1
|
Bai Y, Dai C, Chen N, Zhou X, Li H, Xu Q, Xu Y. Plasma-activated medium exerts tumor-specific inhibitory effect on hepatocellular carcinoma via disruption of the salvage pathway. J Clin Biochem Nutr 2024; 75:91-101. [PMID: 39345287 PMCID: PMC11425076 DOI: 10.3164/jcbn.23-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatocellular carcinoma has high fatality and poor prognosis. For curing hepatocellular carcinoma, the demand for effective therapeutic reagents with low toxicity is urgent. Herein, we investigated plasma-activated medium, an emerging reagent obtained via irradiation of cell-free medium with cold atmospheric plasma. Plasma-activated medium exerts inhibitory effect on many types of tumor cells with little toxicity to non-cancerous cells. In present study, we verified the tumor-specific inhibition of plasma-activated medium on hepatocellular carcinoma cell lines. Under the effect of plasma-activated medium, oxidative stress, mitochondrial dysfunction, and loss of intracellular NAD+ and ATP were detected inside cells, suggesting an energy depletion. Through investigating the salvage pathway which synthesizes NAD+ and maintains the respiratory chain in hepatocellular carcinoma, we found that the energy failure was resulted by the blockage of the salvage pathway. Moreover, nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway, was determined as an important target to be inactivated by the effect of plasma-activated medium. Additionally, the blockage of the salvage pathway activates AMPKα and suppresses mTOR pathway, which reinforces the cell growth inhibition. Overall, our findings demonstrated that the disruption of functions of nicotinamide phosphoribosyltransferase and the salvage pathway contribute to the tumor-specific cytotoxicity of plasma-activated medium.
Collapse
Affiliation(s)
- Yu Bai
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| | - Nini Chen
- School of Life Science, Anhui Agricultural University, Changjiang 130, Hefei City, Anhui Province, China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| | - Hua Li
- School of Basic Medicine, Anhui Medical College, Furong Road 632, Hefei City, Anhui Province, China
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Fanhua Road 12560, Hefei City, Anhui Province, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Anhui Medical College, Gongwan Road 15, Hefei City, Anhui Province, China
| |
Collapse
|
2
|
Zwickenpflug W, Hornung F, Hollaus A, Oswald MS, Chioato Z, Gudermann T, Högg C. Biosynthesis of vitamin B 3 and NAD +: incubating HepG2 cells with the alkaloid myosmine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6844-6854. [PMID: 38578648 DOI: 10.1002/jsfa.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND In the kynurenine pathway, it is reported that the essential amino acid tryptophan forms nicotinic acid (NA, vitamin B3) in biological systems. This pathway is part of the de novo pathway to perform nicotinamide adenine dinucleotide (NAD+) biosynthesis. Additionally, biosynthesis of NAD+ via the Preiss-Handler pathway involves NA and its analogue nicotinamide, both designated as niacin. Previous attempts were successful in converting myosmine (MYO) by organic synthesis to NA, and the assumption was that the alkaloid MYO, which is taken in from food, can be converted into NA by biological oxidation. RESULT Incubation of HepG2 cells with MYO yielded NA. Moreover, a significant increase of NAD+ compared with the control has been found. CONCLUSION Hence, MYO could be assumed to be the hitherto unknown origin of an alternative NA biosynthesis additionally influencing NAD+ biosynthesis positively. This novel MYO pathway may open new perspectives to improve knowledge and relevance of NA and NAD+ biosynthesis and bioactivation in cells and, moreover, in food staples, food, and diet. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Wolfgang Zwickenpflug
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Florian Hornung
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Alexandra Hollaus
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michaela S Oswald
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Zoé Chioato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christof Högg
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Yin C, Jia S, Yang X, Wu L. Discovery of potent and novel dual NAMPT/BRD4 inhibitors for efficient treatment of hepatocellular carcinoma. Eur J Med Chem 2024; 271:116444. [PMID: 38691889 DOI: 10.1016/j.ejmech.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
The NAPRT-induced increase in NAD+ levels was proposed as a mechanism contributing to hepatocellular carcinoma (HCC) resistance to NAMPT inhibitors. Thus, concurrently targeting NAMPT and NAPRT could be considered to overcome drug resistance. A BRD4 inhibitor downregulates the expression of NAPRT in HCC, and the combination of NAMPT inhibitors with BRD4 inhibitors simultaneously blocks NAD+ generation via salvage and the PH synthesis pathway. Moreover, the combination of the two agents significantly downregulated the expression of tumor-promoting genes and strongly promoted apoptosis. The present work identified various NAMPT/BRD4 dual inhibitors based on the multitargeted drug rationale. Among them, compound A2, which demonstrated the strongest effect, exhibited potent inhibition of NAMPT and BRD4 (IC50 = 35 and 58 nM, respectively). It significantly suppressed the growth and migration of HCC cells and facilitated their apoptosis. Furthermore, compound A2 also manifested a robust anticancer effect in HCCLM3 xenograft mouse models, with no apparent toxic effects. Our findings in this study provide an effective approach to target NAD+ metabolism for HCC treatment.
Collapse
Affiliation(s)
- Chunjia Yin
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuting Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Jincheng People's Hospital, Jincheng 048026, China
| | - Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
4
|
Obrador E, Salvador-Palmer R, Pellicer B, López-Blanch R, Sirerol JA, Villaescusa JI, Montoro A, Dellinger RW, Estrela JM. Combination of natural polyphenols with a precursor of NAD + and a TLR2/6 ligand lipopeptide protects mice against lethal γ radiation. J Adv Res 2023; 45:73-86. [PMID: 35599107 PMCID: PMC10006514 DOI: 10.1016/j.jare.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Effective agents that could confer long-term protection against ionizing radiation in vivo would have applications in medicine, biotechnology, and in air and space travel. However, at present, drugs that can effectively protect against lethal ionizing radiations are still an unmet need. OBJECTIVE To investigate if combinations of natural polyphenols, known for their antioxidant potential, could protect against ionizing radiations. METHODS Plant-derived polyphenols were screened for their potential ability to confer radioprotection to mice given a lethal whole-body γ radiation (137Cs) dose expected to kill 50% of the animals in 30 days. Telomere and centromere staining, Q-FISH and comet assays were used to investigate chromosomal aberration, micronuclei formation and DNA breaks. Molecular oxidations were investigated by enzyme immunoassays and UPLC-MS/MS. RT-PCR, western blotting and siRNA-induced gene silencing were used to study signaling mechanisms and molecular interactions. RESULTS The combination of pterostilbene (PT) and silibinin (SIL) was the most effective against γ-irradiation, resulting in 100% of the mice surviving at 30 days and 20% survival at one year. Treatment post γ-irradiation with two potential radiomitigators nicotinamide riboside (NR, a vitamin B3 derivative), and/or fibroblast-stimulating lipoprotein 1 (FSL1, a toll-like receptor 2/6 agonist), did not extend survival. However, the combination of PT, SIL, NR and FSL1 achieved a 90% survival one year post γ-irradiation. The mechanism involves induction of the Nrf2-dependent cellular antioxidant defense, reduction of NF-kB signaling, upregulation of the PGC-1α/sirtuins 1 and 3 axis, PARP1-dependent DNA repair, and stimulation of hematopoietic cell recovery. The pathway linking Nrf2, sirtuin 3 and SOD2 is key to radioprotection. Importantly, this combination did not interfere with X-ray mediated killing of different tumor cells in vivo. CONCLUSION The combination of the radioprotectors PT and SIL with the radiomitigators NR and FSL1 confer effective, long-term protection against γ radiation in vivo. This strategy is potentially capable of protecting mammals against ionizing radiations.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain.
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - Blanca Pellicer
- Service of Radiology, Sagunto Hospital, 46520 Sagunto, Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - J Antoni Sirerol
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain
| | - Juan I Villaescusa
- Service of Radiological Protection, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain; Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Alegría Montoro
- Service of Radiological Protection, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain; Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | | | - José M Estrela
- Department of Physiology, Faculty of Medicine & Odontology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
5
|
Skonieczna M, Adamiec-Organisciok M, Hudy D, Dziedzic A, Los L, Skladany L, Grgurevic I, Filipec-Kanizaj T, Jagodzinski M, Kukla M, Nackiewicz J. Hepatocellular cancer cell lines, Hep-3B and Hep-G2 display the pleiotropic response to resveratrol and berberine. Adv Med Sci 2022; 67:379-385. [DOI: 10.1016/j.advms.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
|
6
|
Pant K, Peixoto E, Richard S, Biswas A, O'Sullivan MG, Giama N, Ha Y, Yin J, Carotenuto P, Salati M, Ren Y, Yang R, Franco B, Roberts LR, Gradilone SA. Histone Deacetylase Sirtuin 1 Promotes Loss of Primary Cilia in Cholangiocarcinoma. Hepatology 2021; 74:3235-3248. [PMID: 34322899 DOI: 10.1002/hep.32080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, MN
| | - Nasra Giama
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Yeonjung Ha
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Massimiliano Salati
- Medical Oncology Unit, Modena Cancer Centre, PhD Program Clinical and Experimental Medicine, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Broussy S, Laaroussi H, Vidal M. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat). J Enzyme Inhib Med Chem 2021; 35:1124-1136. [PMID: 32366137 PMCID: PMC7241506 DOI: 10.1080/14756366.2020.1758691] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human sirtuin silent information regulator 1 (SIRT1) is a NAD+-dependent deacetylase enzyme. It deacetylates many protein substrates, including histones and transcription factors, thereby controlling many physiological and pathological processes. Several synthetic inhibitors and activators of SIRT1 have been developed, and some therapeutic applications have been explored. The indole EX-527 and its derivatives are among the most potent and selective SIRT1 inhibitors. EX-527 has been often used as a pharmacological tool to explore the effect of SIRT1 inhibition in various cell types. Its therapeutic potential has, therefore, been evaluated in animal models for several pathologies, including cancer. It has also been tested in phase II clinical trial for the treatment of Huntington’s disease (HD). In this review, we will provide an overview of the literature on EX-527, including its mechanism of inhibition and biological studies.
Collapse
Affiliation(s)
- Sylvain Broussy
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, Paris, France
| | - Hanna Laaroussi
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, Paris, France
| | - Michel Vidal
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, Paris, France.,Service biologie du médicament, toxicologie, AP-HP, Hôpital Cochin, Paris, France
| |
Collapse
|
8
|
Rawat D, Chhonker SK, Naik RA, Koiri RK. Modulation of antioxidant enzymes, SIRT1 and NF-κB by resveratrol and nicotinamide in alcohol-aflatoxin B1-induced hepatocellular carcinoma. J Biochem Mol Toxicol 2020; 35:e22625. [PMID: 32894639 DOI: 10.1002/jbt.22625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/09/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed cancer worldwide and is associated with poor prognosis. The current study aimed to assess the therapeutic efficacy of resveratrol when administered alone and in combination with nicotinamide against alcohol-aflatoxin B1-induced HCC. Results reveal that during the development and progression of cancer, there was a decline in the level of antioxidant enzymes catalase, glutathione peroxidase, glutathione reductase (GR), antioxidant glutathione, and glutathione S-transferase, which is an enzyme of detoxification pathways. Treatment of resveratrol restored the level of catalase and glutathione peroxidase toward normal in alcohol-aflatoxin B1-induced HCC; however, nicotinamide worked in concert with resveratrol only in upregulating the activity of glutathione reductase, glutathione level, and glutathione S-transferase. SIRT1 agonist resveratrol was observed to modulate the activity of antioxidant enzymes by negatively regulating the expression of nuclear factor-κB (NF-κB) in alcohol-aflatoxin B1-induced HCC, thereby suggesting a cross-talk between antioxidant enzymes SIRT1 and NF-κB during the development and progression of HCC and its therapeutics by resveratrol and nicotinamide.
Collapse
Affiliation(s)
- Divya Rawat
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Saurabh Kumar Chhonker
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Rayees Ahmad Naik
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| |
Collapse
|
9
|
Abdraboh ME, Essa ZS, Abdelrazzak AB, El-Far YM, Elsherbini Y, El-Zayat MM, Ali DA. Radio-sensitizing effect of a cocktail of phytochemicals on HepG2 cell proliferation, motility and survival. Biomed Pharmacother 2020; 131:110620. [PMID: 32892028 DOI: 10.1016/j.biopha.2020.110620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Radio-resistance is a major hurdle challenging oncologist worldwide. Despite their anti-cancer characteristics, the implication of phytochemicals in clinical trials is still limited. This study is designed to evaluate the anticancer characteristics and radio-sensitizing effect of a cocktail of seven phytochemicals on HepG2 cells. Characterization of phytochemicals combination phenolic and flavonoids content as well as their scavenging activity were tested. The effective concentration of BSG that will be used as a radio-sensitizing dose was calculated using AlamarBlue assay. Treatment of HepG2 cells with BSG and/or ionizing radiations led to significant downregulation at cell proliferation as indicated by the decrease of colony formation ratio, proliferation marker (Ki67) expression as well as G2/M cell cycle arrest. The combined treatment stimulated P53-dependent apoptosis which was indicated by the significant increase of early apoptosis marker (Annexin V) expression, DNA fragmentation, expression of P53 & Bax and downregulation of Bcl2 expression. Combined treatment significantly attenuated HepG2 cell motility which was validated using wound healing migration assay and the significant reduction at CD95 expression. This study demonstrates the anti-cancer effect of BSG and its fundamental role in provoking cell responsiveness to IR leading to a significant inhibition at HepG2 cell proliferation, survival and migration.
Collapse
Affiliation(s)
- Mohamed E Abdraboh
- Associate Professor of Molecular Cell Biology, Department of Zoology, Faculty of Science, Mansoura University, Egypt.
| | - Zaidoon Shaker Essa
- MSc of Molecular Cell Biology, Department of Zoology, Faculty of Science, Mansoura University, Egypt
| | - Abdelrazek B Abdelrazzak
- Associate Professor of Biophysics, Spectroscopy Department, Physics Research Division, National Research Center, Egypt
| | - Yousra M El-Far
- Lecturer of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | | | - Mustafa M El-Zayat
- Unit of Genetic Engineering and Biotechnology, Mansoura University, Mansoura, Egypt
| | - Doaa A Ali
- Associate Professor of Histology and Cell Biology, Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Trott JF, Abu Aboud O, McLaughlin B, Anderson KL, Modiano JF, Kim K, Jen KY, Senapedis W, Chang H, Landesman Y, Baloglu E, Pili R, Weiss RH. Anti-Cancer Activity of PAK4/NAMPT Inhibitor and Programmed Cell Death Protein-1 Antibody in Kidney Cancer. KIDNEY360 2020; 1:376-388. [PMID: 35224510 PMCID: PMC8809296 DOI: 10.34067/kid.0000282019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/12/2020] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kidney cancer (or renal cell carcinoma, RCC) is the sixth most common malignancy in the United States and is increasing in incidence. Despite new therapies, including targeted therapies and immunotherapies, most RCCs are resistant to treatment. Thus, several laboratories have been evaluating new approaches to therapy, both with single agents as well as combinations. Although we have previously shown efficacy of the dual PAK4/nicotinamide phosphoribosyltransferase (NAMPT) inhibitor KPT-9274, and the immune checkpoint inhibitors (CPI) have shown utility in the clinic, there has been no evaluation of this combination either clinically or in an immunocompetent animal model of kidney cancer. METHODS In this study, we use the renal cell adenocarcinoma (RENCA) model of spontaneous murine kidney cancer. Male BALB/cJ mice were injected subcutaneously with RENCA cells and, after tumors were palpable, they were treated with KPT-9274 and/or anti-programmed cell death 1 (PDCD1; PD1) antibody for 21 days. Tumors were measured and then removed at animal euthanasia for subsequent studies. RESULTS We demonstrate a significant decrease in allograft growth with the combination treatment of KPT-9274 and anti-PD1 antibody without significant weight loss by the animals. This is associated with decreased (MOUSE) Naprt expression, indicating dependence of these tumors on NAMPT in parallel to what we have observed in human RCC. Histology of the tumors showed substantial necrosis regardless of treatment condition, and flow cytometry of antibody-stained tumor cells revealed that the enhanced therapeutic effect of KPT-9274 and anti-PD1 antibody was not driven by infiltration of T cells into tumors. CONCLUSIONS This study highlights the potential of the RENCA model for evaluating immunologic responses to KPT-9274 and checkpoint inhibitor (CPI) and suggests that therapy with this combination could improve efficacy in RCC beyond what is achievable with CPI alone.
Collapse
Affiliation(s)
- Josephine F. Trott
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Omran Abu Aboud
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Bridget McLaughlin
- Comprehensive Cancer Center, University of California, Davis, California
| | - Katie L. Anderson
- Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Davis, California
| | - William Senapedis
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Hua Chang
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Yosef Landesman
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Erkan Baloglu
- Research and Translational Development, Karyopharm Therapeutics Inc., Newton, Massachusetts
| | - Roberto Pili
- Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Robert H. Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
- Comprehensive Cancer Center, University of California, Davis, California
- Medical Service, Veterans Affairs Northern California Health Care System, Sacramento, California
| |
Collapse
|
11
|
Chen J, Li Y, Li Z, Cao L. LncRNA MST1P2/miR‐133b axis affects the chemoresistance of bladder cancer to cisplatin‐based therapy via Sirt1/p53 signaling. J Biochem Mol Toxicol 2020; 34:e22452. [PMID: 32052927 DOI: 10.1002/jbt.22452] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jia Chen
- Department of Urology Surgery, Hunan People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangsha Hunan China
| | - Yuanwei Li
- Department of Urology Surgery, Hunan People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangsha Hunan China
| | - Zhiqiu Li
- Department of Urology Surgery, Hunan People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangsha Hunan China
| | - Lin Cao
- Department of Geriatrics, Hunan People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangsha Hunan China
| |
Collapse
|
12
|
A multi-scale approach to study biochemical and biophysical aspects of resveratrol on diesel exhaust particle-human primary lung cell interaction. Sci Rep 2019; 9:18178. [PMID: 31796766 PMCID: PMC6890693 DOI: 10.1038/s41598-019-54552-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Diesel exhaust particles (DEPs) are major air pollutants that lead to numerous human disorders, especially pulmonary diseases, partly through the induction of oxidative stress. Resveratrol is a polyphenol that ameliorates the production of reactive oxygen species (ROS) and delays aging-related processes. Herein we studied the cytoprotective effect of resveratrol on DEP-exposed human lung cells in a factorial experimental design. This work investigates biophysical features including cellular compositions and biomechanical properties, which were measured at the single-cell level using confocal Raman microspectroscopy (RM) and atomic force microscopy (AFM), respectively. Principal component analysis (PCA), hierarchical cluster analysis (HCA) and partial least square regression (PLS) analysis were applied to analyze Raman spectra with and without resveratrol protection. The health status of individual cells could be effectively predicted using an index derived from characteristic Raman spectral peak (e.g., 1006 cm−1) based on PLS model. AFM measurements indicated that cellular adhesion force was greatly reduced, while Young’s modulus was highly elevated in resveratrol treated DEP-exposed cells. Anti-oxidant resveratrol reduced DEP-induced ROS production and suppressed releases of several cytokines and chemokines. These findings suggest resveratrol may enhance resistance of human lung cells (e.g., SAEC) to air pollutants (e.g. DEPs).
Collapse
|
13
|
Garten A, Grohmann T, Kluckova K, Lavery GG, Kiess W, Penke M. Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1. Int J Mol Sci 2019; 20:ijms20164048. [PMID: 31430957 PMCID: PMC6719220 DOI: 10.3390/ijms20164048] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Sorafenib is a multi-kinase inhibitor and one of the few systemic treatment options for patients with advanced hepatocellular carcinomas (HCCs). Resistance to sorafenib develops frequently and could be mediated by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin (SIRT)1. We aimed to test whether sorafenib efficacy is influenced by cellular NAD levels and NAD-dependent SIRT1 function. We analyzed sorafenib effects on apoptosis induction, NAD salvage, mitochondrial function, and related signaling pathways in HCC cell lines (HepG2, Hep3B, und HUH7) overexpressing SIRT1 or supplemented with the NAD metabolite nicotinamide mononucleotide (NMN) compared to controls. Treatment of HCC cell lines with sorafenib dose-dependently induced apoptosis and a significant decrease in cellular NAD concentrations. The SIRT1 protein was downregulated in HUH7 cells but not in Hep3B cells. After sorafenib treatment, mitochondrial respiration in permeabilized cells was lower, citrate synthase activity was attenuated, and cellular adenosine triphosphate (ATP) levels were decreased. Concomitant to increased phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), sorafenib treatment led to decreased activity of the mechanistic target of rapamycin (mTOR), indicative of energy deprivation. Transient overexpression of SIRT1, as well as NAD repletion by NMN, decreased sorafenib-induced apoptosis. We can, therefore, conclude that sorafenib influences the NAD/SIRT1/AMPK axis. Overexpression of SIRT1 could be an underlying mechanism of resistance to sorafenib treatment in HCC.
Collapse
Affiliation(s)
- Antje Garten
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany.
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Theresa Grohmann
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| | - Katarina Kluckova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| | - Melanie Penke
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Dall M, Trammell SAJ, Asping M, Hassing AS, Agerholm M, Vienberg SG, Gillum MP, Larsen S, Treebak JT. Mitochondrial function in liver cells is resistant to perturbations in NAD + salvage capacity. J Biol Chem 2019; 294:13304-13326. [PMID: 31320478 DOI: 10.1074/jbc.ra118.006756] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Supplementation with NAD precursors such as nicotinamide riboside (NR) has been shown to enhance mitochondrial function in the liver and to prevent hepatic lipid accumulation in high-fat diet (HFD)-fed rodents. Hepatocyte-specific knockout of the NAD+-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) reduces liver NAD+ levels, but the metabolic phenotype of Nampt-deficient hepatocytes in mice is unknown. Here, we assessed Nampt's role in maintaining mitochondrial and metabolic functions in the mouse liver. Using the Cre-LoxP system, we generated hepatocyte-specific Nampt knockout (HNKO) mice, having a 50% reduction of liver NAD+ levels. We screened the HNKO mice for signs of metabolic dysfunction following 60% HFD feeding for 20 weeks ± NR supplementation and found that NR increases hepatic NAD+ levels without affecting fat mass or glucose tolerance in HNKO or WT animals. High-resolution respirometry revealed that NR supplementation of the HNKO mice did not increase state III respiration, which was observed in WT mice following NR supplementation. Mitochondrial oxygen consumption and fatty-acid oxidation were unaltered in primary HNKO hepatocytes. Mitochondria isolated from whole-HNKO livers had only a 20% reduction in NAD+, suggesting that the mitochondrial NAD+ pool is less affected by HNKO than the whole-tissue pool. When stimulated with tryptophan in the presence of [15N]glutamine, HNKO hepatocytes had a higher [15N]NAD+ enrichment than WT hepatocytes, indicating that HNKO mice compensate through de novo NAD+ synthesis. We conclude that NAMPT-deficient hepatocytes can maintain substantial NAD+ levels and that the Nampt knockout has only minor consequences for mitochondrial function in the mouse liver.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Magnus Asping
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Sara G Vienberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark.
| |
Collapse
|
15
|
Barbosa C, Santos-Pereira C, Soares I, Martins V, Terra-Matos J, Côrte-Real M, Lúcio M, Oliveira MECDR, Gerós H. Resveratrol-Loaded Lipid Nanocarriers Are Internalized By Endocytosis in Yeast. JOURNAL OF NATURAL PRODUCTS 2019; 82:1240-1249. [PMID: 30964667 DOI: 10.1021/acs.jnatprod.8b01003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Different positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems. Here, the dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) liposomal system (1:2) loaded with RSV revealed appropriate characteristics for drug release purposes: reduced size for cellular uptake (157 ± 23 nm), stability up to 80 days, positive surface charge (ζ ≈ +40 mV), and a controlled biphasic release of RSV from the lipid nanocarriers over a period of almost 50 h at pH 5.0 and 7.4. Moreover, the encapsulation efficiency of the nanocarrier ranged from 70% to 92% and its RSV loading capacity from 9% to 14%, when [RSV] was between 100 and 200 μM. The partition coefficient ( Kp) of RSV between lipid and aqueous phase was log Kp = 3.37 ± 0.10, suggesting moderate to high lipophilicity of this natural compound and reinforcing the lipid nanocarriers' suitability for RSV incorporation. The thermodynamic parameters of RSV partitioning in the lipid nanocarriers at 37 °C (Δ H = 43.76 ± 5.68 kJ mol-1; Δ S = 0.20 ± 0.005 kJ mol-1; and Δ G = -18.46 ± 3.48 kJ mol-1) reflected the spontaneity of the process and the establishment of hydrophobic interactions. The cellular uptake mechanism of the RSV-loaded nanocarriers labeled with the lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was studied in the eukaryotic model system Saccharomyces cerevisiae. Thirty minutes after incubation, yeast cells readily internalized nanocarriers and the spots of blue fluorescence of DPH clustered around the central vacuole in lipid droplets colocalized with the green fluorescence of the lipophilic endocytosis probe FM1-43. Subsequent studies with the endocytosis defective yeast deletion mutant ( end3Δ) and with the endocytosis inhibitor methyl-β-cyclodextrin supported the involvement of an endocytic pathway. This novel nanotechnology approach opens good perspectives for medical applications.
Collapse
Affiliation(s)
- Célia Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Inês Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) , University of Trás-os-Montes e Alto Douro , Quinta de Prados , 5000-801 Vila Real , Portugal
| | - Joana Terra-Matos
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Marlene Lúcio
- Centre of Physics (CFUM), Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - M E C D Real Oliveira
- Centre of Physics (CFUM), Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) , University of Trás-os-Montes e Alto Douro , Quinta de Prados , 5000-801 Vila Real , Portugal
| |
Collapse
|
16
|
Sociali G, Grozio A, Caffa I, Schuster S, Becherini P, Damonte P, Sturla L, Fresia C, Passalacqua M, Mazzola F, Raffaelli N, Garten A, Kiess W, Cea M, Nencioni A, Bruzzone S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells. FASEB J 2018; 33:3704-3717. [PMID: 30514106 DOI: 10.1096/fj.201800321r] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway from nicotinamide. By controlling the biosynthesis of NAD+, NAMPT regulates the activity of NAD+-converting enzymes, such as CD38, poly-ADP-ribose polymerases, and sirtuins (SIRTs). SIRT6 is involved in the regulation of a wide number of metabolic processes. In this study, we investigated the ability of SIRT6 to regulate intracellular NAMPT activity and NAD(P)(H) levels. BxPC-3 cells and MCF-7 cells were engineered to overexpress a catalytically active or a catalytically inactive SIRT6 form or were engineered to silence endogenous SIRT6 expression. In SIRT6-overexpressing cells, NAD(H) levels were up-regulated, as a consequence of NAMPT activation. By immunopurification and incubation with recombinant SIRT6, NAMPT was found to be a direct substrate of SIRT6 deacetylation, with a mechanism that up-regulates NAMPT enzymatic activity. Extracellular NAMPT release was enhanced in SIRT6-silenced cells. Also glucose-6-phosphate dehydrogenase activity and NADPH levels were increased in SIRT6-overexpressing cells. Accordingly, increased SIRT6 levels reduced cancer cell susceptibility to H2O2-induced oxidative stress and to doxorubicin. Our data demonstrate that SIRT6 affects intracellular NAMPT activity, boosts NAD(P)(H) levels, and protects against oxidative stress. The use of SIRT6 inhibitors, together with agents inducing oxidative stress, may represent a promising treatment strategy in cancer.-Sociali, G., Grozio, A., Caffa, I., Schuster, S., Becherini, P., Damonte, P., Sturla, L., Fresia, C., Passalacqua, M., Mazzola, F., Raffaelli, N., Garten, A., Kiess, W., Cea, M., Nencioni, A., Bruzzone, S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells.
Collapse
Affiliation(s)
- Giovanna Sociali
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessia Grozio
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Susanne Schuster
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Pamela Becherini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antje Garten
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,Scientific Institute for Research and Healthcare (IRCCS), San Martino University Hospital-National Institute for Cancer Research (IST), Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,Scientific Institute for Research and Healthcare (IRCCS), San Martino University Hospital-National Institute for Cancer Research (IST), Genoa, Italy
| | - Santina Bruzzone
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
17
|
Pan JH, Zhou H, Zhu SB, Huang JL, Zhao XX, Ding H, Qin L, Pan YL. Nicotinamide phosphoribosyl transferase regulates cell growth via the Sirt1/P53 signaling pathway and is a prognosis marker in colorectal cancer. J Cell Physiol 2018; 234:4385-4395. [PMID: 30191976 DOI: 10.1002/jcp.27228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy, and the metabolic properties of CRC cells include enhanced aerobic glycolysis (the Warburg effect). Nicotinamide phosphoribosyl transferase (NAMPT) is one of the crucial enzymes that regulate the activity of nicotinamide adenine dinucleodinucleotide dependent enzymes. Targeting NAMPT is a potential method of CRC therapy. Nevertheless, the underlying clinical implications and regulatory mechanisms of NAMPT in CRC remain unclear. In this study, we showed that NAMPT protein expression was increased in subjects with rectal localization compared with those with colon localization, and NAMPT was a poor prognostic marker for the overall survival rate in patients with CRC. In addition, the NAMPT inhibitor FK866 or lentivirus-mediated silencing induced CRC cell growth inhibition. Mechanistically, NAMPT regulated Sirt1 and P53 expression and induced G0/G1 cell cycle arrest, along with the upregulation of downstream p21 and downregulation of cyclin D1, cyclin E1, and cyclin E2 expression. FK866 administration or knockdown of NAMPT induced CRC cell apoptosis via upregulation of caspase-3. In conclusion, NAMPT regulated Sirt1/P53 signaling during CRC cell growth and warrants further investigation for clinical administration in CRC.
Collapse
Affiliation(s)
- Jing-Hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Zhou
- Department of Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sheng-Bin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jin-Lian Huang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Xu Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Qin
- Department of Histology and Embryology, Medical School of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Grohmann T, Penke M, Petzold-Quinque S, Schuster S, Richter S, Kiess W, Garten A. Inhibition of NAMPT sensitizes MOLT4 leukemia cells for etoposide treatment through the SIRT2-p53 pathway. Leuk Res 2018; 69:39-46. [PMID: 29653431 DOI: 10.1016/j.leukres.2018.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
NAMPT (Nicotinamide phosphoribosyltransferase) catalyses the rate-limiting step in the NAD biosynthesis from nicotinamide and thereby regulates the activity of NAD-dependent enzymes. Cancer cells are highly dependent on NAD for energy and DNA repair processes and are assumed to be more susceptible to an inhibition of NAD synthesis than non-transformed cells. We aimed to investigate whether or not inhibition of NAMPT with its specific inhibitor FK866 can sensitize leukemia cells for chemotherapeutic agents. NAMPT protein abundance, enzymatic activity and NAD concentrations were significantly higher in Jurkat and Molt-4 leukemia cell lines compared to normal peripheral blood mononuclear cells. Combination of etoposide and FK866 caused increased cell death in leukemia cell lines compared to etoposide alone. Etoposide decreased protein abundance of NAD-dependent deacetylases SIRTUIN1. After combining etoposide and FK866 treatment SIRTUIN2 was further decreased and accumulation and acetylation of the downstream target p53 was further enhanced in MOLT4 cells. Concomitantly, protein abundance of p21 and cleaved BAX was increased. Targeting NAMPT could be a novel therapeutic strategy to enhance the efficacy of chemotherapeutic agents such as etoposide against leukemia.
Collapse
Affiliation(s)
- Theresa Grohmann
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Melanie Penke
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Stefanie Petzold-Quinque
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Susanne Schuster
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Sandy Richter
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Wieland Kiess
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Antje Garten
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany; University of Birmingham, Institute of Metabolism and Systems Research (IMSR), Birmingham, UK.
| |
Collapse
|
19
|
Mutz CN, Schwentner R, Aryee DNT, Bouchard EDJ, Mejia EM, Hatch GM, Kauer MO, Katschnig AM, Ban J, Garten A, Alonso J, Banerji V, Kovar H. EWS-FLI1 confers exquisite sensitivity to NAMPT inhibition in Ewing sarcoma cells. Oncotarget 2018; 8:24679-24693. [PMID: 28160567 PMCID: PMC5421879 DOI: 10.18632/oncotarget.14976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/16/2017] [Indexed: 01/26/2023] Open
Abstract
Ewing sarcoma (EwS) is the second most common bone cancer in children and adolescents with a high metastatic potential. EwS development is driven by a specific chromosomal translocation resulting in the generation of a chimeric EWS-ETS transcription factor, most frequently EWS-FLI1. Nicotinamide adenine dinucleotide (NAD) is a key metabolite of energy metabolism involved in cellular redox reactions, DNA repair, and in the maintenance of genomic stability. This study describes targeting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD synthesis, by FK866 in EwS cells. Here we report that blocking NAMPT leads to exhaustive NAD depletion in EwS cells, followed by a metabolic collapse and cell death. Using conditional EWS-FLI1 knockdown by doxycycline-inducible shRNA revealed that EWS-FLI1 depletion significantly reduces the sensitivity of EwS cells to NAMPT inhibition. Consistent with this finding, a comparison of 7 EwS cell lines of different genotypes with 5 Non-EwS cell lines and mesenchymal stem cells revealed significantly higher FK866 sensitivity of EWS-ETS positive EwS cells, with IC50 values mostly below 1nM. Taken together, our data reveal evidence of an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of EwS cells and suggest NAMPT inhibition as a potential new treatment approach for Ewing sarcoma.
Collapse
Affiliation(s)
- Cornelia N Mutz
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Raphaela Schwentner
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Dave N T Aryee
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Eric D J Bouchard
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Edgard M Mejia
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Maximilian O Kauer
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Anna M Katschnig
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jozef Ban
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Antje Garten
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, ISCIII, Ctra, Madrid, Spain
| | - Versha Banerji
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Heinrich Kovar
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| |
Collapse
|
20
|
Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines. Toxicol Lett 2018; 289:63-74. [PMID: 29545174 DOI: 10.1016/j.toxlet.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 01/15/2023]
Abstract
Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy.
Collapse
|
21
|
Abstract
Nicotinamide adenine dinucleotide (NAD), the cell's hydrogen carrier for redox enzymes, is well known for its role in redox reactions. More recently, it has emerged as a signaling molecule. By modulating NAD+-sensing enzymes, NAD+ controls hundreds of key processes from energy metabolism to cell survival, rising and falling depending on food intake, exercise, and the time of day. NAD+ levels steadily decline with age, resulting in altered metabolism and increased disease susceptibility. Restoration of NAD+ levels in old or diseased animals can promote health and extend lifespan, prompting a search for safe and efficacious NAD-boosting molecules that hold the promise of increasing the body's resilience, not just to one disease, but to many, thereby extending healthy human lifespan.
Collapse
Affiliation(s)
- Luis Rajman
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Karolina Chwalek
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
22
|
Yoshino J, Baur JA, Imai SI. NAD + Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 2018; 27:513-528. [PMID: 29249689 PMCID: PMC5842119 DOI: 10.1016/j.cmet.2017.11.002] [Citation(s) in RCA: 610] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Research on the biology of NAD+ has been gaining momentum, providing many critical insights into the pathogenesis of age-associated functional decline and diseases. In particular, two key NAD+ intermediates, nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), have been extensively studied over the past several years. Supplementing these NAD+ intermediates has shown preventive and therapeutic effects, ameliorating age-associated pathophysiologies and disease conditions. Although the pharmacokinetics and metabolic fates of NMN and NR are still under intensive investigation, these NAD+ intermediates can exhibit distinct behavior, and their fates appear to depend on the tissue distribution and expression levels of NAD+ biosynthetic enzymes, nucleotidases, and presumptive transporters for each. A comprehensive concept that connects NAD+ metabolism to the control of aging and longevity in mammals has been proposed, and the stage is now set to test whether these exciting preclinical results can be translated to improve human health.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 12-114 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5160, USA.
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Japan Agency for Medical Research and Development, Project for Elucidating and Controlling Mechanisms of Aging and Longevity, Tokyo, Japan.
| |
Collapse
|
23
|
Penke M, Schuster S, Gorski T, Gebhardt R, Kiess W, Garten A. Oleate ameliorates palmitate-induced reduction of NAMPT activity and NAD levels in primary human hepatocytes and hepatocarcinoma cells. Lipids Health Dis 2017; 16:191. [PMID: 28974242 PMCID: PMC5627432 DOI: 10.1186/s12944-017-0583-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide adenine dinucleotide (NAD) levels are crucial for liver function. The saturated fatty acid palmitate and the unsaturated fatty acid oleate are the main free fatty acids in adipose tissue and human diet. We asked how these fatty acids affect cell survival, NAMPT and NAD levels in HepG2 cells and primary human hepatocytes. METHODS HepG2 cells were stimulated with palmitate (0.5mM), oleate (1mM) or a combination of both (0.5mM/1mM) as well as nicotinamide mononucleotide (NMN) (0.5 mM) or the specific NAMPT inhibitor FK866 (10nM). Cell survival was measured by WST-1 assay and Annexin V/propidium iodide staining. NAD levels were determined by NAD/NADH Assay or HPLC. Protein and mRNA levels were analysed by Western blot analyses and qPCR, respectively. NAMPT enzyme activity was measured using radiolabelled 14C-nicotinamide. Lipids were stained by Oil red O staining. RESULTS Palmitate significantly reduced cell survival and induced apoptosis at physiological doses. NAMPT activity and NAD levels significantly declined after 48h of palmitate. In addition, NAMPT mRNA expression was enhanced which was associated with increased NAMPT release into the supernatant, while intracellular NAMPT protein levels remained stable. Oleate alone did not influence cell viability and NAMPT activity but ameliorated the negative impact of palmitate on cell survival, NAMPT activity and NAD levels, as well as the increased NAMPT mRNA expression and secretion. NMN was able to normalize intracellular NAD levels but did not ameliorate cell viability after co-stimulation with palmitate. FK866, a specific NAMPT inhibitor did not influence lipid accumulation after oleate-treatment. CONCLUSIONS Palmitate targets NAMPT activity with a consequent cellular depletion of NAD. Oleate protects from palmitate-induced apoptosis and variation of NAMPT and NAD levels. Palmitate-induced cell stress leads to an increase of NAMPT mRNA and accumulation in the supernatant. However, the proapoptotic action of palmitate seems not to be mediated by decreased NAD levels.
Collapse
Affiliation(s)
- Melanie Penke
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Susanne Schuster
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Theresa Gorski
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| |
Collapse
|
24
|
Cheng J, Liu C, Hu K, Greenberg A, Wu D, Ausman LM, McBurney MW, Wang XD. Ablation of systemic SIRT1 activity promotes nonalcoholic fatty liver disease by affecting liver-mesenteric adipose tissue fatty acid mobilization. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2783-2790. [PMID: 28789977 DOI: 10.1016/j.bbadis.2017.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Sirtuin 1 (SIRT1) has been reported to protect against nonalcoholic fatty liver disease (NAFLD) development. The mechanism of how SIRT1 deacetylase activity affects NAFLD has not been well investigated. The current investigation addressed the causal effect of systemic SIRT1 activity on NAFLD development and the underlying mechanism involved in both liver and mesenteric adipose tissue (MAT). Both SIRT1 homozygous mice ablated the catalytic activity (sirt1Y/Y) and their corresponding wild type littermates (WT) were fed a high fat diet (HFD, 60% calories from fat) for 34weeks. Sirt1Y/Y mice showed significantly higher level of hepatic triglyceride which was accompanied with higher levels of SREBP-1 and SCD1and decreased phosphorylation of LKB1 and AMPK in the liver. Compared with WT mice, mRNA expression of lipogenic genes (lxrα, srebp-1c, scd1 and fas) in the MAT increased significantly in sirt1Y/Y mice. Fatty acid oxidation biomarkers (acox1, acox3, cpt, ucp1, sirt3) in both liver and MAT were comparable between groups. Interestingly, we observed that in sirt1Y/Y mice, the mRNA level of hormone sensitive lipase (hsl), adipose triglyceride lipase (atgl) and perilipin-2 (plin-2), all involved in lipolysis, significantly increased in MAT, but not in epididymal adipose tissue. These changes positively correlated with circulating free fatty acid (FFA) concentrations and higher hepatic mRNA expression of cd36 for FFA uptake. The present study has provided novel evidence to suggest that under HFD-induced metabolic surplus, the lack of SIRT1 catalytic activity promotes release of FFA from MAT and escalate NAFLD by interfering with lipid homeostasis in both liver and MAT.
Collapse
Affiliation(s)
- Junrui Cheng
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, USA; Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Chun Liu
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, USA
| | - Kangquan Hu
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, USA
| | - Andrew Greenberg
- Obesity and Metabolism Lab, JM USDA-HNRCA at Tufts University, USA; Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Lab, JM USDA-HNRCA at Tufts University, USA; Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, USA; Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Michael W McBurney
- Department of Medicine, Microbiology and Immunology Lab, University of Ottawa, Ontario, Canada
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, JM USDA-HNRCA at Tufts University, USA; Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
25
|
Garten A, Schuster S, Penke M. Could NAMPT inhibition become a potential treatment option in hepatocellular carcinoma? Expert Rev Anticancer Ther 2017; 17:289-291. [PMID: 28271737 DOI: 10.1080/14737140.2017.1298447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Antje Garten
- a Institute of Metabolism and Systems Research, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK.,c Center for Pediatric Research, Hospital for Children and Adolescents , Leipzig University , Leipzig , Germany
| | - Susanne Schuster
- b Department of Pediatrics , University of California San Diego , La Jolla , CA , USA.,c Center for Pediatric Research, Hospital for Children and Adolescents , Leipzig University , Leipzig , Germany
| | - Melanie Penke
- c Center for Pediatric Research, Hospital for Children and Adolescents , Leipzig University , Leipzig , Germany
| |
Collapse
|
26
|
Kayashima Y, Katayanagi Y, Tanaka K, Fukutomi R, Hiramoto S, Imai S. Alkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster. Sci Rep 2017; 7:43679. [PMID: 28252007 PMCID: PMC5333101 DOI: 10.1038/srep43679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Sirtuins are enzymes that catalyze NAD+ dependent protein deacetylation. The natural polyphenolic compound resveratrol received renewed interest when recent findings implicated resveratrol as a potent SIRT1 activator capable of mimicking the effects of calorie restriction. However, resveratrol directly interacts with fluorophore-containing peptide substrates. It was demonstrated that the SIRT1 activation of resveratrol is affected by the amino acid composition of the substrate. Resveratrol did increase the enzyme activity in cases in which hydrophobic amino acids are at the +1 position to the acetylated lysine in the substrate. Alkylresorcinols (ARs) are compounds that belong to the family of phenolic lipids, and they are found in numerous biological species. Here we show that the natural activators ARs increased the Vmax of recombinant SIRT1 for NAD+ and peptide substrate, and that ARs decreased acetylated histone in human monocyte cells by stimulating SIRT1-dependent deacetylation of substrates. ARs also extended the lifespan of Drosophila melanogaster, which was shown to be dependent on functional Sir2. Our results demonstrated that ARs are natural catalytic activators for sirtuin.
Collapse
Affiliation(s)
- Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan
| | - Yuki Katayanagi
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama 356-8511, Japan
| | - Keiko Tanaka
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama 356-8511, Japan
| | - Ryuta Fukutomi
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama 356-8511, Japan
| | - Shigeru Hiramoto
- Health Care Research Center, Nisshin Pharma Inc., 5-3-1, Fujimino, Saitama 356-8511, Japan
| | - Shinjiro Imai
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji Tokyo 192-0982, Japan
| |
Collapse
|
27
|
Lede V, Meusel A, Garten A, Popkova Y, Penke M, Franke C, Ricken A, Schulz A, Kiess W, Huster D, Schöneberg T, Schiller J. Altered hepatic lipid metabolism in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor. PLoS One 2017; 12:e0172000. [PMID: 28207798 PMCID: PMC5313158 DOI: 10.1371/journal.pone.0172000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Obesity is often associated with dyslipidemia and hepatosteatosis. A number of animal models of non-alcoholic fatty liver disease (NAFLD) are established but they significantly differ in the molecular and biochemical changes depending on the genetic modification and diet used. Mice deficient for melanocortin type 4 receptor (Mc4rmut) develop hyperphagia, obesity, and subsequently NAFLD already under regular chow and resemble more closely the energy supply-driven obesity found in humans. This animal model was used to assess the molecular and biochemical consequences of hyperphagia-induced obesity on hepatic lipid metabolism. We analyzed transcriptome changes in Mc4rmut mice by RNA sequencing and used high resolution 1H magic angle spinning NMR spectroscopy and MALDI-TOF mass spectrometry to assess changes in the lipid composition. On the transcriptomic level we found significant changes in components of the triacylglycerol metabolism, unsaturated fatty acids biosynthesis, peroxisome proliferator-activated receptor signaling pathways, and lipid transport and storage compared to the wild-type. These findings were supported by increases in triacylglycerol, monounsaturated fatty acid, and arachidonic acid levels. The transcriptome signatures significantly differ from those of other NAFLD mouse models supporting the concept of hepatic subphenotypes depending on the genetic background and diet. Comparative analyses of our data with previous studies allowed for the identification of common changes and genotype-specific components and pathways involved in obesity-associated NAFLD.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Female
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Hypercholesterolemia/etiology
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Lipid Metabolism
- Lipogenesis/genetics
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Obesity/complications
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Vera Lede
- Molecular Biochemistry, Rudolf-Schönheimer-Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Andrej Meusel
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Antje Garten
- Hospital for Children & Adolescents, Department of Women and Child Health, Center for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Yulia Popkova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Melanie Penke
- Hospital for Children & Adolescents, Department of Women and Child Health, Center for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | | | - Albert Ricken
- Institute of Anatomy, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Molecular Biochemistry, Rudolf-Schönheimer-Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Hospital for Children & Adolescents, Department of Women and Child Health, Center for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Molecular Biochemistry, Rudolf-Schönheimer-Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- * E-mail: (JS); (TS)
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- * E-mail: (JS); (TS)
| |
Collapse
|
28
|
Wang Z, Gu Z, Shen Y, Wang Y, Li J, Lv H, Huo K. The Natural Product Resveratrol Inhibits Yeast Cell Separation by Extensively Modulating the Transcriptional Landscape and Reprogramming the Intracellular Metabolome. PLoS One 2016; 11:e0150156. [PMID: 26950930 PMCID: PMC4780762 DOI: 10.1371/journal.pone.0150156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/10/2016] [Indexed: 12/28/2022] Open
Abstract
An increasing number of studies have shown that the promising compound resveratrol treats multiple diseases, such as cancer and aging; however, the resveratrol mode-of-action (MoA) remains largely unknown. Here, by virtue of multiple omics approaches, we adopted fission yeast as a model system with the goal of dissecting the common MoA of the anti-proliferative activity of resveratrol. We found that the anti-proliferative activity of resveratrol is mainly due to its unique role of inhibiting the separation of sister cells, similar phenotype with the C2H2 zinc finger transcription factor Ace2 knock-out strain. Microarray analysis shown that resveratrol has extensive impact on the fission yeast transcription levels. Among the changed gene's list, 40% of up-regulated genes are Core Environmental Stress Responses genes, and 57% of the down-regulated genes are periodically expressed. Moreover, resveratrol leverages the metabolome, which unbalances the intracellular pool sizes of several classes of amino acids, nucleosides, sugars and lipids, thus reflecting the remodulated metabolic networks. The complexity of the resveratrol MoA displayed in previous reports and our work demonstrates that multiple omics approaches must be applied together to obtain a complete picture of resveratrol's anti-proliferative function.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- Division of Infectious Diseases, Weill Medical College of Cornell University, 413 E 69th St, New York, NY, 10021, United States of America
- * E-mail: (KH); (ZW); (HL)
| | - Zhongkai Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Yang Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Jing Li
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Hong Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- * E-mail: (KH); (ZW); (HL)
| | - Keke Huo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- * E-mail: (KH); (ZW); (HL)
| |
Collapse
|
29
|
Penke M, Larsen PS, Schuster S, Dall M, Jensen BAH, Gorski T, Meusel A, Richter S, Vienberg SG, Treebak JT, Kiess W, Garten A. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet. Mol Cell Endocrinol 2015; 412:65-72. [PMID: 26033245 DOI: 10.1016/j.mce.2015.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for NAD salvage and the abundance of Nampt has been shown to be altered in non-alcoholic fatty liver disease. It is, however, unknown how hepatic Nampt is regulated in response to accumulation of lipids in the liver of mice fed a high-fat diet (HFD). HFD mice gained more weight, stored more hepatic lipids and had an impaired glucose tolerance compared with control mice. NAD levels as well as Nampt mRNA expression, protein abundance and activity were significantly increased in HFD mice. Enhanced NAD levels were associated with deacetylation of p53 and Nfκb indicating increased activation of Sirt1. Despite impaired glucose tolerance and increased hepatic lipid levels in HFD mice, NAD metabolism was significantly enhanced. Thus, improved NAD metabolism may be a compensatory mechanism to protect against negative impact of hepatic lipid accumulation.
Collapse
Affiliation(s)
- Melanie Penke
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany; LIFE Leipzig Research Centre for Civilization Diseases, University of Leipzig, Philipp-Rosenthalstr. 27, D-04103 Leipzig, Germany.
| | - Per S Larsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Schuster
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany; LIFE Leipzig Research Centre for Civilization Diseases, University of Leipzig, Philipp-Rosenthalstr. 27, D-04103 Leipzig, Germany
| | - Morten Dall
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biology, Laboratory for Genomics and Molecular Biomedicine, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Theresa Gorski
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Andrej Meusel
- Department of Biology, Laboratory for Genomics and Molecular Biomedicine, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Institut für Medizinische Physik und Biophysik, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Sara G Vienberg
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany; LIFE Leipzig Research Centre for Civilization Diseases, University of Leipzig, Philipp-Rosenthalstr. 27, D-04103 Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 2015. [PMID: 26215259 DOI: 10.1038/nrendo.2015.117] [Citation(s) in RCA: 441] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a regulator of the intracellular nicotinamide adenine dinucleotide (NAD) pool. NAD is an essential coenzyme involved in cellular redox reactions and is a substrate for NAD-dependent enzymes. In various metabolic disorders and during ageing, levels of NAD are decreased. Through its NAD-biosynthetic activity, NAMPT influences the activity of NAD-dependent enzymes, thereby regulating cellular metabolism. In addition to its enzymatic function, extracellular NAMPT (eNAMPT) has cytokine-like activity. Abnormal levels of eNAMPT are associated with various metabolic disorders. NAMPT is able to modulate processes involved in the pathogenesis of obesity and related disorders such as nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) by influencing the oxidative stress response, apoptosis, lipid and glucose metabolism, inflammation and insulin resistance. NAMPT also has a crucial role in cancer cell metabolism, is often overexpressed in tumour tissues and is an experimental target for antitumour therapies. In this Review, we discuss current understanding of the functions of NAMPT and highlight progress made in identifying the physiological role of NAMPT and its relevance in various human diseases and conditions, such as obesity, NAFLD, T2DM, cancer and ageing.
Collapse
Affiliation(s)
- Antje Garten
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Susanne Schuster
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Melanie Penke
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Theresa Gorski
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Tommaso de Giorgis
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| |
Collapse
|
31
|
Lee S, Park EJ, Moon JH, Kim SJ, Song K, Lee BC. Sequential treatment with resveratrol-trolox improves development of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer. Theriogenology 2015; 84:145-54. [DOI: 10.1016/j.theriogenology.2015.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/20/2015] [Accepted: 02/28/2015] [Indexed: 11/30/2022]
|
32
|
Schuster S, Penke M, Gorski T, Gebhardt R, Weiss TS, Kiess W, Garten A. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells. Biochem Biophys Res Commun 2015; 458:334-40. [PMID: 25656579 DOI: 10.1016/j.bbrc.2015.01.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/22/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. RESULTS FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. CONCLUSION Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC.
Collapse
Affiliation(s)
- Susanne Schuster
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany.
| | - Melanie Penke
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Theresa Gorski
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Thomas S Weiss
- Children's University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig, Germany
| |
Collapse
|
33
|
Di Emidio G, Falone S, Vitti M, D'Alessandro AM, Vento M, Di Pietro C, Amicarelli F, Tatone C. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod 2014; 29:2006-17. [PMID: 24963165 DOI: 10.1093/humrep/deu160] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
STUDY QUESTION Is SIRT1 involved in the oxidative stress (OS) response in mouse oocytes? SUMMARY ANSWER SIRT1 plays a pivotal role in the adaptive response of mouse germinal vesicle (GV) oocytes to OS and promotes a signalling cascade leading to up-regulation of the MnSod gene. WHAT IS KNOWN ALREADY OS is known to continuously threaten acquisition and maintenance of oocyte developmental potential during in vivo processes and in vitro manipulations. Previous studies in somatic cells have provided strong evidence for the role of SIRT1 as a sensor of the cell redox state and a protector against OS and aging. STUDY DESIGN, SIZE, DURATION GV oocytes obtained from young (4-8 weeks) and reproductively old (48-52 weeks) CD1 mice were blocked in the prophase stage by 0.5 µM cilostamide. Groups of 30 oocytes were exposed to 25 µM H2O2 and processed following different times for the analysis of intracellular localization of SIRT1 and FOXO3A, and evaluation of Sirt1, miRNA-132, FoxO3a and MnSod gene expression. Another set of oocytes was cultured in the presence or absence of the SIRT1-specific inhibitor Ex527, and exposed to H2O2 in order to assess the involvement of SIRT1 in the activation of a FoxO3a-MnSod axis and ROS detoxification. In the last part of this study, GV oocytes were maturated in vitro in the presence of different Ex527 concentrations (0, 2.5, 5, 10, 20 µM) and assessed for maturation rates following 16 h. Effects of Ex527 on spindle morphology and ROS levels were also evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS SIRT1 and FOXO3A intracellular distribution in response to OS was investigated by immunocytochemistry. Real-time RT-PCR was employed to analyse Sirt1, miR-132, FoxO3a and MnSod gene expression. Reactive oxygen species (ROS) production was evaluated by in vivo measurement of carboxy-H2DCF diacetate labelling. Spindle and chromosomal distribution in in vitro matured oocytes were analysed by immunocytochemistry and DNA fluorescent labelling, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Specific changes in the intracellular localization of SIRT1 and up-regulation of Sirt1 gene were detected in mouse oocytes in response to OS. Moreover, increased intracellular ROS were observed when SIRT1 activity was inhibited by Ex527. In aged oocytes Sirt1 was expressed more than in young oocytes but SIRT1 protein was undetectable. Upon OS, significant changes in miR-132 micro-RNA, a validated Sirt1 modulator, were observed. A negative correlation between Sirt1 mRNA and miR-132 levels was observed when young oocytes exposed to OS were compared with young control oocytes, and when aged oocytes were compared with young control oocytes. FoxO3a and MnSod transcripts were increased upon OS with the same kinetics as Sirt1 transcripts, and up-regulation of MnSod gene was prevented by oocyte treatment with Ex527, indicating that SIRT1 acts upstream to the FoxO3a-MnSod axis. Finally, the results of the in vitro maturation assay suggested that SIRT1 might be involved in oocyte maturation by regulating the redox state and ensuring normal spindle assembly. LIMITATIONS, REASONS FOR CAUTION The main limitation of this study was the absence of direct quantification of SIRT1 enzymatic activity due to the lack of an appropriately sensitive method. WIDER IMPLICATIONS OF THE FINDINGS The present findings may provide a valuable background for studying the regulation of SIRT1 during oogenesis and its relevance as a sensor of oocyte redox state and energy status. The antioxidant response orchestrated by SIRT1 in oocytes seems to decrease with aging. This suggests that SIRT1 could be an excellent pharmacological target for improving oocyte quality and IVF outcome in aging or aging-like diseases. STUDY FUNDING/COMPETING INTERESTS The work was supported by the Ministero dell'Università e della Ricerca Scientifica (MIUR) to C.T., F.A., C.D., A.M.D. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Maurizio Vitti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Anna Maria D'Alessandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Marilena Vento
- Servizio di PMA, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | - Cinzia Di Pietro
- Dipartimento Gian Filippo Ingrassia, Sezione di Biologia, Genetica, Genomica Cellulare e Molecolare Giovanni Sichel, Università degli Studi di Catania, Catania, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy Infertility Service, San Salvatore Hospital, Via Vetoio, 67100 L'Aquila, Italy
| |
Collapse
|