1
|
Han Z, Mai Q, Zhao Y, Liu X, Cui M, Li M, Chen Y, Shu Y, Gan J, Pan W, Sun C. Mosaic neuraminidase-based vaccine induces antigen-specific T cell responses against homologous and heterologous influenza viruses. Antiviral Res 2024; 230:105978. [PMID: 39117282 DOI: 10.1016/j.antiviral.2024.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Seasonal influenza is an annually severe crisis for global public health, and an ideal influenza vaccine is expected to provide broad protection against constantly drifted strains. Compared to highly flexible hemagglutinin (HA), increasing data have demonstrated that neuraminidase (NA) might be a potential target against influenza variants. In the present study, a series of genetic algorithm-based mosaic NA were designed, and then cloned into recombinant DNA and replication-defective Vesicular Stomatitis Virus (VSV) vector as a novel influenza vaccine candidate. Our Results showed that DNA prime/VSV boost strategy elicited a robust NA-specific Th1-dominated immune response, but the traditional inactivated influenza vaccine elicited a Th2-dominated immune response. More importantly, the superior NA-specific immunity induced by our strategy could confer both a full protection against lethal homologous influenza challenge and a partial protection against heterologous influenza infection. These findings will provide insights on designing NA-based universal vaccine strategy against influenza variants.
Collapse
Affiliation(s)
- Zirong Han
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qianyi Mai
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangguo Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinglai Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mingting Cui
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yaoqing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhui Gan
- Shenzhen Kangtai Biological Products Co., Ltd, Shenzhen, 518057, China.
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ospina-Jimenez AF, Gomez AP, Rincon-Monroy MA, Ortiz L, Perez DR, Peña M, Ramirez-Nieto G. Sequence-Based Antigenic Analyses of H1 Swine Influenza A Viruses from Colombia (2008-2021) Reveals Temporal and Geographical Antigenic Variations. Viruses 2023; 15:2030. [PMID: 37896808 PMCID: PMC10612065 DOI: 10.3390/v15102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Swine influenza is a respiratory disease that affects the pork industry and is a public health threat. It is caused by type A influenza virus (FLUAV), which continuously undergoes genetic and antigenic variations. A large amount of information regarding FLUAV in pigs is available worldwide, but it is limited in Latin America. The HA sequences of H1 subtype FLUAV-positive samples obtained from pigs in Colombia between 2008-2021 were analyzed using sequence-based antigenic cartography and N-Glycosylation analyses. Of the 12 predicted global antigenic groups, Colombia contained five: four corresponding to pandemic strains and one to the classical swine H1N1 clade. Circulation of these clusters was observed in some regions during specific years. Ca2 was the immunodominant epitope among Colombian viruses. The counts of N-Glycosylation motifs were associated with the antigenic cluster ranging from three to five. The results show for the first time the existence of antigenic diversity of FLUAV in Colombia and highlight the impact of spatial and temporal factors on this diversity. This study provides information about FLUAV variability in pigs under natural conditions in the absence of vaccination and emphasizes the need for surveillance of its phylogenetic and antigenic characteristics.
Collapse
Affiliation(s)
- Andres F. Ospina-Jimenez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Arlen P. Gomez
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| | - Maria A. Rincon-Monroy
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
- National Veterinary Diagnostics Laboratory, Colombian Agricultural Institute (ICA), Bogotá 110931, Colombia
| | - Lucia Ortiz
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Daniel R. Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (L.O.); (D.R.P.)
| | - Mario Peña
- Asociación Colombiana de Porcicultores Porkcolombia—FNP, Bogotá 111311, Colombia;
| | - Gloria Ramirez-Nieto
- Grupo de Investigación en Microbiología y Epidemiología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (A.F.O.-J.); (A.P.G.); (M.A.R.-M.)
| |
Collapse
|
3
|
Haghpanah F, Hamilton A, Klein E. Modeling the potential health impacts of delayed strain selection on influenza hospitalization and mortality with mRNA vaccines. Vaccine X 2023; 14:100287. [PMID: 37063306 PMCID: PMC10090206 DOI: 10.1016/j.jvacx.2023.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background Influenza viruses are constantly evolving through antigenic drift, which makes vaccines potentially ill-matched to circulating strains due to the time between strain selection and distribution. mRNA technology could improve vaccine effectiveness (VE) by reducing this time. Significant private and public investments would be required to accommodate accelerated vaccine development and approval. Hence, it is important to understand the potential impact of mRNA technology on influenza hospitalizations and mortality. Methods We developed an age-stratified dynamic model of influenza transmission to evaluate the potential impact of increased VE (increased protection against either infection or only hospitalization) on hospitalizations and mortality in the United States. We assume that mRNA technology allows for delaying the time to strain choice, which might increase efficacy, but it does not reduce the time needed for distribution and administration, which might reduce availability. To assess this tradeoff, we evaluated two scenarios where strain choice was delayed until late summer resulting in a more effective vaccine available to (1) all age groups by October, or (2) adults 65 years and older starting in August. Results If not available until October, the vaccine would need a minimum of 95% effectiveness against infection to see a decrease in hospitalizations and deaths in all age groups. When delayed until November, even a 100% effective vaccine had no significant impact. For the elderly, the minimum required VE (against infection) was 50% to reduce hospitalizations and deaths. Moreover, a vaccine with 80% VE against infection available in August for the 65 + age group was better than a 95% effective vaccine available in October for all ages. Conclusions As the majority of influenza-associated hospitalizations and deaths are in adults 65 years and older, a combination policy targeting higher VE and coverage for this age group in the short term would be the most efficacious.
Collapse
Affiliation(s)
| | | | - Eili Klein
- One Health Trust, Washington, D.C., USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
4
|
Wilasang C, Suttirat P, Chadsuthi S, Wiratsudakul A, Modchang C. Competitive evolution of H1N1 and H3N2 influenza viruses in the United States: A mathematical modeling study. J Theor Biol 2022; 555:111292. [PMID: 36179800 DOI: 10.1016/j.jtbi.2022.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Seasonal influenza causes vast public health and economic impact globally. The prevention and control of the annual epidemics remain a challenge due to the antigenic evolution of the viruses. Here, we presented a novel modeling framework based on changes in amino acid sequences and relevant epidemiological data to retrospectively investigate the competitive evolution and transmission of H1N1 and H3N2 influenza viruses in the United States during October 2002 and April 2019. To do so, we estimated the time-varying disease transmission rate from the reported influenza cases and the time-varying antigenic change rate of the viruses from the changes in amino acid sequences. By incorporating the time-varying antigenic change rate into the transmission models, we found that the models could capture the evolutionary transmission dynamics of influenza viruses in the United States. Our modeling results also showed that the antigenic change of the virus plays an essential role in seasonal influenza dynamics.
Collapse
Affiliation(s)
- Chaiwat Wilasang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pikkanet Suttirat
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Abstract
Introduction: As the pathogen that caused the first influenza virus pandemic in this century, the swine-origin A(H1N1) pdm09 influenza virus has caused continuous harm to human public health. The evolution of hemagglutinin protein glycosylation sites, including the increase in number and positional changes, is an important way for influenza viruses to escape host immune pressure. Based on the traditional influenza virus molecular monitoring, special attention should be paid to the influence of glycosylation evolution on the biological characteristics of virus antigenicity, transmission and pathogenicity. The epidemiological significance of glycosylation mutants should be analyzed as a predictive tool for early warning of new outbreaks and pandemics, as well as the design of vaccines and drug targets.Areas covered: We review on the evolutionary characteristics of glycosylation on the HA protein of the A(H1N1)pdm09 influenza virus in the last ten years.Expert opinion: We discuss the crucial impact of evolutionary glycosylation on the biological characteristics of the virus and the host immune responses, summarize studies revealing different roles of glycosylation play during host adaptation. Although these studies show the significance of glycosylation evolution in host-virus interaction, much remains to be discovered about the mechanism.
Collapse
Affiliation(s)
- Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA USA
| |
Collapse
|
7
|
Nagashima KA, Mousa JJ. Next-Generation Influenza HA Immunogens and Adjuvants in Pursuit of a Broadly Protective Vaccine. Viruses 2021; 13:v13040546. [PMID: 33805245 PMCID: PMC8064354 DOI: 10.3390/v13040546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kaito A. Nagashima
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
8
|
Huang W, Cheng Y, Chen T, Li X, Tan M, Wei H, Zeng X, Xie Y, Liu J, Xiao N, Yang L, Wang D. Characterization of Influenza Viruses - China, 2019-2020. China CDC Wkly 2020; 2:856-861. [PMID: 34733571 PMCID: PMC8543716 DOI: 10.46234/ccdcw2020.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
- Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Yanhui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Minju Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Yiran Xie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Ning Xiao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| |
Collapse
|
9
|
Retrospective Assessment of the Antigenic Similarity of Egg-Propagated and Cell Culture-Propagated Reference Influenza Viruses as Compared with Circulating Viruses across Influenza Seasons 2002-2003 to 2017-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155423. [PMID: 32731417 PMCID: PMC7432082 DOI: 10.3390/ijerph17155423] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022]
Abstract
Suboptimal vaccine effectiveness against seasonal influenza is a significant public health concern, partly explained by antigenic differences between vaccine viruses and viruses circulating in the environment. Haemagglutinin mutations within vaccine viruses acquired during serial passage in eggs have been identified as a source of antigenic variation between vaccine and circulating viruses. This study retrospectively compared the antigenic similarity of circulating influenza isolates with egg- and cell-propagated reference viruses to assess any observable trends over a 16-year period. Using annual and interim reports published by the Worldwide Influenza Centre, London, for the 2002-2003 to 2017-2018 influenza seasons, we assessed the proportions of circulating viruses which showed antigenic similarity to reference viruses by season. Egg-propagated reference viruses were well matched against circulating viruses for A/H1N1 and B/Yamagata. However, A/H3N2 and B/Victoria cell-propagated reference viruses appeared to be more antigenically similar to circulating A/H3N2 and B/Victoria viruses than egg-propagated reference viruses. These data support the possibility that A/H3N2 and B/Victoria viruses are relatively more prone to egg-adaptive mutation. Cell-propagated A/H3N2 and B/Victoria reference viruses were more antigenically similar to circulating A/H3N2 and B/Victoria viruses over a 16-year period than were egg-propagated reference viruses.
Collapse
|
10
|
Prasad N, Huang QS, Wood T, Aminisani N, McArthur C, Baker MG, Seeds R, Thompson MG, Widdowson MA, Newbern EC. Influenza-Associated Outcomes Among Pregnant, Postpartum, and Nonpregnant Women of Reproductive Age. J Infect Dis 2020; 219:1893-1903. [PMID: 30690449 DOI: 10.1093/infdis/jiz035] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pregnant women are prioritized for seasonal influenza vaccination, but the evidence on the risk of influenza during pregnancy that is used to inform these policies is limited. METHODS Individual-level administrative data sets and active surveillance data were joined to estimate influenza-associated hospitalization and outpatient visit rates by pregnancy, postpartum, and trimester status. RESULTS During 2012-2015, 46 of 260 (17.7%) influenza-confirmed hospitalizations for acute respiratory infection and 13 of 294 (4.4%) influenza-confirmed outpatient visits were among pregnant and postpartum women. Pregnant and postpartum women experienced higher rates of influenza-associated hospitalization than nonpregnant women overall (rate ratio [RR], 3.4; 95% confidence interval [CI], 2.5-4.7) and by trimester (first, 2.5 [95% CI, 1.2-5.4]; second, 3.9 [95% CI, 2.4-6.3]; and third, 4.8 [95% CI, 3.0-7.7]); the RR for the postpartum period was 0.7 (95% CI, 3.0-7.7). Influenza A viruses were associated with an increased risk (RR for 2009 pandemic influenza A[H1N1] virus, 5.3 [95% CI, 3.2-8.7]; RR for influenza A(H3N2) virus, 3.0 [95% CI, 1.8-5.0]), but influenza B virus was not (RR, 1.8; 95% CI, .7-4.6). Influenza-associated hospitalization rates in pregnancy were significantly higher for Māori women (RR, 3.2; 95% CI, 1.3-8.4), compared with women of European or other ethnicity. Similar risks for influenza-confirmed outpatient visits were not observed. CONCLUSION Seasonal influenza poses higher risks of hospitalization among pregnant women in all trimesters, compared with nonpregnant women. Hospitalization rates vary by influenza virus type and ethnicity among pregnant women.
Collapse
Affiliation(s)
- Namrata Prasad
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Q Sue Huang
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Tim Wood
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Nayyereh Aminisani
- Institute of Environmental Science and Research, Upper Hutt, New Zealand.,Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Iran
| | - Colin McArthur
- Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Ruth Seeds
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Mark G Thompson
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - E Claire Newbern
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| |
Collapse
|
11
|
Al Khatib HA, Al Thani AA, Gallouzi I, Yassine HM. Epidemiological and genetic characterization of pH1N1 and H3N2 influenza viruses circulated in MENA region during 2009-2017. BMC Infect Dis 2019; 19:314. [PMID: 30971204 PMCID: PMC6458790 DOI: 10.1186/s12879-019-3930-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Influenza surveillance is necessary for detection of emerging variants of epidemiologic and clinical significance. This study describes the epidemiology of influenza types A and B, and molecular characteristics of surface glycoproteins (hemagglutinin [HA] and neuraminidase [NA]) of influenza A subtypes: pH1N1 and H3N2 circulated in Arabian Gulf, Levant and North Africa regions during 2009-2017. METHODS Analysis of phylogenetics and evolution of HA and NA genes was done using full HA and NA sequences (n = 1229) downloaded from Influenza Research Database (IRD). RESULTS In total, 130,354 influenza positive cases were reported to WHO during study period. Of these, 50.8% were pH1N1 positive, 15.9% were H3N2 positives and 17.2% were influenza B positive. With few exceptions, all three regions were showing the typical seasonal influenza peak similar to that reported in Northern hemisphere (December-March). However, influenza activity started earlier (October) in both Gulf and North Africa while commenced later during November in Levant countries. The molecular analysis of the HA genes (influenza A subtypes) revealed similar mutations to those reported worldwide. Generally, amino acid substitutions were most frequently found in head domain in H1N1 pandemic viruses, while localized mainly in the stem region in H3N2 viruses. Expectedly, seasons with high pH1N1 influenza activity was associated with a relatively higher number of substitutions in the head domain of the HA in pH1N1 subtype. Furthermore, nucleotide variations were lower at the antigenic sites of pH1N1 viruses compared to H3N2 viruses, which experienced higher variability at the antigenic sites, reflecting the increased immunological pressure because of longer circulation and continuous vaccine changes. Analysis of NA gene of pH1N1 viruses revealed sporadic detections of oseltamivir-resistance mutation, H275Y, in 4% of reported sequences, however, none of NAI resistance mutations were found in the NA of H3N2 viruses. CONCLUSIONS Molecular characterization of H1N1 and H3N2 viruses over 9 years revealed significant differences with regard to position and function of characterized substitutions. While pH1N1 virus substitutions were mainly found in HA head domain, H3N2 virus substitutions were mostly found in HA stem domain. Additionally, more fixed substitutions were encountered in H3N2 virus compared to larger number of non-fixed substitutions in pH1N1.
Collapse
Affiliation(s)
- Hebah A Al Khatib
- Life Science division, College of Science and Engineering, Hamad Ben Khalifah University, Doha, 34110, Qatar
| | | | - Imed Gallouzi
- Life Science division, College of Science and Engineering, Hamad Ben Khalifah University, Doha, 34110, Qatar.,Biochemistry Department and Goodman Cancer Center, 3655 Promenade Sir William Osler, McGill University, Montreal, Quebec, H3G1Y6, Canada
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
12
|
The epidemiology and severity of respiratory viral infections in a tropical country: Ecuador, 2009-2016. J Infect Public Health 2018; 12:357-363. [PMID: 30573330 PMCID: PMC7102740 DOI: 10.1016/j.jiph.2018.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Respiratory viral infections (RVI) are a leading cause of mortality worldwide. We compared the epidemiology and severity of RVI in Ecuador during 2009-2016. METHODS Respiratory specimens collected within the national surveillance system were tested for influenza viruses, respiratory syncytial virus (RSV), adenovirus, parainfluenza virus, and human metapneumovirus. Overall and virus-specific positive detection rate (PDR) were calculated and compared the timing of epidemics caused by the different viruses. Logistic regression models were used to compare the age distribution and risk of death across respiratory viruses. RESULTS A total of 41,172 specimens were analyzed: influenza (PDR=14.3%) and respiratory syncytial virus (RSV) (PDR=9.5%) were the most frequently detected viruses. Influenza epidemics typically peaked in December-January and RSV epidemics in March; seasonality was less evident for the other viruses. Compared to adults, children were more frequently infected with RSV, adenovirus, parainfluenza, and influenza B, while the elderly were less frequently infected with influenza A(H1N1)p. The age-adjusted risk of death was highest for A(H1N1)p (odds ratio [OR] 1.73, 95% confidence intervals [CI] 1.38-2.17), and lowest for RSV (OR 0.75, 95%CI 0.57-0.98). CONCLUSIONS Whilst influenza and RSV were the most frequently detected pathogens, the risk of death differed by RVI, being highest for pandemic influenza and lowest for RSV.
Collapse
|
13
|
Barbezange C, Jones L, Blanc H, Isakov O, Celniker G, Enouf V, Shomron N, Vignuzzi M, van der Werf S. Seasonal Genetic Drift of Human Influenza A Virus Quasispecies Revealed by Deep Sequencing. Front Microbiol 2018; 9:2596. [PMID: 30429836 PMCID: PMC6220372 DOI: 10.3389/fmicb.2018.02596] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023] Open
Abstract
After a pandemic wave in 2009 following their introduction in the human population, the H1N1pdm09 viruses replaced the previously circulating, pre-pandemic H1N1 virus and, along with H3N2 viruses, are now responsible for the seasonal influenza type A epidemics. So far, the evolutionary potential of influenza viruses has been mainly documented by consensus sequencing data. However, like other RNA viruses, influenza A viruses exist as a population of diverse, albeit related, viruses, or quasispecies. Interest in this quasispecies nature has increased with the development of next generation sequencing (NGS) technologies that allow a more in-depth study of the genetic variability. NGS deep sequencing methodologies were applied to determine the whole genome genetic heterogeneity of the three categories of influenza A viruses that circulated in humans between 2007 and 2012 in France, directly from clinical respiratory specimens. Mutation frequencies and single nucleotide polymorphisms were used for comparisons to address the level of natural intrinsic heterogeneity of influenza A viruses. Clear differences in single nucleotide polymorphism profiles between seasons for a given subtype also revealed the constant genetic drift that human influenza A virus quasispecies undergo.
Collapse
Affiliation(s)
- Cyril Barbezange
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Louis Jones
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, The Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gershon Celniker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Correia V, Abecasis AB, Rebelo-de-Andrade H. Molecular footprints of selective pressure in the neuraminidase gene of currently circulating human influenza subtypes and lineages. Virology 2018; 522:122-130. [PMID: 30029011 DOI: 10.1016/j.virol.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022]
Abstract
Influenza neuraminidase (NA) is under selective pressure (SP) of both host immune system and drug use. Here, we assembled large datasets of NA sequences of worldwide circulating viruses to estimate the global and site-specific SP acting on all current subtypes/lineages of human influenza NA. An overall negative SP of similar magnitude and a prevalence of negatively selected sites were observed for all subtypes/lineages. Positively selected sites varied according to the subtype/lineage, including N1-NA sites 247 and 275, N2-NA sites 148 and 151, and B/Victoria-NA site 395 associated with drug-resistance or reduced susceptibility. These results evidenced a potential role of positive selection in the low-level spread of A(H1N1)pdm09-H275Y drug-resistant viruses, and alerted for a potential higher risk of spread of a synergistic A(H1N1)pdm09 drug-resistant variant (H275Y/S247N). The positive selection detected at N2-NA sites 148 and 151 was probably an artefact from cell-culture. Overall mapping revealed six potential new druggable regions.
Collapse
Affiliation(s)
- Vanessa Correia
- Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Ana B Abecasis
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal.
| | - Helena Rebelo-de-Andrade
- Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
15
|
Host contact structure is important for the recurrence of Influenza A. J Math Biol 2018; 77:1563-1588. [PMID: 29974201 DOI: 10.1007/s00285-018-1263-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/05/2018] [Indexed: 10/28/2022]
Abstract
An important characteristic of influenza A is its ability to escape host immunity through antigenic drift. A novel influenza A strain that causes a pandemic confers full immunity to infected individuals. Yet when the pandemic strain drifts, these individuals will have decreased immunity to drifted strains in the following seasonal epidemics. We compute the required decrease in immunity so that a recurrence is possible. Models for influenza A must make assumptions on the contact structure on which the disease spreads. By considering local stability of the disease free equilibrium via computation of the reproduction number, we show that the classical random mixing assumption predicts an unrealistically large decrease of immunity before a recurrence is possible. We improve over the classical random mixing assumption by incorporating a contact network structure. A complication of contact networks is correlations induced by the initial pandemic. We provide a novel analytic derivation of such correlations and show that contact networks may require a dramatically smaller loss of immunity before recurrence. Hence, the key new insight in our paper is that on contact networks the establishment of a new strain is possible for much higher immunity levels of previously infected individuals than predicted by the commonly used random mixing assumption. This suggests that stable contacts like classmates, coworkers and family members are a crucial path for the spread of influenza in human populations.
Collapse
|
16
|
Comparison of the Efficacy of N9 Neuraminidase-Specific Monoclonal Antibodies against Influenza A(H7N9) Virus Infection. J Virol 2018; 92:JVI.01588-17. [PMID: 29167344 DOI: 10.1128/jvi.01588-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.
Collapse
|
17
|
Shah Mahmud R, Mostafa A, Müller C, Kanrai P, Ulyanova V, Sokurenko Y, Dzieciolowski J, Kuznetsova I, Ilinskaya O, Pleschka S. Bacterial ribonuclease binase exerts an intra-cellular anti-viral mode of action targeting viral RNAs in influenza a virus-infected MDCK-II cells. Virol J 2018; 15:5. [PMID: 29304825 PMCID: PMC5756404 DOI: 10.1186/s12985-017-0915-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Influenza is a severe contagious disease especially in children, elderly and immunocompromised patients. Beside vaccination, the discovery of new anti-viral agents represents an important strategy to encounter seasonal and pandemic influenza A virus (IAV) strains. The bacterial extra-cellular ribonuclease binase is a well-studied RNase from Bacillus pumilus. Treatment with binase was shown to improve survival of laboratory animals infected with different RNA viruses. Although binase reduced IAV titer in vitro and in vivo, the mode of action (MOA) of binase against IAV at the molecular level has yet not been studied in depth and remains elusive. METHODS To analyze whether binase impairs virus replication by direct interaction with the viral particle we applied a hemagglutination inhibition assay and monitored the integrity of the viral RNA within the virus particle by RT-PCR. Furthermore, we used Western blot and confocal microscopy analysis to study whether binase can internalize into MDCK-II cells. By primer extension we examined the effect of binase on the integrity of viral RNAs within the cells and using a mini-genome system we explored the effect of binase on the viral expression. RESULTS We show that (i) binase does not to attack IAV particle-protected viral RNA, (ii) internalized binase could be detected within the cytosol of MDCK-II cells and that (iii) binase impairs IAV replication by specifically degrading viral RNA species within the infected MDCK-II cells without obvious effect on cellular mRNAs. CONCLUSION Our data provide novel evidence suggesting that binase is a potential anti-viral agent with specific intra-cellular MOA.
Collapse
Affiliation(s)
- Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Center (NRC), El-Buhouth Street 87, 12311 Dokki, Cairo, Egypt
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
| | - Pumaree Kanrai
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Present address: Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Yulia Sokurenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Julia Dzieciolowski
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Present address: Department of Biochemistry and Molecular Biology, Institute of Nutritional Science, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Irina Kuznetsova
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
18
|
Chiu AP, Lin Q, Tang EYN, He D. Anti-phase synchronization of influenza A/H1N1 and A/H3N2 in Hong Kong and countries in the North Temperate Zone. Int J Infect Dis 2018; 66:42-44. [DOI: 10.1016/j.ijid.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022] Open
|
19
|
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. ILAR J 2017; 58:343-358. [PMID: 28985316 PMCID: PMC7108571 DOI: 10.1093/ilar/ilx026] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenic RNA viruses are potentially the most important group involved in zoonotic disease transmission, and they represent a challenge for global disease control. Their biological diversity and rapid adaptive rates have proved to be difficult to overcome and to anticipate by modern medical technology. Also, the anthropogenic change of natural ecosystems and the continuous population growth are driving increased rates of interspecies contacts and the interchange of pathogens that can develop into global pandemics. The combination of molecular, epidemiological, and ecological knowledge of RNA viruses is therefore essential towards the proper control of these emergent pathogens. This review outlines, throughout different levels of complexity, the problems posed by RNA viral diseases, covering some of the molecular mechanisms allowing them to adapt to new host species-and to novel pharmaceutical developments-up to the known ecological processes involved in zoonotic transmission.
Collapse
Affiliation(s)
- R Carrasco-Hernandez
- R. Carrasco-Hernandez, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Rodrigo Jácome
- Rodrigo Jácome, MD, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Yolanda López Vidal
- Yolanda López-Vidal, MD, PhD, is an associate professor “C” and is responsible for the Program of Microbial Molecular Immunology in the Department of Microbiology and Parasitology of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Samuel Ponce de León
- Samuel Ponce-de-León, MD, MSc, is an associate professor “C”, is responsible for the Microbiome Laboratory and Coordinator of the University Program for Health Research of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| |
Collapse
|
20
|
Canche-Pech JR, Conde-Ferraez L, Puerto-Solis M, Gonzalez-Losa R, Granja-Pérez P, Villanueva-Jorge S, Chan-Gasca M, Gómez-Carballo J, López-Ochoa L, Jiménez-Delgadillo B, Rodríguez-Sánchez I, Ramírez-Prado J, Ayora-Talavera G. Temporal distribution and genetic variants in influenza A(H1N1)pdm09 virus circulating in Mexico, seasons 2012 and 2013. PLoS One 2017; 12:e0189363. [PMID: 29220381 PMCID: PMC5722308 DOI: 10.1371/journal.pone.0189363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
The 2012 and 2013 annual influenza epidemics in Mexico were characterized by presenting different seasonal patterns. In 2012 the A(H1N1)pdm09 virus caused a high incidence of influenza infections after a two-year period of low circulation; whereas the 2013 epidemic presented circulation of the A(H1N1)pdm09 virus throughout the year. We have characterized the molecular composition of the Hemagglutinin (HA) and Neuraminidase (NA) genes of the A(H1N1)pdm09 virus from both epidemic seasons, emphasizing the genetic characteristics of viruses isolated from Yucatan in Southern Mexico. The molecular analysis of viruses from the 2012 revealed that all viruses from Mexico were predominantly grouped in clade 7. Strikingly, the molecular characterization of viruses from 2013 revealed that viruses circulating in Yucatan were genetically different to viruses from other regions of Mexico. In fact, we identified the occurrence of two genetic variants containing relevant mutations at both the HA and NA surface antigens. There was a difference on the temporal circulation of each genetic variant, viruses containing the mutations HA-A141T / NA-N341S were detected in May, June and July; whereas viruses containing the mutations HA-S162I / NA-L206S circulated in August and September. We discuss the significance of these novel genetic changes.
Collapse
Affiliation(s)
- Jose Reyes Canche-Pech
- Universidad Autonoma de Yucatan. Centro de Investigaciones Regionales Dr.Hideyo Noguchi. Av. Centro. C.P. Merida, Yucatan, Mexico
| | - Laura Conde-Ferraez
- Universidad Autonoma de Yucatan. Centro de Investigaciones Regionales Dr.Hideyo Noguchi. Av. Centro. C.P. Merida, Yucatan, Mexico
| | - Marylin Puerto-Solis
- Universidad Autonoma de Yucatan. Centro de Investigaciones Regionales Dr.Hideyo Noguchi. Av. Centro. C.P. Merida, Yucatan, Mexico
| | - Refugio Gonzalez-Losa
- Universidad Autonoma de Yucatan. Centro de Investigaciones Regionales Dr.Hideyo Noguchi. Av. Centro. C.P. Merida, Yucatan, Mexico
| | - Pilar Granja-Pérez
- Laboratorio Estatal de Salud Publica. Servicios de Salud de Yucatan, Yucatan, México
| | | | - Maria Chan-Gasca
- Laboratorio Estatal de Salud Publica. Servicios de Salud de Yucatan, Yucatan, México
| | - Jesus Gómez-Carballo
- Universidad Autonoma de Yucatan. Centro de Investigaciones Regionales Dr.Hideyo Noguchi. Av. Centro. C.P. Merida, Yucatan, Mexico
| | - Luisa López-Ochoa
- Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigacion Cientifica de Yucatan, A.C., Calle, Col. Chuburna de Hidalgo, C.P. Merida, Yucatan, Mexico
| | | | - Iram Rodríguez-Sánchez
- Departamento de Genética, Facultad de Medicina, Universidad Autonoma de Nuevo Leon. Av. Gonzalitos s/n cruce con Av. Madero. Col. Mitras Centro. C.P. Monterrey, Nuevo Leon, Mexico
| | | | - Guadalupe Ayora-Talavera
- Universidad Autonoma de Yucatan. Centro de Investigaciones Regionales Dr.Hideyo Noguchi. Av. Centro. C.P. Merida, Yucatan, Mexico
| |
Collapse
|
21
|
Influenza Vaccination in Patients with Common Variable Immunodeficiency (CVID). Curr Allergy Asthma Rep 2017; 17:78. [PMID: 28983790 DOI: 10.1007/s11882-017-0749-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Vaccination against influenza in patients with primary antibody deficiency is recommended. Common variable immunodeficiency (CVID) is the most frequent and clinically relevant antibody deficiency disease and is by definition characterized by an impaired vaccination response. The purpose of this review is to present the current knowledge of humoral and cellular vaccine response to influenza in CVID patients. RECENT FINDINGS Studies conducted in CVID patients demonstrated an impaired humoral response upon influenza vaccination. Data on cellular immune response are in part conflicting, with two out of three studies showing responses similar to healthy controls. Available data suggest a benefit from influenza vaccination in CVID patients. Therefore, annual influenza vaccination in patients and their close household contacts is recommended.
Collapse
|
22
|
Glatman-Freedman A, Drori Y, Beni SA, Friedman N, Pando R, Sefty H, Tal I, McCauley J, Rahav G, Keller N, Shohat T, Mendelson E, Hindiyeh M, Mandelboim M. Genetic divergence of Influenza A(H3N2) amino acid substitutions mark the beginning of the 2016-2017 winter season in Israel. J Clin Virol 2017; 93:71-75. [PMID: 28672275 PMCID: PMC5711789 DOI: 10.1016/j.jcv.2017.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/05/2022]
Abstract
BACKGROUND Influenza vaccine composition is reevaluated each year due to the frequency and accumulation of genetic changes that influenza viruses undergo. The beginning of the 2016-2017 influenza surveillance period in Israel has been marked by the dominance of influenza A(H3N2). OBJECTIVES To evaluate the type, subtype, genetic evolution and amino acid substitutions of influenza A(H3N2) viruses detected among community patients with influenza-like illness (ILI) and hospitalized patients with respiratory illness in the first weeks of the 2016-2017 influenza season. STUDY DESIGN Respiratory samples from community patients with influenza-like illness and from hospitalized patients underwent identification, subtyping and molecular characterization. Hemagglutinin sequences were compared to the vaccine strain, phylogenetic tree was created, and amino acid substitutions were determined. RESULTS Influenza A(H3N2) predominated during the early stages of the 2016-2017 influenza season. Noticeably, approximately 20% of community patients and 36% of hospitalized patients, positive for influenza3), received the 2016-2017 influenza vaccine. The influenza A(H3N2) viruses demonstrated genetic divergence from the vaccine strain into three separate subgroups within the 3C.2a clade. One resembled the new 3C.2a1 subclade, one resembled the recently proposed 3C.2a2 subclade and the other was not previously described. Diversity was observed within each subgroup, in terms of additional amino acid substitutions. CONCLUSIONS Characterization of the 2016-2017 A(H3N2) influenza viruses is imperative for determining the future influenza vaccine composition.
Collapse
Affiliation(s)
- Aharona Glatman-Freedman
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Departments of Pediatrics and Family and Community Medicine, New York Medical College, Valhalla, New York, USA
| | - Yaron Drori
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Sharon Alexandra Beni
- Division of Infectious Diseases, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Nehemya Friedman
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Rakefet Pando
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat Gan, Israel; Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Hanna Sefty
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat Gan, Israel
| | - Ilana Tal
- Division of Infectious Diseases, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - John McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, the Francis Crick Institute, London, United Kingdom
| | - Galia Rahav
- Division of Infectious Diseases, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Department of Internal Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Nathan Keller
- Microbiology Laboratory, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Ariel University, Ariel, Israel
| | - Tamy Shohat
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella Mendelson
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Musa Hindiyeh
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Michal Mandelboim
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
| |
Collapse
|
23
|
Rand KH, Pieretti M, Arcenas R, Beal SG, Houck H, Boslet E, Lednicky JA. Semi-quantitative Influenza A population averages from a multiplex respiratory viral panel (RVP): potential for reflecting target sequence changes affecting the assay. Virol J 2017; 14:128. [PMID: 28709460 PMCID: PMC5513141 DOI: 10.1186/s12985-017-0796-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Background Yearly influenza virus mutations potentially affect the performance of molecular assays, if nucleic acid changes involve the sequences in the assay. Because individual patient viral loads depend on variables such as duration of illness, specimen type, age, and immunosuppression, we examined seasonal population averages of positive tests to smooth inherent variability. Methods We studied the population seasonal averages of the semi-quantitative nAMPs for the influenza matrix and hemagglutinin genes in the GenMark (Carlsbad, CA) Respiratory Viral Panel assay between 3 institutions over 3 Influenza seasons. Results Population average nAMPs were strikingly consistent between separate institutions, but differed substantially between H3N2 and H1N1 seasons. In the 2012–2013 and 2014–2015 influenza seasons, matrix gene H3N2 nAMP averages were 50–70% less than those of the same assay in the 2013–2014 H1N1 season. Influenza strains representative of these seasons were grown in tissue culture and when the supernatant virus was adjusted to the same copy number using a TaqMan assay, the same relative differences were reproduced in the RVP assay. Because the sequences for the PCR and PCR product detection in the GenMark assay are proprietary, the manufacturer provided single stranded DNA matching the capture probe for the representative H3N2 (3 mismatches) and H1N1 strains (2 different mismatches). Equimolar concentrations of these synthetic DNA sequences gave average nAMP values that closely correlated with the average nAMPS of the representative strains and their respective seasonal averages. Conclusions Seasonal averages of semi-quantitative data may provide a means to follow assay performance as a reflection of the effects of molecular drift.
Collapse
Affiliation(s)
- Kenneth H Rand
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | | | | | - Stacy G Beal
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Herbert Houck
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Emma Boslet
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Molecular characterization of neuraminidase genes of influenza A(H3N2) viruses circulating in Southwest India from 2009 to 2013. Arch Virol 2017; 162:1887-1902. [DOI: 10.1007/s00705-017-3306-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
|
25
|
Wang Y, Yan W, Chen Q, Huang W, Yang Z, Li X, Wang X. Inhibition viral RNP and anti-inflammatory activity of coumarins against influenza virus. Biomed Pharmacother 2017; 87:583-588. [PMID: 28081470 DOI: 10.1016/j.biopha.2016.12.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
Influenza viruses pose a severe threat to human health and a significant increase in antiviral drug-resistant among influenza viruses worldwide has been observed. Therefore, there is an urgent need to develop the new antiviral drugs, specifically from the natural products. In this study, the anti-viral and anti-inflammatory activities of coumarins against influenza A virus in vitro were investigated. One of the derivatives eleutheroside B1 showed a wide spectrum of anti- human influenza virus effect with the IC50 value of 64-125μg/ml in vitro, but it showed no effects against avian influenza virus. The time of addition was done and the results indicated that it had a potent antiviral effect when added at 0-6h, and also the virus yield was reduced by 60%. The influenza virus ribonucleoprotein was inhibited at 200μg/ml, and also the NP mRNA expression was inhibited at 50 and 200μg/ml. The expression level of cytokines and chemokines influenced by eleutheroside B1 was further demonstrated, the IL-6, CXCL-8, CCL-2 expression were all inhibited by the eleuthe roside B1 at concentration 200μg/ml. The findings of study suggest that eleutheroside B1 can be as potential agent to develop for the prevention and treatment of influenza A virus.
Collapse
Affiliation(s)
- YuTao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 PR China
| | - Wen Yan
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405 PR China
| | - QiaoLian Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 PR China
| | - WanYi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| | - Xiong Li
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006 PR China.
| | - XinHua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 PR China.
| |
Collapse
|
26
|
Jiang W, Sheng C, Gu X, Liu D, Yao C, Gao S, Chen S, Huang Y, Huang W, Fang M. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication. Sci Rep 2016; 6:35041. [PMID: 27869202 PMCID: PMC5116764 DOI: 10.1038/srep35041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022] Open
Abstract
Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunjie Sheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Yao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Key Laboratory of Tumor Targeted Drug in Guangdong Province, Guangzhou Double Bioproducts Co., Ltd., Guangzhou, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Barron MA, Frank DN, Claypool D, Ir D, Ning MF, Curtis D, Weinberg A. Antibody responses to influenza a H1N1 vaccine compared to the circulating strain in influenza vaccine recipients during the 2013/2014 season in North America. J Clin Virol 2016; 83:56-60. [PMID: 27591557 DOI: 10.1016/j.jcv.2016.08.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Influenza strain A/California/07/2009 H1N1 (H1N1-09) reemerged in 2013/2014 as the predominant cause of illness. We sought to determine if antigenic drift may have contributed to the decreased responses to influenza vaccine. METHODS Fifty adults who received trivalent inactivated influenza vaccine (IIV3) and 56 children who received live attenuated quadrivalent influenza vaccine (LAIV4) had hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies measured in plasma against H1N1-09 and H1N1 2013/2014 (H1N1-14) influenza. Partial sequencing of the hemagglutinin gene (nt 280-780) was performed on 38 clinical isolates and the vaccine prototype. RESULTS In IIV3 recipients, HAI and MN titers against H1N1-14 were significantly lower than against H1N1-09 (p<0.0001 and 0.04, respectively). In LAIV4 recipients, only MN titers were significantly lower (p=0.02) for H1N1-09 compared with H1N1-14. A combined analysis showed significantly lower HAI and MN titers for H1N1-14 compared with H1N1-09 (p=0. 016 and 0.008, respectively). All 38 clinical isolates encoded the HA gene K166Q non-synonymous substitution; other non-synonymous substitutions were observed in <10% of the clinical isolates. CONCLUSIONS 2013/2014 IIV3 and LAIV4 recipients had consistently lower MN antibody titers against H1N1-14 compared with H1N1-09. The HA K166Q mutation, located in a neutralizing epitope, probably contributed to these findings.
Collapse
Affiliation(s)
- Michelle A Barron
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - David Claypool
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Mariangeli F Ning
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Donna Curtis
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States
| | - Adriana Weinberg
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, United States.
| |
Collapse
|
28
|
Weinberg A, Curtis D, Ning MF, Claypool DJ, Jalbert E, Patterson J, Frank DN, Ir D, Armon C. Immune Responses to Circulating and Vaccine Viral Strains in HIV-Infected and Uninfected Children and Youth Who Received the 2013/2014 Quadrivalent Live-Attenuated Influenza Vaccine. Front Immunol 2016; 7:142. [PMID: 27148262 PMCID: PMC4831981 DOI: 10.3389/fimmu.2016.00142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/01/2016] [Indexed: 11/13/2022] Open
Abstract
The live-attenuated influenza vaccine (LAIV) has generally been more efficacious than the inactivated vaccine in children. However, LAIV is not recommended for HIV-infected children because of insufficient data. We compared cellular, humoral, and mucosal immune responses to the 2013-2014 LAIV quadrivalent (LAIV4) in HIV-infected and uninfected children 2-25 years of age (yoa). We analyzed the responses to the vaccine H1N1 (H1N1-09), to the circulating H1N1 (H1N1-14), which had significant mutations compared to H1N1-09 and to B Yamagata (BY), which had the highest effectiveness in 2013-2014. Forty-six HIV-infected and 56 uninfected participants with prior influenza immunization had blood and nasal swabs collected before and after LAIV4 for IFNγ T and IgG/IgA memory B-cell responses (ELISPOT), plasma antibodies [hemagglutination inhibition (HAI) and microneutralization (MN)], and mucosal IgA (ELISA). The HIV-infected participants had median CD4+ T cells = 645 cells/μL and plasma HIV RNA = 20 copies/mL. Eighty-four percent were on combination anti-retroviral therapy. Regardless of HIV status, significant increases in T-cell responses were observed against BY, but not against H1N1-09. H1N1-09 T-cell immunity was higher than H1N1-14 both before and after vaccination. LAIV4 significantly increased memory IgG B-cell immunity against H1N1-14 and BY in uninfected, but not in HIV-infected participants. Regardless of HIV status, H1N1-09 memory IgG B-cell immunity was higher than H1N1-14 and lower than BY. There were significant HAI titer increases after vaccination in all groups and against all viruses. However, H1N1-14 MN titers were significantly lower than H1N1-09 before and after vaccination overall and in HIV-uninfected vaccinees. Regardless of HIV status, LAIV4 increased nasal IgA concentrations against all viruses. The fold-increase in H1N1-09 IgA was lower than BY. Overall, participants <9 yoa had decreased BY-specific HAI and nasal IgA responses to LAIV4. In conclusion, HIV-infected and uninfected children and youth had comparable responses to LAIV4. H1N1-09 immune responses were lower than BY and higher than H1N1-14, suggesting that both antigenic mismatches between circulating and vaccine H1N1 and lower immunogenicity of the H1N1 vaccine strain may have contributed to the decreased H1N1 effectiveness of 2013-2014 LAIV4.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Donna Curtis
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Mariangeli Freitas Ning
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - David Jeremy Claypool
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Emilie Jalbert
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Julie Patterson
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Carl Armon
- Children's Hospital of Colorado , Aurora, CO , USA
| |
Collapse
|
29
|
Devarajan P, Bautista B, Vong AM, McKinstry KK, Strutt TM, Swain SL. New Insights into the Generation of CD4 Memory May Shape Future Vaccine Strategies for Influenza. Front Immunol 2016; 7:136. [PMID: 27148257 PMCID: PMC4827017 DOI: 10.3389/fimmu.2016.00136] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/28/2016] [Indexed: 12/18/2022] Open
Abstract
Influenza viral evolution presents a formidable challenge to vaccination due to the virus' ability to rapidly mutate to evade immune responses. Live influenza infections generate large and diverse CD4 effector T cell responses that yield highly protective, long-lasting CD4 T cell memory that can target conserved viral epitopes. We review advances in our understanding of mechanisms involved in generating CD4 T cell responses against the influenza A virus (IAV), focusing on specialized follicular helper (TFH) and CD4 cytotoxic (ThCTL) effector subsets and on CD4 T cell memory. We also discuss two recent findings in context of enhancing vaccine responses. First, helper T cells require priming with APC secreting high levels of IL-6. Second, the transition of IAV-generated effectors to memory depends on IL-2, costimulation and antigen signals, just before effectors reach peak numbers, defined as the "memory checkpoint." The need for these signals during the checkpoint could explain why many current influenza vaccines are poorly effective and elicit poor cellular immunity. We suggest that CD4 memory generation can be enhanced by re-vaccinating at this time. Our best hope lies in a universal vaccine that will not need to be formulated yearly against seasonal antigenically novel influenza strains and will also be protective against a pandemic strain. We suggest a vaccine approach that elicits a powerful T cell response, by initially inducing high levels of APC activation and later providing antigen at the memory checkpoint, may take us a step closer to such a universal influenza vaccine.
Collapse
Affiliation(s)
| | - Bianca Bautista
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Karl Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Tara M Strutt
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| |
Collapse
|
30
|
Tewawong N, Prachayangprecha S, Vichiwattana P, Korkong S, Klinfueng S, Vongpunsawad S, Thongmee T, Theamboonlers A, Poovorawan Y. Assessing Antigenic Drift of Seasonal Influenza A(H3N2) and A(H1N1)pdm09 Viruses. PLoS One 2015; 10:e0139958. [PMID: 26440103 PMCID: PMC4594909 DOI: 10.1371/journal.pone.0139958] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/18/2015] [Indexed: 12/03/2022] Open
Abstract
Under selective pressure from the host immune system, antigenic epitopes of influenza virus hemagglutinin (HA) have continually evolved to escape antibody recognition, termed antigenic drift. We analyzed the genomes of influenza A(H3N2) and A(H1N1)pdm09 virus strains circulating in Thailand between 2010 and 2014 and assessed how well the yearly vaccine strains recommended for the southern hemisphere matched them. We amplified and sequenced the HA gene of 120 A(H3N2) and 81 A(H1N1)pdm09 influenza virus samples obtained from respiratory specimens and calculated the perfect-match vaccine efficacy using the pepitope model, which quantitated the antigenic drift in the dominant epitope of HA. Phylogenetic analysis of the A(H3N2) HA1 genes classified most strains into genetic clades 1, 3A, 3B, and 3C. The A(H3N2) strains from the 2013 and 2014 seasons showed very low to moderate vaccine efficacy and demonstrated antigenic drift from epitopes C and A to epitope B. Meanwhile, most A(H1N1)pdm09 strains from the 2012–2014 seasons belonged to genetic clades 6A, 6B, and 6C and displayed the dominant epitope mutations at epitopes B and E. Finally, the vaccine efficacy for A(H1N1)pdm09 (79.6–93.4%) was generally higher than that of A(H3N2). These findings further confirmed the accelerating antigenic drift of the circulating influenza A(H3N2) in recent years.
Collapse
Affiliation(s)
- Nipaporn Tewawong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Slinporn Prachayangprecha
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Vichiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sumeth Korkong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
31
|
In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:813047. [PMID: 26346523 PMCID: PMC4544958 DOI: 10.1155/2015/813047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/13/2015] [Accepted: 06/14/2015] [Indexed: 12/15/2022]
Abstract
The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.
Collapse
|
32
|
Yatsyshina S, Renteeva A, Deviatkin A, Vorobyeva N, Minenko A, Valdokhina A, Elkina M, Kuleshov K, Shipulin G. Molecular genetic analysis of the Influenza A(H1N1)pdm09 virus from lethal and recovered cases in Russia from 2009 to 2014: Deletions in the nucleoprotein. INFECTION GENETICS AND EVOLUTION 2015; 34:160-72. [PMID: 26190451 DOI: 10.1016/j.meegid.2015.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
Influenza A(H1N1)pdm09 virus caused about 2000 laboratory confirmed lethal cases in Russia during 2009-2010 and 1302, 135 and 29 cases in the 2010-2011, 2012-2013 and 2013-2014 seasons respectively. The on average short duration (7.8±5 days) of lethal cases of Influenza A(H1N1)pdm09 infections in Russia suggests primary viral rather than secondary bacterial pneumonia. Hemorrhagic syndrome was recorded in 36.6% of patients. An examination of 221 lung samples from lethal influenza cases for the presence of bacterial DNA that could cause pneumonia did not reveal bacterial superinfections in 86% of cases. Molecular-genetic analyses of Influenza A(H1N1)pdm09 viruses from lethal and recovered cases were performed. Amino acids G and N at position 222 of the influenza virus hemagglutinin, which increase the affinity for the lower respiratory tract receptors, were detected more often in the lungs of patients who died than in respiratory swabs collected from recovered patients (p<0.0001 and p=0.007). Viruses harboring various mutations (222D/G/N/S) was significantly associated with lung samples compared with respiratory swabs from recovered patients (p<0.0001). Amino acid 222E, which increases the affinity for upper respiratory tract receptors, was found more frequently in recovered patients than in patients with lethal disease (27% versus 3%, p=0.005). Phylogenetic analysis identified an isolated cluster of viruses in the 2009-2010 season that harbored amino acid 222E, which could explain the high transmissibility of the virus at the beginning of the pandemic. Bayesian skyline plot implied a decline in the effective population size of Influenza A(H1N1)pdm09 viruses in Russia from 2010-2011 to 2011-2012, followed by an increase in 2012-2013; this trend was accompanied by the increased genetic diversity of the hemagglutinin antigenic sites. Mutations of viral RNA leading to oseltamivir resistance were found in 2.8% of tested patients during only 2010-2011 season. Deletions in the nucleoprotein cDNA were found in influenza viruses from two patients.
Collapse
Affiliation(s)
- Svetlana Yatsyshina
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Anna Renteeva
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Andrei Deviatkin
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Nadezhda Vorobyeva
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Angrey Minenko
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Anna Valdokhina
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Mariya Elkina
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Konstantin Kuleshov
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - German Shipulin
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| |
Collapse
|
33
|
Concurrent and cross-season protection of inactivated influenza vaccine against A(H1N1)pdm09 illness among young children: 2012-2013 case-control evaluation of influenza vaccine effectiveness. Vaccine 2015; 33:2917-21. [PMID: 25921713 DOI: 10.1016/j.vaccine.2015.04.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022]
Abstract
In 2012-2013, we examined 1729 laboratory-confirmed A(H1N1)pdm09 influenza cases matched 1:1 with healthy controls and estimated influenza vaccine effectiveness (VE) for trivalent inactivated influenza vaccine (IIV3) to be 67% (95% confidence interval=58-74%) for ages 8 months to 6 years old. Among children aged 8-35 months old, VE for fully vaccinated children (73%, 60-81%) was significantly higher than VE for partially vaccinated children (55%, 33-70%). Significant cross-season protection from prior IIV3 was noted, including VE of 31% (8-48%) from IIV3 received in 2010-2011 against influenza illness in 2012--2013 without subsequent boosting doses.
Collapse
|
34
|
Castelán-Vega JA, Magaña-Hernández A, Jiménez-Alberto A, Ribas-Aparicio RM. The hemagglutinin of the influenza A(H1N1)pdm09 is mutating towards stability. Adv Appl Bioinform Chem 2014; 7:37-44. [PMID: 25328411 PMCID: PMC4198066 DOI: 10.2147/aabc.s68934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The last influenza A pandemic provided an excellent opportunity to study the adaptation of the influenza A(H1N1)pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates since the beginning of the pandemic until date, we could monitor amino acid changes that occurred in the hemagglutinin (HA) as the virus spread worldwide and became the dominant H1N1 strain. HA is crucial to viral infection because it binds to sialidated cell-receptors and mediates fusion of cell and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. Multiple alignment analysis of sequences of the HA from isolates taken since 2009 to date allowed us to find amino acid changes that were positively selected as the pandemic progressed. We found nine changes that became prevalent: HA1 subunits D104N, K166Q, S188T, S206T, A259T, and K285E; and HA2 subunits E47K, S124N, and E172K. Most of these changes were located in areas involved in inter- and intrachain interactions, while only two (K166Q and S188T) were located in known antigenic sites. We conclude that selective pressure on HA was aimed to improve its functionality and hence virus fitness, rather than at avoidance of immune recognition.
Collapse
Affiliation(s)
- Juan A Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anastasia Magaña-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|