1
|
Bustamante P, Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms 2024; 12:1158. [PMID: 38930540 PMCID: PMC11205521 DOI: 10.3390/microorganisms12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pathobionts have been implicated in various chronic diseases, including Crohn's disease (CD), a multifactorial chronic inflammatory condition that primarily affects the gastrointestinal tract, causing inflammation and damage to the digestive system. While the exact cause of CD remains unclear, adherent-invasive Escherichia coli (AIEC) strains have emerged as key contributors to its pathogenesis. AIEC are characterized by their ability to adhere to and invade intestinal epithelial cells and survive and replicate inside macrophages. However, the mechanisms underlying the virulence and persistence of AIEC within their host remain the subject of intensive research. Toxin-antitoxin systems (TAs) play a potential role in AIEC pathogenesis and may be therapeutic targets. These systems generally consist of two components: a toxin harmful to the cell and an antitoxin that neutralizes the toxin's effects. They contribute to bacterial survival in adverse conditions and regulate bacterial growth and behavior, affecting various cellular processes in bacterial pathogens. This review focuses on the current information available to determine the roles of TAs in the pathogenicity of AIEC. Their contribution to the AIEC stress response, biofilm formation, phage inhibition, the maintenance of mobile genetic elements, and host lifestyles is discussed.
Collapse
Affiliation(s)
- Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - María Núria Ramos-Corominas
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| | - Margarita Martinez-Medina
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| |
Collapse
|
2
|
Gómez LA, Molina RE, Soto RI, Flores MR, Coloma-Rivero RF, Montero DA, Oñate ÁA. Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence. Toxins (Basel) 2023; 15:536. [PMID: 37755962 PMCID: PMC10538038 DOI: 10.3390/toxins15090536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Toxin/antitoxin (TA) systems have been scarcely studied in Brucella abortus, the causative agent of brucellosis, which is one of the most prevalent zoonotic diseases worldwide. In this study, the roles of a putative type II TA system composed by a Zinc-dependent metalloproteinase (ZnMP) and a transcriptional regulator HTH-Xre were evaluated. The deletion of the open reading frame (ORF) BAB1_0270, coding for ZnMP, used to produce a mutant strain, allowed us to evaluate the survival and gene expression of B. abortus 2308 under oxidative conditions. Our results showed that the B. abortus mutant strain exhibited a significantly reduced capacity to survive under hydrogen peroxide-induced oxidative stress. Furthermore, this mutant strain showed a decreased expression of genes coding for catalase (katE), alkyl hydroperoxide reductase (ahpC) and transcriptional regulators (oxyR and oxyR-like), as well as genes involved in the general stress response, phyR and rpoE1, when compared to the wild-type strain. These findings suggest that this type II ZnMP/HTH-Xre TA system is required by B. abortus to resist oxidative stress. Additionally, previous evidence has demonstrated that this ZnMP also participates in the acidic stress resistance and virulence of B. abortus 2308. Therefore, we propose a hypothetical regulatory function for this ZnMP/HTH-Xre TA system, providing insight into the stress response and its potential roles in the pathogenesis of B. abortus.
Collapse
Affiliation(s)
- Leonardo A Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Raúl E Molina
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Rodrigo I Soto
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Manuel R Flores
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Roberto F Coloma-Rivero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - David A Montero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Ángel A Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| |
Collapse
|
3
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
4
|
Harrison A, Hardison RL, Wallace RM, Fitch J, Heimlich DR, Bryan MO, Dubois L, John-Williams LS, Sebra RP, White P, Moseley MA, Thompson JW, Justice SS, Mason KM. Reprioritization of biofilm metabolism is associated with nutrient adaptation and long-term survival of Haemophilus influenzae. NPJ Biofilms Microbiomes 2019; 5:33. [PMID: 31700653 PMCID: PMC6831627 DOI: 10.1038/s41522-019-0105-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.
Collapse
Affiliation(s)
- Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachael L. Hardison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachel M. Wallace
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - James Fitch
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - Derek R. Heimlich
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Meghan O’ Bryan
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Lisa St. John-Williams
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Robert P. Sebra
- Icahn School of Medicine at Mount Sinai, Icahn Institute and Department of Genetics & Genomic Sciences, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter White
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - J. Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Sheryl S. Justice
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
5
|
Sprenger H, Kienesberger S, Pertschy B, Pöltl L, Konrad B, Bhutada P, Vorkapic D, Atzmüller D, Feist F, Högenauer C, Gorkiewicz G, Zechner EL. Fic Proteins of Campylobacter fetus subsp. venerealis Form a Network of Functional Toxin-Antitoxin Systems. Front Microbiol 2017; 8:1965. [PMID: 29089929 PMCID: PMC5651007 DOI: 10.3389/fmicb.2017.01965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023] Open
Abstract
Enzymes containing the FIC (filamentation induced by cyclic AMP) domain catalyze post-translational modifications of target proteins. In bacteria the activity of some Fic proteins resembles classical toxin–antitoxin (TA) systems. An excess of toxin over neutralizing antitoxin can enable bacteria to survive some stress conditions by slowing metabolic processes and promoting dormancy. The cell can return to normal growth when sufficient antitoxin is present to block toxin activity. Fic genes of the human and animal pathogen Campylobacter fetus are significantly associated with just one subspecies, which is specifically adapted to the urogenital tract. Here, we demonstrate that the fic genes of virulent isolate C. fetus subsp. venerealis 84-112 form multiple TA systems. Expression of the toxins in Escherichia coli caused filamentation and growth inhibition phenotypes reversible by concomitant antitoxin expression. Key active site residues involved in adenylylation by Fic proteins are conserved in Fic1, Fic3 and Fic4, but degenerated in Fic2. We show that both Fic3 and the non-canonical Fic2 disrupt assembly and function of E. coli ribosomes when expressed independently of a trans-acting antitoxin. Toxicity of the Fic proteins is controlled by different mechanisms. The first involves intramolecular regulation by an inhibitory helix typical for Fic proteins. The second is an unusual neutralization by heterologous Fic–Fic protein interactions. Moreover, a small interacting antitoxin called Fic inhibitory protein 3, which appears unrelated to known Fic antitoxins, has the novel capacity to bind and neutralize Fic toxins encoded in cis and at distant sites. These findings reveal a remarkable system of functional crosstalk occurring between Fic proteins expressed from chromosomal and extrachromosomal modules. Conservation of fic genes in other bacteria that either inhabit or establish pathology in the urogenital tract of humans and animals underscores the significance of these factors for niche-specific adaptation and virulence.
Collapse
Affiliation(s)
- Hanna Sprenger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Institute of Pathology, Medical University of Graz, Graz, Austria.,Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lisa Pöltl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Bettina Konrad
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Priya Bhutada
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Denise Atzmüller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Florian Feist
- Vehicle Safety Institute, Graz University of Technology, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
6
|
Andersen SB, Ghoul M, Griffin AS, Petersen B, Johansen HK, Molin S. Diversity, Prevalence, and Longitudinal Occurrence of Type II Toxin-Antitoxin Systems of Pseudomonas aeruginosa Infecting Cystic Fibrosis Lungs. Front Microbiol 2017; 8:1180. [PMID: 28690609 PMCID: PMC5481352 DOI: 10.3389/fmicb.2017.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are most commonly composed of two genes encoding a stable toxin, which harms the cell, and an unstable antitoxin that can inactivate it. TA systems were initially characterized as selfish elements, but have recently gained attention for regulating general stress responses responsible for pathogen virulence, formation of drug-tolerant persister cells and biofilms—all implicated in causing recalcitrant chronic infections. We use a bioinformatics approach to explore the distribution and evolution of type II TA loci of the opportunistic pathogen, Pseudomonas aeruginosa, across longitudinally sampled isolates from cystic fibrosis lungs. We identify their location in the genome, mutations, and gain/loss during infection to elucidate their function(s) in stabilizing selfish elements and pathogenesis. We found (1) 26 distinct TA systems, where all isolates harbor four in their core genome and a variable number of the remaining 22 on genomic islands; (2) limited mutations in core genome TA loci, suggesting they are not under negative selection; (3) no evidence for horizontal transmission of elements with TA systems between clone types within patients, despite their ability to mobilize; (4) no gain and limited loss of TA-bearing genomic islands, and of those elements partially lost, the remnant regions carry the TA systems supporting their role in genomic stabilization; (5) no significant correlation between frequency of TA systems and strain ability to establish as chronic infection, but those with a particular TA, are more successful in establishing a chronic infection.
Collapse
Affiliation(s)
- Sandra B Andersen
- Department of Zoology, University of OxfordOxford, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| | - Melanie Ghoul
- Department of Zoology, University of OxfordOxford, United Kingdom
| | | | - Bent Petersen
- Department of Bio and Health Informatics, Technical University of DenmarkLyngby, Denmark
| | - Helle K Johansen
- Department of Clinical Microbiology, RigshospitaletCopenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|
7
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Lin J, Hafrén H, Kerschner J, Jian-Dong L, Brown S, Zheng QY, Preciado D, Nakamura Y, Huang Q, Zhang Y. Panel 3: Genetics and Precision Medicine of Otitis Media. Otolaryngol Head Neck Surg 2017; 156:S41-S50. [PMID: 28372532 PMCID: PMC6211190 DOI: 10.1177/0194599816685559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/01/2016] [Indexed: 12/31/2022]
Abstract
Objective The objective is to perform a comprehensive review of the literature up to 2015 on the genetics and precision medicine relevant to otitis media. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels were formed comprising experts in the genetics and precision medicine of otitis media. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The entire panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 and discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. Conclusion Many genes relevant to otitis media have been identified in the last 4 years in advancing our knowledge regarding the predisposition of the middle ear mucosa to commensals and pathogens. Advances include mutant animal models and clinical studies. Many signaling pathways are involved in the predisposition of otitis media. Implications for Practice New knowledge on the genetic background relevant to otitis media forms a basis of novel potential interventions, including potential new ways to treat otitis media.
Collapse
Affiliation(s)
- Jizhen Lin
- Department of Otolaryngology–Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hena Hafrén
- Departments of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Joseph Kerschner
- Department of Otorhinolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Li Jian-Dong
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Steve Brown
- Medical Research Council Harwell Institute, Oxfordshire, UK
| | - Qing Y. Zheng
- Department of Otolaryngology–Head and Neck Surgery, Case Western University, Cleveland, Ohio, USA
| | - Diego Preciado
- Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children’s National Health System, Washington, DC, USA
| | | | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Otolaryngology, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 2016; 40:592-609. [PMID: 27476076 DOI: 10.1093/femsre/fuw022] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial virulence relies on a delicate balance of signals interchanged between the invading microbe and the host. This communication has been extensively perceived as a battle involving harmful molecules produced by the pathogen and host defenses. In this review, we focus on a largely unexplored element of this dialogue, as are toxin-antitoxin (TA) systems of the pathogen. TA systems are reported to respond to stresses that are also found in the host and, as a consequence, could modulate the physiology of the intruder microbe. This view is consistent with recent studies that demonstrate a contribution of distinct TA systems to virulence since their absence alters the course of the infection. TA loci are stress response modules that, therefore, could readjust pathogen metabolism to favor the generation of slow-growing or quiescent cells 'before' host defenses irreversibly block essential pathogen activities. Some toxins of these TA modules have been proposed as potential weapons used by the pathogen to act on host targets. We discuss all these aspects based on studies that support some TA modules as important regulators in the pathogen-host interface.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco García-Del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
10
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
11
|
Desperate times call for desperate measures: benefits and costs of toxin-antitoxin systems. Curr Genet 2016; 63:69-74. [PMID: 27276988 DOI: 10.1007/s00294-016-0622-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Toxin-antitoxin (TA) loci were first described as killing systems for plasmid maintenance. The surprisingly abundant presence of TA loci in bacterial chromosomes has stimulated an extensive research in the recent decade aimed to understand the biological importance of these potentially deadly systems. Accumulating evidence suggests that the evolutionary success of genomic TA systems could be explained by their ability to increase bacterial fitness under stress conditions. While TA systems remain quiescent under favorable growth conditions, the toxins can be activated in response to stress resulting in growth suppression and development of stress-tolerant dormant state. Yet, several studies suggest that the TA-mediated stress protection is costly and traded off against decreased fitness under normal growth conditions. Here, we give an overview of the fitness benefits of the chromosomal TA systems, and discuss the costs of TA-mediated stress protection.
Collapse
|
12
|
Harrison A, Dubois LG, St John-Williams L, Moseley MA, Hardison RL, Heimlich DR, Stoddard A, Kerschner JE, Justice SS, Thompson JW, Mason KM. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment. Mol Cell Proteomics 2015; 15:1117-38. [PMID: 26711468 DOI: 10.1074/mcp.m115.052498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.
Collapse
Affiliation(s)
- Alistair Harrison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Laura G Dubois
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Lisa St John-Williams
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - M Arthur Moseley
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Rachael L Hardison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Derek R Heimlich
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | | | - Joseph E Kerschner
- ‖Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; **Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sheryl S Justice
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - J Will Thompson
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kevin M Mason
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
13
|
Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk. mBio 2015; 6:e01765-15. [PMID: 26578681 PMCID: PMC4659474 DOI: 10.1128/mbio.01765-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies. IMPORTANCE Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease.
Collapse
|
14
|
Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 2015; 5:9374. [PMID: 25792384 PMCID: PMC4366850 DOI: 10.1038/srep09374] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/02/2015] [Indexed: 02/02/2023] Open
Abstract
Toxin-antitoxin (TA) modules contribute to the generation of non-growing cells in response to stress. These modules abound in bacterial pathogens although the bases for this profusion remain largely unknown. Using the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as a model, here we show that a selected group of TA modules impact bacterial fitness inside eukaryotic cells. We characterized in this pathogen twenty-seven TA modules, including type I and type II TA modules encoding antisense RNA and proteinaceous antitoxins, respectively. Proteomic and gene expression analyses revealed that the pathogen produces numerous toxins of TA modules inside eukaryotic cells. Among these, the toxins HokST, LdrAST, and TisBST, encoded by type I TA modules and T4ST and VapC2ST, encoded by type II TA modules, promote bacterial survival inside fibroblasts. In contrast, only VapC2ST shows that positive effect in bacterial fitness when the pathogen infects epithelial cells. These results illustrate how S. Typhimurium uses distinct type I and type II TA modules to regulate its intracellular lifestyle in varied host cell types. This function specialization might explain why the number of TA modules increased in intracellular bacterial pathogens.
Collapse
|