1
|
Yang Y, Hu Y, Yang C, Shi W, Jin S, Hua C, Jiang K. Development and validation of a novel multiplex digital PCR assay for identification of pathogens in cerebrospinal fluid of children with bacterial meningitis. Clin Chim Acta 2024; 554:117787. [PMID: 38246212 DOI: 10.1016/j.cca.2024.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND AIMS Identifying the pathogens of bacterial meningitis (BM) is crucial for its diagnosis and treatment. The aim of this study is to develop and validate a novel method for detecting pathogens in cerebrospinal fluid (CSF) of children with BM using a digital polymerase chain reaction (dPCR) assay. MATERIALS AND METHODS A novel multiplex dPCR assay method has been developed and validated. The diagnostic performance of the dPCR assay was compared with that of synchronous CSF culture, and the factors affecting its performance were analyzed. RESULTS A total of 69 children with BM were enrolled prospectively. The sensitivity of the dPCR assay was 94.44 %, specificity was 100 %, coincidence rate was 98.55 %, Kappa value was 0.959, and net reclassification improvement was 61.11 %. Compared with the CSF culture assay, the dPCR assay had higher sensitivity in different bacterial groups. Multiple factors affected its performance, including previous use of antibiotics, sampling time, BM complications, and levels of inflammatory biomarkers in CSF and blood (all P < 0.05). Patients who required intensive care and died had a higher bacterial DNA loads identified by dPCR assay (both P < 0.05). CONCLUSION This novel assay has better pathogen detection ability than CSF culture. Its performance was influenced by sampling time, previous use of antibiotics, and disease severity.
Collapse
Affiliation(s)
- Ying Yang
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Yiting Hu
- Department of Child Psychology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Cheng Yang
- Clinical Laboratory Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Wen Shi
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Sufeng Jin
- Clinical Laboratory Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Chunzhen Hua
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Kewen Jiang
- Department of Child Psychology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
2
|
Ruan Y, Li Z, Xie Y, Sun W, Guo J. Detecting plasma hsa_circ_0061276 in patients with gastric cancer by reverse transcription-digital polymerase chain reaction. Front Oncol 2022; 12:1042248. [PMID: 36620570 PMCID: PMC9816570 DOI: 10.3389/fonc.2022.1042248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background The role of circular RNAs (circRNAs) in the occurrence of gastric cancer is still unclear. Therefore, the diagnostic value and mechanisms underlying hsa_circ_0061276 in the occurrence of gastric cancer were explored. Methods Reverse transcription-droplet digital polymerase chain reaction was used to detect the copy number of hsa_circ_0061276 in plasma from healthy individuals, as well as from patients with gastric precancerous lesions or early-stage or advanced gastric cancer. Plasmids overexpressing or knocking down hsa_circ_0061276 expression were transfected into gastric cancer cells. The effects on the growth, migration, and cell cycle distribution of gastric cancer cells were then analyzed. Finally, miRanda and RNAhybrid were used to explore the binding sites between hsa_circ_0061276 and microRNAs (miRNAs). A double luciferase reporter gene assay was used to confirm the miRNA sponge effect. Results The results show that plasma hsa_circ_0061276 copy number showed a trend of a gradual decrease when comparing healthy controls to the early cancer group and advanced gastric cancer group. Overexpression of hsa_circ_0061276 inhibited the growth and migration of gastric cancer cells. Through bioinformatic analyses combined with cellular experiments, it was found that hsa_circ_0061276 inhibited the growth of gastric cancer by binding to hsa-miR-7705. Conclusion Hsa_circ_0061276 may be a new biomarker for gastric cancer. The tumor suppressor role of hsa_circ_0061276 on gastric cancer likely occurs through a sponge effect on miRNAs such as hsa-miR-7705.
Collapse
Affiliation(s)
- Yao Ruan
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Weiliang Sun
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Institute of Gastrointestinal Tumor of Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Gastrointestinal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China,Institute of Gastrointestinal Tumor of Ningbo University, Ningbo, China,*Correspondence: Junming Guo,
| |
Collapse
|
3
|
Abstract
In nature, viral coinfection is as widespread as viral infection alone. Viral coinfections often cause altered viral pathogenicity, disrupted host defense, and mixed-up clinical symptoms, all of which result in more difficult diagnosis and treatment of a disease. There are three major virus-virus interactions in coinfection cases: viral interference, viral synergy, and viral noninterference. We analyzed virus-virus interactions in both aspects of viruses and hosts and elucidated their possible mechanisms. Finally, we summarized the protocol of viral coinfection studies and key points in the process of virus separation and purification.
Collapse
|
4
|
Carneiro VCDS, Pereira JG, de Paula VS. Family Herpesviridae and neuroinfections: current status and research in progress. Mem Inst Oswaldo Cruz 2022; 117:e220200. [PMID: 36417627 PMCID: PMC9677594 DOI: 10.1590/0074-02760220200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article addresses the relationship between human herpesviruses (HHVs) and neuroinfections. Alphaherpesviruses, betaherpesviruses and gammaherpesviruses are neurotropic viruses that establish latency and exhibit reactivation capacity. Encephalitis and meningitis are common in cases of HHV. The condition promoted by HHV infection is a purported trigger for certain neurodegenerative diseases. Ongoing studies have identified an association between HSV-1 and the occurrence of Alzheimer's disease, multiple sclerosis and infections by HHV-6 and Epstein-Barr virus. In this review, we highlight the importance of research investigating the role of herpesviruses in the pathogenesis of diseases that affect the nervous system and describe other studies in progress.
Collapse
Affiliation(s)
| | | | - Vanessa Salete de Paula
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
5
|
Ngouth N, Monaco MC, Walker L, Corey S, Ikpeama I, Fahle G, Cortese I, Das S, Jacobson S. Comparison of qPCR with ddPCR for the Quantification of JC Polyomavirus in CSF from Patients with Progressive Multifocal Leukoencephalopathy. Viruses 2022; 14:v14061246. [PMID: 35746716 PMCID: PMC9229850 DOI: 10.3390/v14061246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Lytic infection of oligodendrocytes by the human JC polyomavirus (JCPyV) results in the demyelinating disease called progressive multifocal leukoencephalopathy (PML). The detection of viral DNA in the cerebrospinal fluid (CSF) by PCR is an important diagnostic tool and, in conjunction with defined radiological and clinical features, can provide diagnosis of definite PML, avoiding the need for brain biopsy. The main aim of this study is to compare the droplet digital PCR (ddPCR) assay with the gold standard quantitative PCR (qPCR) for the quantification of JC viral loads in clinical samples. Methods: A total of 62 CSF samples from 31 patients with PML were analyzed to compare the qPCR gold standard technique with ddPCR to detect conserved viral DNA sequences in the JCPyV genome. As part of the validation process, ddPCR results were compared to qPCR data obtained in 42 different laboratories around the world. In addition, the characterization of a novel triplex ddPCR to detect viral DNA sequence from both prototype and archetype variants and a cellular housekeeping reference gene is described. Triplex ddPCR was used to analyze the serum from six PML patients and from three additional cohorts, including 20 healthy controls (HC), 20 patients with multiple sclerosis (MS) who had never been treated with natalizumab (no-NTZ-treated), and 14 patients with MS who were being treated with natalizumab (NTZ-treated); three from this last group seroconverted during the course of treatment with natalizumab. Results: JCPyV DNA was detected only by ddPCR for 5 of the 62 CSF samples (8%), while remaining undetected by qPCR. For nine CSF samples (15%), JCPyV DNA was at the lower limit of quantification for qPCR, set at <250 copies/mL, and therefore no relative quantitation could be determined. By contrast, exact copies of JCPyV for each of these samples were quantified by ddPCR. No differences were observed between qPCR and ddPCR when five standardized plasma samples were analyzed for JCPyV in 42 laboratories in the United States and Europe. JCPyV-DNA was undetected in all the sera from HC and MS cohorts tested by triplex ddPCR, while serum samples from six patients with PML tested positive for JCPyV. Conclusion: This study shows strong correlation between ddPCR and qPCR with increased sensitivity of the ddPCR assay. Further work will be needed to determine whether multiplex ddPCR can be useful to determine PML risk in natalizumab-treated MS patients.
Collapse
Affiliation(s)
- Nyater Ngouth
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
| | - Maria Chiara Monaco
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
| | - Lorenzo Walker
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Sydney Corey
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (S.C.); (I.C.)
| | - Ijeoma Ikpeama
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Gary Fahle
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (S.C.); (I.C.)
| | - Sanchita Das
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
- Correspondence:
| |
Collapse
|
6
|
Lundström W, Gustafsson R. Human Herpesvirus 6A Is a Risk Factor for Multiple Sclerosis. Front Immunol 2022; 13:840753. [PMID: 35222435 PMCID: PMC8866567 DOI: 10.3389/fimmu.2022.840753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The role for human herpesvirus (HHV)-6A or HHV-6B in multiple sclerosis (MS) pathogenesis has been controversial. Possibly because the damage of the virus infection may occur before onset of clinical symptoms and because it has been difficult to detect active infection and separate serological responses to HHV-6A or 6B. Recent studies report that in MS patients the serological response against HHV-6A is increased whereas it is decreased against HHV-6B. This effect seems to be even more pronounced in MS patients prior to diagnosis and supports previous studies postulating a predomination for HHV-6A in MS disease and suggests that the infection is important at early stages of the disease. Furthermore, HHV-6A infection interacts with other factors suspected of modulating MS susceptibility and progression such as infection with Epstein-Barr virus (EBV) and Cytomegalovirus (CMV), tobacco smoking, HLA alleles, UV irradiation and vitamin D levels. The multifactorial nature of MS and pathophysiological role for HHV-6A in inflammation and autoimmunity are discussed.
Collapse
Affiliation(s)
- Wangko Lundström
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus Gustafsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Bigley TM, Xiong M, Ali M, Chen Y, Wang C, Serrano JR, Eteleeb A, Harari O, Yang L, Patel SJ, Cruchaga C, Yokoyama WM, Holtzman DM. Murine roseolovirus does not accelerate amyloid-β pathology and human roseoloviruses are not over-represented in Alzheimer disease brains. Mol Neurodegener 2022; 17:10. [PMID: 35033173 PMCID: PMC8760754 DOI: 10.1186/s13024-021-00514-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The role of viral infection in Alzheimer Disease (AD) pathogenesis is an area of great interest in recent years. Several studies have suggested an association between the human roseoloviruses, HHV-6 and HHV-7, and AD. Amyloid-β (Aβ) plaques are a hallmark neuropathological finding of AD and were recently proposed to have an antimicrobial function in response to infection. Identifying a causative and mechanistic role of human roseoloviruses in AD has been confounded by limitations in performing in vivo studies. Recent -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Murine roseolovirus (MRV) is a natural murine pathogen that is highly-related to the human roseoloviruses, providing an opportunity to perform well-controlled studies of the impact of roseolovirus on Aβ deposition. METHODS We utilized the 5XFAD mouse model to test whether MRV induces Aβ deposition in vivo. We also evaluated viral load and neuropathogenesis of MRV infection. To evaluate Aβ interaction with MRV, we performed electron microscopy. RNA-sequencing of a cohort of AD brains compared to control was used to investigate the association between human roseolovirus and AD. RESULTS We found that 5XFAD mice were susceptible to MRV infection and developed neuroinflammation. Moreover, we demonstrated that Aβ interacts with viral particles in vitro and, subsequent to this interaction, can disrupt infection. Despite this, neither peripheral nor brain infection with MRV increased or accelerated Aβ plaque formation. Moreover, -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Our RNA-sequencing analysis of a cohort of AD brains compared to controls did not show an association between roseolovirus infection and AD. CONCLUSION Although MRV does infect the brain and cause transient neuroinflammation, our data do not support a role for murine or human roseoloviruses in the development of Aβ plaque formation and AD.
Collapse
Affiliation(s)
- Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Present address: Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Muhammad Ali
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
| | - Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Abdallah Eteleeb
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Swapneel J. Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Carlos Cruchaga
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
8
|
Izquierdo L, Canivet CM, De Martin E, Antonini TM, Roque-Afonso AM, Coilly A, Deback C. Investigation of Inherited Chromosomally Integrated Human Herpesvirus-6A+ and -6B+ in a Patient with Ulipristal Acetate-Induced Fulminant Hepatic Failure. Viruses 2021; 14:v14010062. [PMID: 35062266 PMCID: PMC8778448 DOI: 10.3390/v14010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited chromosomally integrated (ici) human herpes virus 6 (HHV-6) is estimated to occur in 0.6–2.7% of people worldwide. HHV-6 comprises two distinct species: HHV-6A and HHV-6B. Both HHV-6A and HHV-6B integration have been reported. Several drugs are capable of activating iciHHV-6 in tissues, the consequences of which are poorly understood. We report herein a case of a woman with iciHHV-6A+ and iciHHV-6B+, who developed ulipristal acetate (a selective progesterone receptor modulator)-induced fulminant hepatic failure that required liver transplantation. We confirmed the presence of ~one copy per cell of both HHV-6A and HHV-6B DNA in her hair follicles using multiplex HHV-6A/B real-time PCR and demonstrated the Mendelian inheritance of both iciHHV-6A and iciHHV-6B in her family members over three generations. Because of the rarity of this presentation, we discuss herein the possible links between reactivated HHV-6 from iciHHV-6A and/or iciHHV-6B and adverse drug reactions, suggesting that iciHHV-6 could be screened before the introduction of any hepatotoxic drugs to exclude HHV-6 active disease or combined idiosyncratic drug-induced liver injury in these patients.
Collapse
Affiliation(s)
- Laure Izquierdo
- Laboratoire de Virologie, Institut National de la Santé et de la Recherche Médicale Unité 1193 AP-HP, Hôpitaux Universitaires Paris Saclay, Hôpital Paul-Brousse, 94800 Villejuif, France; (L.I.); (A.-M.R.-A.)
| | - Clémence M. Canivet
- Laboratoire HIFIH, UPRES EA3859, SFR 4208, Service d’Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d’Angers, Université d’Angers, 49000 Angers, France;
| | - Eleonora De Martin
- Centre Hépato-Biliaire, AP-HP, Institut National de la Santé et de la Recherche Médicale Unité 1193, Hôpitaux Universitaires Paris Saclay, Hôpital Paul-Brousse, 94800 Villejuif, France; (E.D.M.); (T.M.A.); (A.C.)
| | - Teresa M. Antonini
- Centre Hépato-Biliaire, AP-HP, Institut National de la Santé et de la Recherche Médicale Unité 1193, Hôpitaux Universitaires Paris Saclay, Hôpital Paul-Brousse, 94800 Villejuif, France; (E.D.M.); (T.M.A.); (A.C.)
| | - Anne-Marie Roque-Afonso
- Laboratoire de Virologie, Institut National de la Santé et de la Recherche Médicale Unité 1193 AP-HP, Hôpitaux Universitaires Paris Saclay, Hôpital Paul-Brousse, 94800 Villejuif, France; (L.I.); (A.-M.R.-A.)
| | - Audrey Coilly
- Centre Hépato-Biliaire, AP-HP, Institut National de la Santé et de la Recherche Médicale Unité 1193, Hôpitaux Universitaires Paris Saclay, Hôpital Paul-Brousse, 94800 Villejuif, France; (E.D.M.); (T.M.A.); (A.C.)
| | - Claire Deback
- Laboratoire de Virologie, AP-HP, Hôpitaux Universitaires Paris Saclay, Hôpital Paul-Brousse, 94800 Villejuif, France
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France
- Correspondence: ; Tel.: +33-141-28-80-00
| |
Collapse
|
9
|
Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, Nodooshan MM. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 2021; 93:4182-4197. [PMID: 33538349 PMCID: PMC8013307 DOI: 10.1002/jmv.26846] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
High-throughput droplet-based digital PCR (ddPCR) is a refinement of the conventional polymerase chain reaction (PCR) methods. In ddPCR, DNA/RNA is encapsulated stochastically inside the microdroplets as reaction chambers. A small percentage of the reaction chamber contains one or fewer copies of the DNA or RNA. After PCR amplification, concentrations are determined based on the proportion of nonfluorescent partitions through the Poisson distribution. Some of the main features of ddPCR include high sensitivity and specificity, absolute quantification without a standard curve, high reproducibility, good tolerance to PCR inhibitor, and high efficacy compared to conventional molecular methods. These advantages make ddPCR a valuable addition to the virologist's toolbox. The following review outlines the recent technological advances in ddPCR methods and their applications in viral identification.
Collapse
Affiliation(s)
- Amir Asri Kojabad
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Masoumeh Bolandian
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
10
|
Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol 2021; 184:750-759. [PMID: 34171259 DOI: 10.1016/j.ijbiomac.2021.06.132] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
Pathogens pose a severe threat to food safety and human health. The traditional methods for pathogen detection can't meet the growing diagnosis and control need. Digital PCR (dPCR) attracts a considerable attention for its ability to absolutely quantify pathogens with features of high selectivity, simplicity, accuracy and rapidity. The dPCR technique that achieves absolute quantification based on end-point measurement without standard curve offers a guideline for further genetic analysis and molecular diagnosis. It could contribute to the quantification of low level of nucleic acid, early detection and timely prevention of pathogenic diseases. In this review, 1442 publications about dPCR were selected and the detections of various pathogens by dPCR were reviewed comprehensively, including viruses, bacteria, parasites and fungi. A number of examples are cited to illustrate that dPCR is a new powerful tool with desired accuracy, sensitivity, and reproducibility for quantification of different types of pathogens. Moreover, the benefits, challenges and future prospects of the dPCR were also highlighted in this review.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Aswad A, Aimola G, Wight D, Roychoudhury P, Zimmermann C, Hill J, Lassner D, Xie H, Huang ML, Parrish NF, Schultheiss HP, Venturini C, Lager S, Smith GCS, Charnock-Jones DS, Breuer J, Greninger AL, Kaufer BB. Evolutionary History of Endogenous Human Herpesvirus 6 Reflects Human Migration out of Africa. Mol Biol Evol 2021; 38:96-107. [PMID: 32722766 PMCID: PMC7782865 DOI: 10.1093/molbev/msaa190] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, ∼70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or “reactivation” of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa.
Collapse
Affiliation(s)
- Amr Aswad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Giulia Aimola
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Darren Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | | | - Joshua Hill
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Dirk Lassner
- HighTech Center, Vinmec Hospital, Hanoi, Vietnam.,Institut Kardiale Diagnostik und Therapie, Berlin, Germany
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | - Nicholas F Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Cristina Venturini
- Division of Infection and Immunity, UCL Research Department of Infection, UCL, London, United Kingdom
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Obstetrics and Gynaecology, Cambridge University, United Kingdom
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, Cambridge University, United Kingdom
| | | | - Judith Breuer
- Division of Infection and Immunity, UCL Research Department of Infection, UCL, London, United Kingdom
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | | |
Collapse
|
12
|
Bartolini L, Moran MP, Norato G, Thomas B, Dick AD, Wells E, Suslovic W, Bumbut A, Chamberlain JM, Theodore WH, Gaillard WD, Jacobson S. Differential activation of neuroinflammatory pathways in children with seizures: A cross-sectional study. Seizure 2021; 91:150-158. [PMID: 34161903 DOI: 10.1016/j.seizure.2021.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Inflammation plays a crucial role in epileptogenesis. We analyzed inflammatory cytokines in plasma and saliva from children with seizures and healthy controls and measured their associations with HHV6 and EBV infection. METHODS We analyzed plasma from 36 children within 24 h of seizures (cases) and 43 healthy controls and saliva from 44 cases and 44 controls with a multiplex immunoassay. Saliva from all controls and 65 cases and blood from 26 controls and 35 cases were also analyzed by PCR for viral DNA. Primary outcome was cytokine levels in cases vs. controls. Secondary outcomes included detection of HHV-6 and EBV viral DNA in cases vs. controls and viral loads in cases vs. controls. Statistical analysis included the Wilcoxon Rank Sum test, Fisher's exact test, ANOVA, and Spearman correlation. RESULTS Compared to controls, patients had higher levels of CCL11 (p = 0.0018), CCL26 (p<0.001), IL10 (p = 0.044), IL6 (p<0.001), IL8 (p = 0.018), and MIP1β (p = 0.0012). CCL11 was higher with 3 or more seizures (p = 0.01), seizures longer than 10 min (p = 0.001), and when EEG showed focal slowing (p = 0.02). In saliva, febrile seizures had higher levels of IL-1β (n = 7, p = 0.04) and new onset seizures had higher IL-6 (n = 15, p = 0.02). Plasma and saliva cytokine levels did not show a correlation. The frequency of HHV-6 and EBV detection was similar across groups and not different than controls. We found no correlation between viral load and cytokine levels. CONCLUSIONS We showed differential activation of neuroinflammatory pathways in plasma from different seizure etiologies compared to controls, unrelated to viral infection.
Collapse
Affiliation(s)
- Luca Bartolini
- The Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI, United States.
| | - Michael P Moran
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| | - Gina Norato
- Office of Biostatistics, NINDS, NIH, Bethesda, MD, United States
| | - Bobbe Thomas
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | - Alexander D Dick
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Elizabeth Wells
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - William Suslovic
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Adrian Bumbut
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - James M Chamberlain
- Emergency Medicine and Trauma Services, Children's National Medical Center, Washington DC, United States
| | | | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center/The George Washington University, Washington DC, United States
| | - Steven Jacobson
- Division of Neuroimmunology and Neurovirology, NINDS, NIH, Bethesda, MD, United States
| |
Collapse
|
13
|
Wood ML, Veal CD, Neumann R, Suárez NM, Nichols J, Parker AJ, Martin D, Romaine SPR, Codd V, Samani NJ, Voors AA, Tomaszewski M, Flamand L, Davison AJ, Royle NJ. Variation in human herpesvirus 6B telomeric integration, excision, and transmission between tissues and individuals. eLife 2021; 10:70452. [PMID: 34545807 PMCID: PMC8492063 DOI: 10.7554/elife.70452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether, we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
Collapse
Affiliation(s)
- Michael L Wood
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Colin D Veal
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Rita Neumann
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Andrei J Parker
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Diana Martin
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Simon PR Romaine
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom,NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center GroningenGroningenNetherlands
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec CityQuébecCanada
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Nicola J Royle
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| |
Collapse
|
14
|
Wouk J, Rechenchoski DZ, Rodrigues BCD, Ribelato EV, Faccin-Galhardi LC. Viral infections and their relationship to neurological disorders. Arch Virol 2021; 166:733-753. [PMID: 33502593 PMCID: PMC7838016 DOI: 10.1007/s00705-021-04959-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 01/26/2023]
Abstract
The chronic dysfunction of neuronal cells, both central and peripheral, a characteristic of neurological disorders, may be caused by irreversible damage and cell death. In 2016, more than 276 million cases of neurological disorders were reported worldwide. Moreover, neurological disorders are the second leading cause of death. Generally, the etiology of neurological diseases is not fully understood. Recent studies have related the onset of neurological disorders to viral infections, which may cause neurological symptoms or lead to immune responses that trigger these pathological signs. Currently, this relationship is mostly based on epidemiological data on infections and seroprevalence of patients who present with neurological disorders. The number of studies aiming to elucidate the mechanism of action by which viral infections may directly or indirectly contribute to the development of neurological disorders has been increasing over the years but these studies are still scarce. Comprehending the pathogenesis of these diseases and exploring novel theories may favor the development of new strategies for diagnosis and therapy in the future. Therefore, the objective of the present study was to review the main pieces of evidence for the relationship between viral infection and neurological disorders such as Alzheimer's disease, Parkinson's disease, Guillain-Barré syndrome, multiple sclerosis, and epilepsy. Viruses belonging to the families Herpesviridae, Orthomyxoviridae, Flaviviridae, and Retroviridae have been reported to be involved in one or more of these conditions. Also, neurological symptoms and the future impact of infection with SARS-CoV-2, a member of the family Coronaviridae that is responsible for the COVID-19 pandemic that started in late 2019, are reported and discussed.
Collapse
Affiliation(s)
- Jéssica Wouk
- Post-Graduation Program of Pharmaceutical Science, Midwest State University, CEDETEG Campus, Guarapuava, Paraná Brazil
| | | | | | - Elisa Vicente Ribelato
- Department of Microbiology, Biological Science Center, Londrina State University, Londrina, Paraná Brazil
| | | |
Collapse
|
15
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Long S, Berkemeier B. Development and optimization of a simian immunodeficiency virus (SIV) droplet digital PCR (ddPCR) assay. PLoS One 2020; 15:e0240447. [PMID: 33035247 PMCID: PMC7546489 DOI: 10.1371/journal.pone.0240447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Accurate and sensitive quantification of rebound competent HIV that persists despite combination antiretroviral treatment (cART), including in latently infected cells (i.e., viral reservoir), is critical for evaluating cure strategies for decreasing or eliminating this reservoir. Simian immunodeficiency virus (SIV)-infected Rhesus macaques are an important non-human primate (NHP) system for studying potential cure strategies as they model many key aspects of human HIV-infection including the persistence of a latent viral reservoir in resting memory CD4+ T cells in animals receiving prolonged cART. In this report, we describe the design and testing of a sensitive SIV droplet digital PCR (ddPCR) assay through exploring the combination and optimization of different probe systems (including single, double quencher probes and minor groove binder (MGB) probes) and reaction conditions to eliminate background signal(s), ensure distinct target signal cluster separation from non-target signals, and enable detection and quantification of low level authentic target signals. Similar reaction conditions and assay validation procedures can be explored for potential development of additional assays for other applications that require sensitive detection of low-level targets in a large background of nucleic acid input derived from cell or tissue sources.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail:
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
17
|
Keyvani H, Zahednasab H, Aljanabi HAA, Asadi M, Mirzaei R, Esghaei M, Karampoor S. The role of human herpesvirus-6 and inflammatory markers in the pathogenesis of multiple sclerosis. J Neuroimmunol 2020; 346:577313. [PMID: 32673896 DOI: 10.1016/j.jneuroim.2020.577313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a destructive autoimmune neuroinflammatory and neurodegenerative disorder of the central nervous system (CNS) with unknown etiology and mechanism of pathogenesis. Pathogens, especially human herpes viruses, have been suggested as environmental factors of the MS and other neuroinflammatory disorders. This study aimed to determine the prevalence of HHV-6 antibody response in MS patients and investigate the levels of pro/anti-inflammatory cytokine and chemokines in MS patients in comparison with healthy subjects. Two hundred sixty-three patients with clinically defined MS (140 females and 123 males), along with 263 healthy subjects (140 females and 123 males), were recruited for this study. After the analysis of HHV-6 seropositivity/seronegativity, the levels of some pro/anti-inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, IL-6, and IL-12 as well as two chemokines, namely CCL-2 and CCL-5 were determined by the enzyme-linked immunosorbent assay (ELISA) method in HHV-6 seropositive/seronegative MS patients and healthy subjects. Our results showed that the serum concentrations of TNF-α, IFN-γ, IL-1β, IL-6, and CCL-5 elevated in HHV-6 seropositive compared with seronegative MS patients (P < .05). Moreover, the levels of IL-12, IL-10, and CCL-2 levels were significantly lower in seropositive MS patients when compared with seronegative MS patients (P < .05). Also, our results revealed that the mean values of the expanded disability status scale (EDSS) were significantly higher in HHV-6 seropositive versus seronegative MS patients (P < .05). In conclusion, we proposed that HHV-6 infection may play a role in MS pathogenesis by changing cytokine signaling in MS patients that may lead to peripheral inflammation.
Collapse
Affiliation(s)
- Hossein Keyvani
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Alnahrain University College of Medicine, Bagdad, Iraq; Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esghaei
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
18
|
HERQ-9 Is a New Multiplex PCR for Differentiation and Quantification of All Nine Human Herpesviruses. mSphere 2020; 5:5/3/e00265-20. [PMID: 32581076 PMCID: PMC7316487 DOI: 10.1128/msphere.00265-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
By adulthood, almost all humans become infected by at least one herpesvirus (HHV). The maladies inflicted by these microbes extend beyond the initial infection, as they remain inside our cells for life and can reactivate, causing severe diseases. The diagnosis of active infection by these ubiquitous pathogens includes the detection of DNA with sensitive and specific assays. We developed the first quantitative PCR assay (HERQ-9) designed to identify and quantify each of the nine human herpesviruses. The simultaneous detection of HHVs in the same sample is important since they may act together to induce life-threatening conditions. Moreover, the high sensitivity of our method is of extreme value for assessment of the effects of these viruses persisting in our body and their long-term consequences on our health. Infections with the nine human herpesviruses (HHVs) are globally prevalent and characterized by lifelong persistence. Reactivations can potentially manifest as life-threatening conditions for which the demonstration of viral DNA is essential. In the present study, we developed HERQ-9, a pan-HHV quantitative PCR designed in triplex reactions to differentiate and quantify each of the HHV-DNAs: (i) herpes simplex viruses 1 and 2 and varicella-zoster virus; (ii) Epstein-Barr virus, human cytomegalovirus, and Kaposi’s sarcoma-associated herpesvirus; and (iii) HHV-6A, -6B, and -7. The method was validated with prequantified reference standards as well as with mucocutaneous swabs and cerebrospinal fluid, plasma, and tonsillar tissue samples. Our findings highlight the value of multiplexing in the diagnosis of many unsuspected, yet clinically relevant, herpesviruses. In addition, we report here frequent HHV-DNA co-occurrences in clinical samples, including some previously unknown. HERQ-9 exhibited high specificity and sensitivity (LOD95s of ∼10 to ∼17 copies/reaction), with a dynamic range of 101 to 106 copies/μl. Moreover, it performed accurately in the coamplification of both high- and low-abundance targets in the same reaction. In conclusion, we demonstrated that HERQ-9 is suitable for the diagnosis of a plethora of herpesvirus-related diseases. Besides its significance to clinical management, the method is valuable for the assessment of hitherto-unexplored synergistic effects of herpesvirus coinfections. Furthermore, its high sensitivity enables studies on the human virome, often dealing with minute quantities of persisting HHVs. IMPORTANCE By adulthood, almost all humans become infected by at least one herpesvirus (HHV). The maladies inflicted by these microbes extend beyond the initial infection, as they remain inside our cells for life and can reactivate, causing severe diseases. The diagnosis of active infection by these ubiquitous pathogens includes the detection of DNA with sensitive and specific assays. We developed the first quantitative PCR assay (HERQ-9) designed to identify and quantify each of the nine human herpesviruses. The simultaneous detection of HHVs in the same sample is important since they may act together to induce life-threatening conditions. Moreover, the high sensitivity of our method is of extreme value for assessment of the effects of these viruses persisting in our body and their long-term consequences on our health.
Collapse
|
19
|
Allnutt MA, Johnson K, Bennett DA, Connor SM, Troncoso JC, Pletnikova O, Albert MS, Resnick SM, Scholz SW, De Jager PL, Jacobson S. Human Herpesvirus 6 Detection in Alzheimer's Disease Cases and Controls across Multiple Cohorts. Neuron 2020; 105:1027-1035.e2. [PMID: 31983538 PMCID: PMC7182308 DOI: 10.1016/j.neuron.2019.12.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 01/03/2023]
Abstract
The interplay between viral infection and Alzheimer's disease (AD) has long been an area of interest, but proving causality has been elusive. Several recent studies have renewed the debate concerning the role of herpesviruses, and human herpesvirus 6 (HHV-6) in particular, in AD. We screened for HHV-6 detection across three independent AD brain repositories using (1) RNA sequencing (RNA-seq) datasets and (2) DNA samples extracted from AD and non-AD control brains. The RNA-seq data were screened for pathogens against taxon references from over 25,000 microbes, including 118 human viruses, whereas DNA samples were probed for PCR reactivity to HHV-6A and HHV-6B. HHV-6 demonstrated little specificity to AD brains over controls by either method, whereas other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), were detected at comparable levels. These direct methods of viral detection do not suggest an association between HHV-6 and AD.
Collapse
Affiliation(s)
- Mary Alice Allnutt
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kory Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke/National Institute of Health, Bethesda, MD 20814, USA
| | - David A Bennett
- Alzheimer Disease Center, RUSH University, Chicago, IL 60612, USA
| | - Sarah M Connor
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD 21205, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD 21205, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sonja W Scholz
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
20
|
Entering the Pantheon of 21 st Century Molecular Biology Tools: A Perspective on Digital PCR. Methods Mol Biol 2019; 1768:3-10. [PMID: 29717434 DOI: 10.1007/978-1-4939-7778-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
After several decades of relatively modest use, in the last several years digital PCR (dPCR) has grown to become the new gold standard for nucleic acid quantification. This coincides with the commercial availability of scalable, affordable, and reproducible droplet-based dPCR platforms in the past five years and has led to its rapid dissemination into diverse research fields and testing applications. Among these, it has been adopted most vigorously into clinical oncology where it is beginning to be used for plasma genotyping in cancer patients undergoing treatment. Additionally, innovation across the scientific community has extended the benefits of reaction partitioning beyond DNA and RNA quantification alone, and demonstrated its usefulness in evaluating DNA size and integrity, the physical linkage of colocalized markers, levels of enzyme activity and specific cation concentrations in a sample, and more. As dPCR technology gains in popularity and breadth, its power and simplicity can often be taken for granted; thus, the reader is reminded that due diligence must be exercised in order to make claims not only of precision but also of accuracy in their measurements.
Collapse
|
21
|
Leibovitch EC, Caruso B, Ha SK, Schindler MK, Lee NJ, Luciano NJ, Billioux BJ, Guy JR, Yen C, Sati P, Silva AC, Reich DS, Jacobson S. Herpesvirus trigger accelerates neuroinflammation in a nonhuman primate model of multiple sclerosis. Proc Natl Acad Sci U S A 2018; 115:11292-11297. [PMID: 30322946 PMCID: PMC6217390 DOI: 10.1073/pnas.1811974115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathogens, particularly human herpesviruses (HHVs), are implicated as triggers of disease onset/progression in multiple sclerosis (MS) and other neuroinflammatory disorders. However, the time between viral acquisition in childhood and disease onset in adulthood complicates the study of this association. Using nonhuman primates, we demonstrate that intranasal inoculations with HHV-6A and HHV-6B accelerate an MS-like neuroinflammatory disease, experimental autoimmune encephalomyelitis (EAE). Although animals inoculated intranasally with HHV-6 (virus/EAE marmosets) were asymptomatic, they exhibited significantly accelerated clinical EAE compared with control animals. Expansion of a proinflammatory CD8 subset correlated with post-EAE survival in virus/EAE marmosets, suggesting that a peripheral (viral?) antigen-driven expansion may have occurred post-EAE induction. HHV-6 viral antigen in virus/EAE marmosets was markedly elevated and concentrated in brain lesions, similar to previously reported localizations of HHV-6 in MS brain lesions. Collectively, we demonstrate that asymptomatic intranasal viral acquisition accelerates subsequent neuroinflammation in a nonhuman primate model of MS.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Breanna Caruso
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Seung Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Bridgette J Billioux
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph R Guy
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Cecil Yen
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
22
|
Leibovitch EC, Lin CTM, Billioux BJ, Graves J, Waubant E, Jacobson S. Prevalence of salivary human herpesviruses in pediatric multiple sclerosis cases and controls. Mult Scler 2018; 25:644-652. [PMID: 29569515 DOI: 10.1177/1352458518765654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a multifactorial disease of unknown origin. The current paradigm is that disease develops in genetically susceptible individuals, influenced by environmental factors. Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) have particularly strong associations with the disease. Both viruses are typically acquired during childhood, decades before MS presents. However, in patients with pediatric MS, the temporal window between viral acquisition and disease onset is shortened, which may provide insights into the association of herpesviruses with MS. OBJECTIVE To compare the frequency of EBV and HHV-6 in the saliva of a cohort of pediatric MS patients and age-matched controls. METHODS The study enrolled 32 pediatric MS patients and 42 controls and evaluated saliva for HHV-6 u57 and EBV lmp-1 amplification by droplet digital polymerase chain reaction (ddPCR). RESULTS Pediatric MS patients did not differ from controls in the frequency or magnitude of salivary viral shedding. During the assessment of EBV positivity, distinct profiles emerged that correlated with target amplicon mutations. CONCLUSIONS None of these mutations were evident in EBV-positive samples from pediatric MS patients, whereas they were present in pediatric controls, in addition to MS and control adults, suggesting differential host-immune control of EBV in this pediatric MS cohort.
Collapse
Affiliation(s)
- Emily C Leibovitch
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Cheng-Te Major Lin
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Bridgette J Billioux
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jennifer Graves
- Multiple Sclerosis Center, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuelle Waubant
- Multiple Sclerosis Center, University of California San Francisco, San Francisco, CA, USA
| | - Steven Jacobson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
23
|
Vellucci A, Leibovitch EC, Jacobson S. Using Droplet Digital PCR to Detect Coinfection of Human Herpesviruses 6A and 6B (HHV-6A and HHV-6B) in Clinical Samples. Methods Mol Biol 2018; 1768:99-109. [PMID: 29717439 DOI: 10.1007/978-1-4939-7778-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Droplet digital™ polymerase chain reaction (ddPCR™) is a unique digital PCR technique that allows for absolute quantification of nucleic acid samples. This technique operates on the basis of amplification within water-oil emulsion droplets and can detect very small quantities of target molecules, yielding extremely precise data. Here, we describe in detail a ddPCR procedure for multiplexed detection of two clinically relevant herpesviruses, HHV-6A and HHV-6B.
Collapse
Affiliation(s)
- Ashley Vellucci
- Neuroimmunology Branch, Viral Immunology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Emily C Leibovitch
- Neuroimmunology Branch, Viral Immunology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, School of Medicine and Health Sciences, Washington, DC, USA
| | - Steven Jacobson
- Neuroimmunology Branch, Viral Immunology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Patel SJ, Yokoyama WM. CD8 + T Cells Prevent Lethality from Neonatal Murine Roseolovirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3212-3221. [PMID: 28972091 PMCID: PMC6280967 DOI: 10.4049/jimmunol.1700982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
A recently described mouse homolog of the human roseoloviruses, murine roseolovirus (MRV), causes loss of peripheral and thymic CD4+ cells during neonatal infection of BALB/c mice. Despite significant disruptions to the normal adaptive immune response, infected BALB/c mice reproducibly recover from infection, consistent with prior studies on a related virus, mouse thymic virus. In this article, we show that, in contrast to published studies on mouse thymic virus, MRV appears to robustly infect neonatal C57BL/6 (B6) mice, causing severe depletion of thymocytes and peripheral T cells. Moreover, B6 mice recovered from infection. We investigated the mechanism of thymocyte and T cell loss, determining that the major thymocyte subsets were infected with MRV; however, CD4+ and CD4+CD8- T cells showed increased apoptosis during infection. We found that CD8+ T cells populated MRV-infected thymi. These CD8+ T cells expressed markers of activation, had restricted TCR repertoire, and accumulated intracellular effector proteins, consistent with a cytotoxic lymphocyte phenotype and suggesting their involvement in viral clearance. Indeed, absence of CD8+ T cells prevented recovery from MRV infection and led to lethality in infected animals, whereas B cell-deficient mice showed CD4+ T cell loss but recovered from infection without lethality. Thus, these results demonstrate that CD8+ T cells are required for protective immunity against a naturally occurring murine pathogen that infects the thymus and establish a novel infection model for MRV in B6 mice, providing the foundation for detailed future studies on MRV with the availability of innumerable mutant mice on the B6 background.
Collapse
Affiliation(s)
- Swapneel J Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
25
|
Carow K, Read C, Häfner N, Runnebaum IB, Corner A, Dürst M. A comparative study of digital PCR and real-time qPCR for the detection and quantification of HPV mRNA in sentinel lymph nodes of cervical cancer patients. BMC Res Notes 2017; 10:532. [PMID: 29084579 PMCID: PMC5663113 DOI: 10.1186/s13104-017-2846-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 10/23/2017] [Indexed: 01/28/2023] Open
Abstract
Background Qualitative analyses showed that the presence of HPV mRNA in sentinel lymph nodes of cervical cancer patients with pN0 status is associated with significantly decreased recurrence free survival. To further address the clinical potential of the strategy and to define prognostic threshold levels it is necessary to use a quantitative assay. Here, we compare two methods of quantification: digital PCR and standard quantitative PCR. Methods Serial dilutions of 5 ng–5 pg RNA (≙ 500–0.5 cells) of the cervical cancer cell line SiHa were prepared in 5 µg RNA of the HPV-negative human keratinocyte cell line HaCaT. Clinical samples consisted of 10 sentinel lymph nodes with varying HPV transcript levels. Reverse transcription of total RNA (5 µg RNA each) was performed in 100 µl and cDNA aliquots were analyzed by qPCR and dPCR. Digital PCR was run in the RainDrop® Digital PCR system (RainDance Technologies) using a probe-based detection of HPV E6/E7 cDNA PCR products with 11 µl template. qPCR was done using a Rotor Gene Q 5plex HRM (Qiagen) amplifying HPV E6/E7 cDNA in a SYBR Green format with 1 µl template. Results For the analysis of both, clinical samples and serial dilution samples, dPCR and qPCR showed comparable sensitivity. With regard to reproducibility, both methods differed considerably, especially for low template samples. Here, we found with qPCR a mean variation coefficient of 126% whereas dPCR enabled a significantly lower mean variation coefficient of 40% (p = 0.01). Generally, we saw with dPCR a substantial reduction of subsampling errors, which most likely reflects the large cDNA amounts available for analysis. Conclusions Compared to real-time PCR, dPCR shows higher reliability. Thus, our HPV mRNA dPCR assay holds promise for the clinical evaluation of occult tumor cells in histologically tumor-free lymph nodes in future studies. Electronic supplementary material The online version of this article (10.1186/s13104-017-2846-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin Carow
- Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Christina Read
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Norman Häfner
- Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Ingo B Runnebaum
- Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Adam Corner
- RainDance Technologies, 749 Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Matthias Dürst
- Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
26
|
Gaivão M, Dionisio F, Gjini E. Transmission Fitness in Co-colonization and the Persistence of Bacterial Pathogens. Bull Math Biol 2017; 79:2068-2087. [PMID: 28741105 DOI: 10.1007/s11538-017-0320-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/03/2017] [Indexed: 01/18/2023]
Abstract
Humans are often colonized by polymorphic bacteria such as Streptococcus pneumoniae, Bordetella pertussis, Staphylococcus Aureus, and Haemophilus influenzae. Two co-colonizing pathogen clones may interact with each other upon host entry and during within-host dynamics, ranging from competition to facilitation. Here we examine the significance of these exploitation strategies for bacterial spread and persistence in host populations. We model SIS epidemiological dynamics to capture the global behavior of such multi-strain systems, focusing on different parameters of single and dual colonization. We analyze the impact of heterogeneity in clearance and transmission rates of single and dual colonization and find the criteria under which these asymmetries enhance endemic persistence. We obtain a backward bifurcation near [Formula: see text] if the reproductive value of the parasite in dually infected hosts is sufficiently higher than that in singly infected ones. In such cases, the parasite is able to persist even in sub-threshold conditions, and reducing the basic reproduction number below 1 would be insufficient for elimination. The fitness superiority in co-colonized hosts can be attained by lowering net parasite clearance rate ([Formula: see text]), by increasing transmission rate ([Formula: see text]), or both, and coupling between these traits critically constrains opportunities of pathogen survival in the [Formula: see text] regime. Finally, using an adaptive dynamics approach, we verify that despite their importance for sub-threshold endemicity, traits expressed exclusively in coinfection should generally evolve independently of single infection traits. In particular, for [Formula: see text] a saturating parabolic or hyperbolic function of [Formula: see text], co-colonization traits evolve to an intermediate optimum (evolutionarily stable strategy, ESS), determined only by host lifespan and the trade-off parameters linking [Formula: see text] and [Formula: see text]. Our study invites more empirical attention to the dynamics and evolution of parasite life-history traits expressed exclusively in coinfection.
Collapse
Affiliation(s)
- Maria Gaivão
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.,Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Francisco Dionisio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.,CE3C - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Erida Gjini
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
27
|
Wood ML, Royle NJ. Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health. Viruses 2017; 9:E184. [PMID: 28704957 PMCID: PMC5537676 DOI: 10.3390/v9070184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.
Collapse
Affiliation(s)
- Michael L Wood
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | - Nicola J Royle
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|
28
|
Abstract
Human roseoloviruses include three different species, human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7), genetically related to human cytomegalovirus. They exhibit a wide cell tropism in vivo and, like other herpesviruses, induce a lifelong latent infection in humans. In about 1% of the general population, HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6). Many active infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. They also may cause serious diseases, particularly in immunocompromised individuals, including hematopoietic stem-cell transplant (HSCT) and solid-organ transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients. This opportunistic pathogenic role is formally established for HHV-6 infection and less clear for HHV-7. It mainly concerns the central-nervous system, bone marrow, lungs, gastrointestinal tract, skin, and liver. As the best example, HHV-6 causes both exanthema subitum, a benign disease associated with primary infection, and severe encephalitis associated with virus reactivations in HSCT recipients. Diagnosis using serologic and direct antigen-detection methods currently exhibits limitations. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time polymerase-chain reaction (PCR). The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active infections, but there is currently no consensus regarding the indications of treatment or specifics of drug administration. Numerous questions about HHV-6A, HHV-6B, HHV-7 are still pending, concerning in particular clinical impact and therapeutic options in immunocompromised patients.
Collapse
|
29
|
Agut H, Bonnafous P, Gautheret-Dejean A. Update on infections with human herpesviruses 6A, 6B, and 7. Med Mal Infect 2016; 47:83-91. [PMID: 27773488 DOI: 10.1016/j.medmal.2016.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022]
Abstract
Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7) are genetically related to cytomegalovirus. They belong to the Roseolovirus genus and to the Betaherpesvirinae subfamily. They infect T cells, monocytes-macrophages, epithelial cells, and central nervous system cells. These viruses are ubiquitous and are responsible for lifelong chronic infections, most often asymptomatic, in the vast majority of the general adult population. HHV-6B is responsible for exanthema subitum, which is a benign disease of infants. HHV-6A and HHV-6B also cause opportunistic infections in immunocompromised patients: encephalitis, hepatitis, bone marrow suppression, colitis, and pneumonitis. Their etiological role in chronic diseases such as multiple sclerosis, cardiomyopathy, and thyroiditis is still controversial. The pathogenicity of HHV-7 is less clear and seems to be much more restricted. Chromosomal integration of HHV-6A and HHV-6B is transmissible from parents to offspring and observed in about 1% of the general population. This integration raises the question of potential associated diseases and can be a confounding factor for the diagnosis of active infections by both viruses. The diagnosis of HHV-6A, HHV-6B, and HHV-7 infections is rather based on gene amplification (PCR), which allows for the detection and quantification of the viral genome, than on serology, which is mainly indicated in case of primary infection. Ganciclovir, foscarnet, and cidofovir inhibit the replication of HHV-6A, HHV-6B, and HHV-7. Severe infections may thus be treated but these therapeutic indications are still poorly defined.
Collapse
Affiliation(s)
- H Agut
- Service de virologie, CERVI, hôpitaux universitaires La Pitié Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, 83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, CIMI-Paris UMR 1135, Équipe 1 PVI, Sorbonne universités, UPMC université Paris 6, 75013 Paris, France.
| | - P Bonnafous
- Inserm, CIMI-Paris UMR 1135, Équipe 1 PVI, Sorbonne universités, UPMC université Paris 6, 75013 Paris, France.
| | - A Gautheret-Dejean
- Service de virologie, CERVI, hôpitaux universitaires La Pitié Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, 83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, CIMI-Paris UMR 1135, Équipe 1 PVI, Sorbonne universités, UPMC université Paris 6, 75013 Paris, France; Faculté de pharmacie, université Paris-Descartes, 75006 Paris, France.
| |
Collapse
|
30
|
Enose-Akahata Y, Caruso B, Haner B, Charlip E, Nair G, Massoud R, Billioux BJ, Ohayon J, Switzer WM, Jacobson S. Development of neurologic diseases in a patient with primate T lymphotropic virus type 1 (PTLV-1). Retrovirology 2016; 13:56. [PMID: 27519553 PMCID: PMC4982997 DOI: 10.1186/s12977-016-0290-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023] Open
Abstract
Background Virus transmission from various wild and domestic animals contributes to an increased risk of emerging infectious diseases in human populations. HTLV-1 is a human retrovirus associated with acute T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 originated from ancient zoonotic transmission from nonhuman primates, although cases of zoonotic infections continue to occur. Similar to HTLV-1, the simian counterpart, STLV-1, causes chronic infection and leukemia and lymphoma in naturally infected monkeys, and combined are called primate T-lymphotropic viruses (PTLV-1). However, other clinical syndromes typically seen in humans such as a chronic progressive myelopathy have not been observed in nonhuman primates. Little is known about the development of neurologic and inflammatory diseases in human populations infected with STLV-1-like viruses following nonhuman primate exposure. Results We performed detailed laboratory analyses on an HTLV-1 seropositive patient with typical HAM/TSP who was born in Liberia and now resides in the United States. Using a novel droplet digital PCR for the detection of the HTLV-1 tax gene, the proviral load in PBMC and cerebrospinal fluid cells was 12.98 and 51.68 %, respectively; however, we observed a distinct difference in fluorescence amplitude of the positive droplet population suggesting possible mutations in proviral DNA. A complete PTLV-1 proviral genome was amplified from the patient’s PBMC DNA using an overlapping PCR strategy. Phylogenetic analysis of the envelope and LTR sequences showed the virus was highly related to PTLV-1 from sooty mangabey monkeys (smm) and humans exposed via nonhuman primates in West Africa. Conclusions These results demonstrate the patient is infected with a simian variant of PTLV-1, suggesting for the first time that PTLV-1smm infection in humans may be associated with a chronic progressive neurologic disease.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA
| | - Breanna Caruso
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA
| | - Benjamin Haner
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA
| | - Emily Charlip
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA
| | - Govind Nair
- Translational Neuroradiology Unit, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Raya Massoud
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA
| | - Bridgette J Billioux
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA
| | - Joan Ohayon
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Building 10 Room 5C-103, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Lin CTM, Leibovitch EC, Almira-Suarez MI, Jacobson S. Human herpesvirus multiplex ddPCR detection in brain tissue from low- and high-grade astrocytoma cases and controls. Infect Agent Cancer 2016; 11:32. [PMID: 27462365 PMCID: PMC4960850 DOI: 10.1186/s13027-016-0081-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
Background Glioblastoma (GBM) is a fatal CNS malignancy, representing 50 % of all gliomas with approximately 12–18 months survival time after initial diagnosis. Recently, the human herpesvirus cytomegalovirus (CMV) has been suggested to have an oncogenic role, yet this association remains controversial. In addition, human herpesvirus 6 (HHV-6) and Epstein-Barr virus (EBV) have also been associated with low-grade gliomas, but few studies have examined HHV-6 and EBV in glioblastomas. Droplet digital PCR (ddPCR) is a highly precise diagnostic tool that enables the absolute quantification of target DNA. This study examines the association between multiple human herpesviruses and astrocytomas. Methods This study analyzed 112 brain tissue specimens, including 45 glioblastoma, 12 astrocytoma grade III, 2 astrocytoma grade II, 4 astrocytoma grade I, and 49 controls. All brain tissue samples were de-identified and pathologically confirmed. Each tissue block was sectioned for DNA extraction and CMV, EBV, HHV-6A and HHV-6B, and a cellular housekeeping gene were amplified by ddPCR. Results Neither CMV nor HHV-6A were detected in any of the astrocytoma samples. However, HHV-6B (p = 0.147) and EBV (p = 0.049) had a higher positivity frequency in the GBM compared to the controls. Conclusion The undetectable CMV DNA in the astrocytoma cohort does not support the observation of an increased prevalence of CMV DNA in GBM, as reported in other studies. EBV has a significantly higher positivity in the GBM cohort compared to the controls, while HHV-6B has a higher but not statistically significant positivity in the case cohort. Whether these viruses play an oncogenic role in GBM remains to be further investigated.
Collapse
Affiliation(s)
- Cheng-Te Major Lin
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, BG 10 RM 5C103 10 Center Dr., Bethesda, MD 20892 USA ; School of Medicine and Health Sciences, The George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037 USA
| | - Emily C Leibovitch
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, BG 10 RM 5C103 10 Center Dr., Bethesda, MD 20892 USA ; School of Medicine and Health Sciences, The George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037 USA
| | - M Isabel Almira-Suarez
- School of Medicine and Health Sciences, The George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037 USA
| | - Steven Jacobson
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, BG 10 RM 5C103 10 Center Dr., Bethesda, MD 20892 USA
| |
Collapse
|
32
|
Ihira M, Yamaki A, Kato Y, Higashimoto Y, Kawamura Y, Yoshikawa T. Cycling probe-based real-time PCR for the detection ofHuman herpesvirus6A and B. J Med Virol 2016; 88:1628-35. [DOI: 10.1002/jmv.24513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Masaru Ihira
- Faculty of Clinical Engineering; Fujita Health University School of Health Sciences; Toyoake Aichi Japan
| | - Ayumi Yamaki
- ME Center; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Yuri Kato
- Department of Clinical Laboratory; Fujita Health University Hospital; Toyoake Aichi Japan
| | - Yuki Higashimoto
- Department of Clinical Laboratory; Fujita Health University Hospital; Toyoake Aichi Japan
| | - Yoshiki Kawamura
- Department of Pediatrics; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics; Fujita Health University School of Medicine; Toyoake Aichi Japan
| |
Collapse
|
33
|
Detection of Human Herpesvirus 6B (HHV-6B) Reactivation in Hematopoietic Cell Transplant Recipients with Inherited Chromosomally Integrated HHV-6A by Droplet Digital PCR. J Clin Microbiol 2016; 54:1223-7. [PMID: 26888901 DOI: 10.1128/jcm.03275-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
The presence of inherited chromosomally integrated human herpesvirus 6 (ciHHV-6) in hematopoietic cell transplant (HCT) donors or recipients confounds molecular testing for HHV-6 reactivation, which occurs in 30 to 50% of transplants. Here we describe a multiplex droplet digital PCR clinical diagnostic assay that concurrently distinguishes between HHV-6 species (A or B) and identifies inherited ciHHV-6. By applying this assay to recipient post-HCT plasma and serum samples, we demonstrated reactivation of HHV-6B in 25% (4/16 recipients) of HCT recipients with donor- or recipient-derived inherited ciHHV-6A, underscoring the need for diagnostic testing for HHV-6 infection even in the presence of ciHHV-6.
Collapse
|
34
|
Reiss CS. Virus-Induced Demyelination: The Case for Virus(es) in Multiple Sclerosis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7122906 DOI: 10.1007/978-3-319-33189-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple Sclerosis (MS) is the most common demyelinating disease of man with over 400,000 cases in the United States and over 2.5 million cases worldwide. There are over 64,000 citations in Pubmed dating back as far as 1887. Much has been learned over the past 129 years with a recent burst in therapeutic options (mostly anti-inflammatory) with newer medications in development that are neuroprotective and/or neuroreparative. However, with all these advancements the cause of MS remains elusive. There is a clear interplay of genetic, immunologic, and environmental factors that influences both the development and progression of this disorder. This chapter will give a brief overview of the history and pathogenesis of MS with attention to how host immune responses in genetically susceptible individuals contribute to the MS disease process. In addition, we will explore the role of infectious agents in MS as potential “triggers” of disease. Models of virus-induced demyelination will be discussed, with an emphasis on the recent interest in human herpesviruses and the role they may play in MS disease pathogenesis. Although we remain circumspect as to the role of any microbial pathogen in MS, we suggest that only through well-controlled serological, cellular immune, molecular, and animal studies we will be able to identify candidate agents. Ultimately, clinical interventional trials that either target a specific pathogen or class of pathogens will be required to make definitive links between the suspected agent and MS.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
35
|
|
36
|
Boehme P, Stellberger T, Solanki M, Zhang W, Schulz E, Bergmann T, Liu J, Doerner J, Baiker AE, Ehrhardt A. Standard free droplet digital polymerase chain reaction as a new tool for the quality control of high-capacity adenoviral vectors in small-scale preparations. Hum Gene Ther Methods 2015; 26:25-34. [PMID: 25640117 DOI: 10.1089/hgtb.2014.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy.
Collapse
Affiliation(s)
- Philip Boehme
- 1 Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke , Witten 58453, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Taylor SC, Carbonneau J, Shelton DN, Boivin G. Optimization of Droplet Digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: Clinical implications for quantification of Oseltamivir-resistant subpopulations. J Virol Methods 2015; 224:58-66. [PMID: 26315318 DOI: 10.1016/j.jviromet.2015.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 07/21/2015] [Accepted: 08/19/2015] [Indexed: 01/21/2023]
Abstract
The recent introduction of Droplet Digital PCR (ddPCR) has provided researchers with a tool that permits direct quantification of nucleic acids from a wide range of samples with increased precision and sensitivity versus RT-qPCR. The sample interdependence of RT-qPCR stemming from the measurement of Cq and ΔCq values is eliminated with ddPCR which provides an independent measure of the absolute nucleic acid concentration for each sample without standard curves thereby reducing inter-well and inter-plate variability. Well-characterized RNA purified from H275-wild type (WT) and H275Y-point mutated (MUT) neuraminidase of influenza A (H1N1) pandemic 2009 virus was used to demonstrate a ddPCR optimization workflow to assure robust data for downstream analysis. The ddPCR reaction mix was also tested with RT-qPCR and gave excellent reaction efficiency (between 90% and 100%) with the optimized MUT/WT duplexed assay thus enabling the direct comparison of the two platforms from the same reaction mix and thermal cycling protocol. ddPCR gave a marked improvement in sensitivity (>30-fold) for mutation abundance using a mixture of purified MUT and WT RNA and increased precision (>10 fold, p<0.05 for both inter- and intra-assay variability) versus RT-qPCR from patient samples to accurately identify residual mutant viral population during recovery.
Collapse
Affiliation(s)
- Sean C Taylor
- Bio-Rad Laboratories Canada, Inc., 1329 Meyerside Drive, Mississauga, ON, Canada L5T1C9.
| | | | - Dawne N Shelton
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, CA, USA
| | - Guy Boivin
- CHU of Quebec and Laval University, Quebec City, QC, Canada
| |
Collapse
|
38
|
Acute human herpesvirus-6A infection of human mesothelial cells modulates HLA molecules. Arch Virol 2015; 160:2141-9. [PMID: 26085284 DOI: 10.1007/s00705-015-2490-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Human herpesvirus 6A (HHV-6A) causes ubiquitous infections and has been associated with several diseases in immunosuppressed and immune dysregulated individuals. Although considered a lymphotropic virus, HHV-6A has the potential to infect many cell types, inducing important alterations in the infected cell. In our search for additional potential targets for HHV-6A infection, we analyzed the susceptibility of human mesothelial cells to viral infection. HHV-6A infection was performed and analyzed on primary human mesothelial cells isolated from serous cavity fluid, infected in vitro with a cell-free HHV-6A inoculum. The results demonstrated that mesothelial cells are susceptible to in vitro HHV-6A infection, and more importantly, that the virus induces an alteration of HLA expression on the cell surface, inducing HLA class II and HLA-G de novo expression. Since mesothelial cells play a pivotal role in many processes, including inflammation and antigen presentation, we speculate that, in vivo, this virus-induced perturbation might be correlated to alterations in mesothelium functions.
Collapse
|
39
|
Ueda MYH, Alvarenga PG, Real JM, Moreira EDS, Watanabe A, Passos-Castilho AM, Vescovi M, Novis Y, Rocha V, Seber A, Oliveira JSR, Rodrigues CA, Granato CFH. Optimisation of a quantitative polymerase chain reaction-based strategy for the detection and quantification of human herpesvirus 6 DNA in patients undergoing allogeneic haematopoietic stem cell transplantation. Mem Inst Oswaldo Cruz 2015; 110:461-7. [PMID: 26038958 PMCID: PMC4501408 DOI: 10.1590/0074-02760150004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem
cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and
early diagnosis of related clinical diseases, constitute essential measures to
improve outcomes. A prospective survey on the incidence and clinical features of
HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the
impact of this infection on HSCT outcome remains unclear. A rapid test based on
real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen
and quantify clinical samples for HHV-6. The detection step was based on reaction
with TaqMan® hydrolysis probes. A set of previously described primers and
probes have been tested to evaluate efficiency, sensitivity and reproducibility. The
target efficiency range was 91.4% with linearity ranging from 10-106
copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of
plasma. The qPCR assay developed in the present study was simple, rapid and
sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this
test may be useful as a practical tool to help elucidate the clinical relevance of
HHV-6 infection and reactivation in different scenarios and to determine the need for
surveillance.
Collapse
Affiliation(s)
| | | | - Juliana M Real
- Centro de Oncologia, Instituto de Ensino e Pesquisa, Hospital Sírio Libanês, São Paulo, SP, Brasil
| | | | | | | | | | - Yana Novis
- Centro de Oncologia, Instituto de Ensino e Pesquisa, Hospital Sírio Libanês, São Paulo, SP, Brasil
| | - Vanderson Rocha
- Centro de Oncologia, Instituto de Ensino e Pesquisa, Hospital Sírio Libanês, São Paulo, SP, Brasil
| | - Adriana Seber
- Instituto de Oncologia Pediátrica, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
40
|
Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev 2015; 28:313-35. [PMID: 25762531 PMCID: PMC4402955 DOI: 10.1128/cmr.00122-14] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a widespread betaherpesvirus which is genetically related to human cytomegalovirus (HCMV) and now encompasses two different species: HHV-6A and HHV-6B. HHV-6 exhibits a wide cell tropism in vivo and, like other herpesviruses, induces a lifelong latent infection in humans. As a noticeable difference with respect to other human herpesviruses, genomic HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6) in about 1% of the general population. Although it is infrequent, this may be a confounding factor for the diagnosis of active viral infection. The diagnosis of HHV-6 infection is performed by both serologic and direct methods. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time PCR. Many active HHV-6 infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. However, the virus may be the cause of serious diseases, particularly in immunocompromised individuals. As emblematic examples of HHV-6 pathogenicity, exanthema subitum, a benign disease of infancy, is associated with primary infection, whereas further virus reactivations can induce severe encephalitis cases, particularly in hematopoietic stem cell transplant recipients. Generally speaking, the formal demonstration of the causative role of HHV-6 in many acute and chronic human diseases is difficult due to the ubiquitous nature of the virus, chronicity of infection, existence of two distinct species, and limitations of current investigational tools. The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active HHV-6 infections, but the indications for treatment, as well as the conditions of drug administration, are not formally approved to date. There are still numerous pending questions about HHV-6 which should stimulate future research works on the pathophysiology, diagnosis, and therapy of this remarkable human virus.
Collapse
Affiliation(s)
- Henri Agut
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, Paris, France
| | - Pascale Bonnafous
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France
| | - Agnès Gautheret-Dejean
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, Paris, France Université René Descartes, Faculté de Pharmacie, Laboratoire de Microbiologie UPRES EA 4065, Paris, France
| |
Collapse
|
41
|
|
42
|
Leibovitch EC, Jacobson S. Evidence linking HHV-6 with multiple sclerosis: an update. Curr Opin Virol 2014; 9:127-33. [PMID: 25462444 PMCID: PMC4269240 DOI: 10.1016/j.coviro.2014.09.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Following reports of elevated antiviral antibodies in MS patient sera and viral DNA detection in MS plaques nearly two decades ago, the neurovirology community has actively explored how herpesviruses such as HHV-6 might be involved in MS disease pathogenesis. Though findings across the field are non-uniform, an emerging consensus of viral correlates with disease course and evidence of HHV-6-specific immune responses in the CNS provide compelling evidence for a role, direct or indirect, of this virus in MS. Ultimately, the only way to demonstrate the involvement, or lack thereof, of HHV-6 or other herpesviruses in this disease is through a controlled clinical trial of an efficacious antiviral drug.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Institute for Biomedical Sciences, School of Medicine and Health Sciences of The George Washington University, Washington, DC, USA
| | - Steven Jacobson
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Bell AJ, Gallagher A, Mottram T, Lake A, Kane EV, Lightfoot T, Roman E, Jarrett RF. Germ-line transmitted, chromosomally integrated HHV-6 and classical Hodgkin lymphoma. PLoS One 2014; 9:e112642. [PMID: 25384040 PMCID: PMC4226568 DOI: 10.1371/journal.pone.0112642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 12/05/2022] Open
Abstract
A unique feature of both human herpesvirus 6A and B (HHV-6A and B) among human herpesviruses is their ability to integrate into chromosomal telomeres. In some individuals integrated viral genomes are present in the germ-line and result in the vertical transmission of HHV-6; however, little is known about the disease associations of germ-line transmitted, chromosomally integrated HHV-6 (ciHHV-6). Recent publications suggest that HHV-6 is associated with classical Hodgkin lymphoma (cHL). Here we examine the prevalence of ciHHV-6 in 936 cases of cHL and 563 controls by screening with a duplex TaqMan assay and confirming with droplet digital PCR. ciHHV-6 was detected in 10/563 (1.8%) controls and in all but one individual the virus was HHV-6B. Amongst cases 16/936 (1.7%) harboured ciHHV-6, thus demonstrating no association between ciHHV-6 and risk of cHL.
Collapse
Affiliation(s)
- Adam J. Bell
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail:
| | - Alice Gallagher
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Timothy Mottram
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Annette Lake
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Eleanor V. Kane
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Tracy Lightfoot
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Ruth F. Jarrett
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
44
|
Hill JA, Sedlak RH, Jerome KR. Past, present, and future perspectives on the diagnosis of Roseolovirus infections. Curr Opin Virol 2014; 9:84-90. [PMID: 25462438 DOI: 10.1016/j.coviro.2014.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/23/2023]
Abstract
Diagnosis of Roseolovirus infections mandates careful selection of patients, samples, and testing methods. We review advances in the field and highlight research priorities. Quantitative (q)PCR can accurately identify and distinguish between human herpesvirus 6 (HHV-6) species A and B. Whether screening of high-risk patients improves outcomes is unclear. Chromosomally integrated (ci)HHV-6 confounds test interpretation but can be ruled out with digital PCR. Reverse transcription qPCR may be a more specific and clinically applicable test for actively replicating Roseoloviruses, particularly among patients with ciHHV-6. Interpretation of Roseolovirus test results faces many challenges. However, careful application of refined and emerging diagnostic techniques will allow for increasingly accurate diagnosis of clinically significant infections and disease associations.
Collapse
Affiliation(s)
- Joshua A Hill
- Department of Medicine, University of Washington, Seattle, WA, United States; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ruth Hall Sedlak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|