regional GM decreases in patients with CBP compared with healthy controls were identified in the bilateral medial prefrontal cortex extending to the anterior cingulate cortex, the right medial prefrontal cortex extending to the orbitofrontal cortex. Regional GM decreases in the left anterior insula were less robustly observed. CONCLUSIONS The present study demonstrates a pattern of GM alterations in CBP. These data further advance our understanding of the pathophysiology of CBP.
Collapse
|
38
|
Khallaf ME. Three dimensional analysis of spino-pelvic alignment in individuals with acutely herniated lumbar intervertebral disc. J Back Musculoskelet Rehabil 2018; 30:759-765. [PMID: 28372308 DOI: 10.3233/bmr-150393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lumbar intervertebral disc herniation affects a large number of patients annually and are the most common cause of sciatica. OBJECTIVES This study was aimed at measuring the spino-pelvic alignment and its relation to the functional limitations in subjects with acutely herniated lumbar disc. METHODS Sixteen patients with acute Lumbar Disc Herniation (LDH group) and 16 healthy matched volunteers (healthy group) represented the sample of the study. The patients were recently diagnosed as lumbar disc herniation (L4-5 or L5-S1) with acute sciatica and antalgic posture using magnetic resonance imaging. Spino-pelvic alignment was measured via Rasterstereography. Functional disability among patients was assessed using Oswestry Disability Index Arabic version. RESULTS Trunk inclination, trunk imbalance, pelvic obliquity, pelvic torsion, lordotic and scoliotic angles were significantly different between groups (P ≤ 0.05). A non-significant difference in kyphotic angle was found between the patients and healthy controls. There was no association between the measured postural changes and functional disabilities in patients with lumbar disc herniation (P ≤ 0.05). CONCLUSION There are significant postural changes in patients with acutely herniated lumbar disc which has no relation to functional disability. These results support the concept of staying active during acute stage.
Collapse
Affiliation(s)
- Mohamed Elsayed Khallaf
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Egypt.,Department of Physical Therapy, College of Applied Medical Sciences, University of Hail, KSA E-mail:
| |
Collapse
|
39
|
The Relationship Between Structural and Functional Brain Changes and Altered Emotion and Cognition in Chronic Low Back Pain Brain Changes. Clin J Pain 2018; 34:237-261. [DOI: 10.1097/ajp.0000000000000534] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
How do morphological alterations caused by chronic pain distribute across the brain? A meta-analytic co-alteration study. NEUROIMAGE-CLINICAL 2017; 18:15-30. [PMID: 30023166 PMCID: PMC5987668 DOI: 10.1016/j.nicl.2017.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/19/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
•In chronic pain, gray matter (GM) alterations are not distributed randomly across the brain.•The pattern of co-alterations resembles that of brain connectivity.•The alterations' distribution partly rely on the pathways of functional connectivity.•This method allows us to identify tendencies in the distribution of GM co-alteration related to chronic pain.
Collapse
|
41
|
Peng K, Steele SC, Becerra L, Borsook D. Brodmann area 10: Collating, integrating and high level processing of nociception and pain. Prog Neurobiol 2017; 161:1-22. [PMID: 29199137 DOI: 10.1016/j.pneurobio.2017.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
Multiple frontal cortical brain regions have emerged as being important in pain processing, whether it be integrative, sensory, cognitive, or emotional. One such region, Brodmann Area 10 (BA 10), is the largest frontal brain region that has been shown to be involved in a wide variety of functions including risk and decision making, odor evaluation, reward and conflict, pain, and working memory. BA 10, also known as the anterior prefrontal cortex, frontopolar prefrontal cortex or rostral prefrontal cortex, is comprised of at least two cytoarchitectonic sub-regions, medial and lateral. To date, the explicit role of BA 10 in the processing of pain hasn't been fully elucidated. In this paper, we first review the anatomical pathways and functional connectivity of BA 10. Numerous functional imaging studies of experimental or clinical pain have also reported brain activations and/or deactivations in BA 10 in response to painful events. The evidence suggests that BA 10 may play a critical role in the collation, integration and high-level processing of nociception and pain, but also reveals possible functional distinctions between the subregions of BA 10 in this process.
Collapse
Affiliation(s)
- Ke Peng
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States.
| | - Sarah C Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| |
Collapse
|
42
|
Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB. Structural Gray Matter Alterations in Chronic Migraine: Implications for a Progressive Disease? Headache 2016; 57:400-416. [DOI: 10.1111/head.13012] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Lars Neeb
- Department of Neurology; Charité Universitätsmedizin Berlin; Berlin Germany
- Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin; Berlin Germany
| | - Kaili Bastian
- Department of Neurology; Charité Universitätsmedizin Berlin; Berlin Germany
- Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin; Berlin Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin; Berlin Germany
| | - Heike Israel
- Department of Neurology; Charité Universitätsmedizin Berlin; Berlin Germany
| | - Uwe Reuter
- Department of Neurology; Charité Universitätsmedizin Berlin; Berlin Germany
| | - Jochen B. Fiebach
- Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
43
|
Long X, Huang W, Napadow V, Liang F, Pleger B, Villringer A, Witt CM, Nierhaus T, Pach D. Sustained Effects of Acupuncture Stimulation Investigated with Centrality Mapping Analysis. Front Hum Neurosci 2016; 10:510. [PMID: 27803655 PMCID: PMC5067410 DOI: 10.3389/fnhum.2016.00510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/27/2016] [Indexed: 01/17/2023] Open
Abstract
Acupuncture can have instant and sustained effects, however, its mechanisms of action are still unclear. Here, we investigated the sustained effect of acupuncture by evaluating centrality changes in resting-state functional magnetic resonance imaging after manually stimulating the acupuncture point ST36 at the lower leg or two control point locations (CP1 same dermatome, CP2 different dermatome). Data from a previously published experiment evaluating instant BOLD effects and S2-seed-based resting state connectivity was re-analyzed using eigenvector centrality mapping and degree centrality mapping. These data-driven methods might add new insights into sustained acupuncture effects on both global and local inter-region connectivity (centrality) by evaluating the summary of connections of every voxel. We found higher centrality in parahippocampal gyrus and middle temporal gyrus after ST36 stimulation in comparison to the two control points. These regions are positively correlated to major hubs of the default mode network, which might be the primary network affected by chronic pain. The stronger integration of both regions within the whole-brain connectome after stimulation of ST36 might be a potential contributor to pain modulation by acupuncture. These findings highlight centrality mapping as a valuable analysis for future imaging studies investigating clinically relevant outcomes associated with physiological response to acupuncture stimulation. CLINICAL TRIAL REGISTRATION NCT01079689, ClinicalTrials.gov.
Collapse
Affiliation(s)
- Xiangyu Long
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Wenjing Huang
- Institute for Social Medicine, Epidemiology, and Health Economics, Charité - Universitätsmedizin BerlinBerlin, Germany; Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese MedicineChengdu, China
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, CharlestownMA, USA; Department of Radiology, Logan University, ChesterfieldMO, USA
| | - Fanrong Liang
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Burkhard Pleger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; The Mind-Brain Institute at Berlin School of Mind and Brain, Charité and Humboldt-UniversitätBerlin, Germany
| | - Claudia M Witt
- Institute for Social Medicine, Epidemiology, and Health Economics, Charité - Universitätsmedizin BerlinBerlin, Germany; Institute for Complementary and Integrative Medicine, University of Zurich and University Hospital ZurichZurich, Switzerland
| | - Till Nierhaus
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; The Mind-Brain Institute at Berlin School of Mind and Brain, Charité and Humboldt-UniversitätBerlin, Germany; Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität BerlinBerlin, Germany
| | - Daniel Pach
- Institute for Social Medicine, Epidemiology, and Health Economics, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
44
|
Hansen MS, Asghar MS, Wetterslev J, Pipper CB, Johan Mårtensson J, Becerra L, Christensen A, Nybing JD, Havsteen I, Boesen M, Dahl JB. Is the Volume of the Caudate Nuclei Associated With Area of Secondary Hyperalgesia? - Protocol for a 3-Tesla MRI Study of Healthy Volunteers. JMIR Res Protoc 2016; 5:e117. [PMID: 27317630 PMCID: PMC4930528 DOI: 10.2196/resprot.5680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/08/2016] [Indexed: 11/13/2022] Open
Abstract
Background Experience and development of pain may be influenced by a number of physiological, psychological, and psychosocial factors. In a previous study we found differences in neuronal activation to noxious stimulation, and microstructural neuroanatomical differences, when comparing healthy volunteers with differences in size of the area of secondary hyperalgesia following a standardized burn injury. Objective We aim to investigate the degree of association between the volume of pain-relevant structures in the brain and the size of the area of secondary hyperalgesia following brief thermal sensitization. Methods The study consists of one experimental day, in which whole-brain magnetic resonance imaging (MRI) scans will be conducted including T1-weighed three-dimensional anatomy scan, diffusion tensor imaging, and resting state functional MRI. Before the experimental day, all included participants will undergo experimental pain testing in a parallel study (Clinicaltrials.gov Identifier: NCT02527395). Results from this experimental pain testing, as well as the size of the area of secondary hyperalgesia from the included participants, will be extracted from this parallel study. Results The association between the volume of pain-relevant structures in the brain and the area of secondary hyperalgesia will be investigated by linear regression of the estimated best linear unbiased predictors on the individual volumes of the pain relevant brain structures. Conclusions We plan to investigate the association between experimental pain testing parameters and the volume, connectivity, and resting state activity of pain-relevant structures in the brain. These results may improve our knowledge of the mechanisms responsible for the development of acute and chronic pain. ClinicalTrial Danish Research Ethics Committee (identifier: H-15010473). Danish Data Protection Agency (identifier: RH-2015-149). Clinicaltrials.gov NCT02567318; http://clinicaltrials.gov/ct2/show/NCT02567318 (Archived by WebCite at http://www.webcitation.org/6i4OtP0Oi)
Collapse
Affiliation(s)
- Morten Sejer Hansen
- Department of Anaesthesiology, 4231, Centre of head and orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mao CP, Bai ZL, Zhang XN, Zhang QJ, Zhang L. Abnormal Subcortical Brain Morphology in Patients with Knee Osteoarthritis: A Cross-sectional Study. Front Aging Neurosci 2016; 8:3. [PMID: 26834629 PMCID: PMC4717185 DOI: 10.3389/fnagi.2016.00003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA), little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to the healthy control subjects by using high-resolution MRI. Structural MR data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB’s integrated registration and segmentation tool. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004). There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027). Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected) for the caudate nucleus. Hemispheric asymmetry (right larger than left) of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Zhi Lan Bai
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Xiao Na Zhang
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Qiu Juan Zhang
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| | - Lei Zhang
- Department of Medical Imaging, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine , Xi'an , China
| |
Collapse
|
46
|
Luchtmann M, Firsching R. Central plasticity resulting from chronic low back pain in degenerative disorders of the spine. Neural Regen Res 2015; 10:1234-6. [PMID: 26487848 PMCID: PMC4590233 DOI: 10.4103/1673-5374.162754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Michael Luchtmann
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, Germany
| | - Raimund Firsching
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, Germany
| |
Collapse
|
47
|
Kregel J, Meeus M, Malfliet A, Dolphens M, Danneels L, Nijs J, Cagnie B. Structural and functional brain abnormalities in chronic low back pain: A systematic review☆. Semin Arthritis Rheum 2015; 45:229-37. [DOI: 10.1016/j.semarthrit.2015.05.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/08/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022]
|
48
|
Abstract
Three main techniques delineate a possible role for intracranial ablative procedures in patients with chronic pain. Recent studies demonstrate a continued need for clinical investigation into central mechanisms of neuroablation to best define its role in the care of patients with otherwise intractable and severe pain syndromes. Cingulotomy can result in long-term pain relief. Although it can be associated with subtle impairments of attention, there is little risk to other cognitive domains.
Collapse
Affiliation(s)
- Jayant P Menon
- Stanford Neurosurgery, 300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327.
| |
Collapse
|
49
|
Luchtmann M, Baecke S, Steinecke Y, Bernarding J, Tempelmann C, Ragert P, Firsching R. Changes in gray matter volume after microsurgical lumbar discectomy: a longitudinal analysis. Front Hum Neurosci 2015; 9:12. [PMID: 25698951 PMCID: PMC4318342 DOI: 10.3389/fnhum.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022] Open
Abstract
People around the world suffer chronic lower back pain. Because spine imaging often does not explain the degree of perceived pain reported by patients, the role of the processing of nociceptor signals in the brain as the basis of pain perception is gaining increased attention. Modern neuroimaging techniques (including functional and morphometric methods) have produced results that suggest which brain areas may play a crucial role in the perception of acute and chronic pain. In this study, we examined 12 patients with chronic low back pain and sciatica, both resulting from lumbar disc herniation. Structural magnetic resonance imaging (MRI) of the brain was performed 1 day prior to and about 4 weeks after microsurgical lumbar discectomy. The subsequent MRI revealed an increase in gray matter volume in the basal ganglia but a decrease in volume in the hippocampus, which suggests the complexity of the network that involves movement, pain processing, and aspects of memory. Interestingly, volume changes in the hippocampus were significantly correlated to preoperative pain intensity but not to the duration of chronic pain. Mapping structural changes of the brain that result from lumbar disc herniation has the potential to enhance our understanding of the neuropathology of chronic low back pain and sciatica and therefore may help to optimize the decisions we make about conservative and surgical treatments in the future. The possibility of illuminating more of the details of central pain processing in lumbar disc herniation, as well as the accompanying personal and economic impact of pain relief worldwide, calls for future large-scale clinical studies.
Collapse
Affiliation(s)
- Michael Luchtmann
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Sebastian Baecke
- Institute of Biometry and Medical Informatics, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Yvonne Steinecke
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Johannes Bernarding
- Institute of Biometry and Medical Informatics, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Claus Tempelmann
- Department of Neurology, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Raimund Firsching
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| |
Collapse
|