1
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
2
|
Bonetti S, Zusi C, Rinaldi E, Boselli ML, Csermely A, Malerba G, Trabetti E, Bonora E, Bonadonna R, Trombetta M. Role of monogenic diabetes genes on beta cell function in Italian patients with newly diagnosed type 2 diabetes. The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 13. DIABETES & METABOLISM 2022; 48:101323. [DOI: 10.1016/j.diabet.2022.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
|
3
|
Reddy S, Maddhuri S, Nallari P, Ananthapur V, Kalyani S, Krishna M, Cherkuri N, Patibandala S. Association of ABCC8 and KCNJ11 gene variants with type 1 diabetes in south Indians. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Type 1 diabetes mellitus (TIDM) is a polygenic disorder with the involvement of several genetic and environmental risk factors. Mutation in genes namely ABCC8 and KCNJ11 disrupt the potentiality of KATP channel and regulates the secretion of insulin by detecting a change in the blood glucose level and consequently maintains glucose homeostasis. The present study was designed to investigate the association of ABCC8 and KCNJ11gene polymorphisms with type 1 diabetes. A case-control study was conducted enrolling 60 cases suffering from T1DM and 60 healthy controls of comparable age and sex. Gene variations were determined by PCR-RFLP and ARMS-PCR method.
Results
The ABCC8-3C > T (rs1799854) variation was found to be significantly associated with T1DM (p<0.01) and “CT” genotype was found to be predominant in T1DM with a threefold increased risk to diabetes and the association was statistically significant. However, we did not find any significant association of C>T (rs1801261) polymorphism of ABCC8 with T1DM. A significant association was observed for genetic variation at rs5219 C>T polymorphism and the frequency of TT genotype was found to be significantly higher in patients (46.7%) than in controls (21.7%), indicating the significant role of the KCNJ11 rs5219 variant in T1DM susceptibility (p<0.001), but we did not observe any significant association of G>A (rs5215) polymorphism of KCNJ11 with T1DM. In addition, haplotype analysis of the two genes revealed four haplotypes such as T-C-G-T, T-C-A-T, C-C-G-T, and T-T-G-T as risk haplotypes for type 1 diabetes (p<0.02) potentially making individual effects of these variants on the disease susceptibility, thereby indicating the synergistic role of these genes in the regulation of glucose homeostasis.
Conclusions
The present study highlights the importance of personalized medicine based on individual genetic profile.
Collapse
|
4
|
Association between KCNJ11 rs5219 variant and alcohol consumption on the effect of insulin secretion in a community-based Korean cohort: a 12-year follow-up study. Sci Rep 2021; 11:4729. [PMID: 33633334 PMCID: PMC7907140 DOI: 10.1038/s41598-021-84179-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Chronic alcohol consumption is known to be associated with type 2 diabetes (T2D), which is developed by two underlying mechanisms, β-cell dysfunction and insulin resistance. Identification of genetic variants in association with the development of T2D may help explain the genetic risk factors of T2D. In this study, we tried to find out some genetic variations, which interact with alcohol consumption and also are associated with β-cell function through 12 year’s follow-up study in Korean population. We performed a genotype association study using the community-based Ansung-Ansan Cohort data (baseline n = 3120; follow-up n = 433). Genotype association analyses of the baseline data showed that alcohol consumption is associated with the decreases of blood insulin levels and insulin secretion in participants with the KCNJ11 rs5219 risk allele. Moreover, multivariate logistic regression analyses revealed that the risk allele group is vulnerable to impairment of β-cell function in response to alcohol consumption (OR 1.450; 95% CI 1.061–1.982). Furthermore, 12-year’ follow-up results showed that alcohol consumption synergistically decreases insulin secretion in participants with KCNJ11 rs5219 risk alleles. Our findings demonstrate that the KCNJ11 rs5219 risk allele in combination with alcohol consumption could be a potential risk factor of β-cell dysfunction. We hope that this new findings could be helpful to further understand the development of T2D depending on individual genetic background in association with alcohol consumption.
Collapse
|
5
|
Blasetti A, Castorani V, Comegna L, Franchini S, Prezioso G, Provenzano M, Di Giulio C, Iannucci D, Matonti L, Tumini S, Chiarelli F, Stuppia L. Role of the KCNJ Gene Variants in the Clinical Outcome of Type 1 Diabetes. Horm Metab Res 2020; 52:856-860. [PMID: 32693412 DOI: 10.1055/a-1204-5443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is considered as a disease with a wide and continuous clinical spectrum, ranging from Type 1 (T1D) and Type 2 Diabetes (T2D) with complex multifactorial causes. In the last years, particular attention has been focused on the predictive value and therapeutic potential of single nucleotide polymorphisms (SNPs). SNPs can alter the seed-sequence in miRNA's loci and miRNA target sites causing changes in the structure and influencing the binding function. Only few studies have investigated the clinical influence of SNPs, in particular potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ) gene variants in T1D population. The aim of the study is to investigate the occurrence and the possible metabolic significance of KCNJ polymorphism in a group of pediatric patients with T1D. The study was performed in a cohort of 90 Caucasian children and adolescents with T1D and 93 healthy subjects. Rs5210 polymorphism has been analyzed with a prevalence of the GG genotype in the patient group suggesting its association with T1D. Therefore, a relationship was found between GG genotype and body mass index (BMI) at diagnosis and insulin requirement (IR) after 6 months. The study suggested an action for rs5210 in determining the metabolic features of T1D pediatric patients, by showing some clues of insulin resistance in patients carrying that polymorphism.
Collapse
Affiliation(s)
| | | | - Laura Comegna
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | - Concetta Di Giulio
- S.O.D. Pediatrics and Neonatology, Hospital of Senigallia, Senigallia, Italy
| | | | - Lorena Matonti
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Stefano Tumini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | |
Collapse
|
6
|
Song N, Du J, Gao Y, Yang S. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Transl Neurosci 2020; 11:402-418. [PMID: 33343932 PMCID: PMC7724003 DOI: 10.1515/tnsci-2020-0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) applied to the nucleus accumbens (NAc) alleviates the depressive symptoms of major depressive disorders. We investigated the mechanism of this effect by assessing gene expression and RNA methylation changes in the ventral tegmental area (VTA) following NAc-DBS in a chronic unpredictable mild stress (CUMS) mouse model of depression. Gene expression and N 6-methyladenosine (m6A) levels in the VTA were measured in mice subjected to CUMS and then DBS, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays, prior to gene ontology analysis. The expression levels of genes linked to neurotransmitter receptors, transporters, transcription factors, neuronal activities, synaptic functions, and mitogen-activated protein kinase and dopamine signaling were upregulated in the VTA upon NAc-DBS. Furthermore, m6A modifications included both hypermethylation and hypomethylation, and changes were positively correlated with the upregulation of some genes. Moreover, the effects of CUMS on gene expression and m6A-mRNA modification were reversed by DBS for some genes. Interestingly, while the expression of certain genes was not changed by DBS, long-term stimulation did alter their m6A modifications. NAc-DBS-induced modifications are correlated largely with upregulation but sometimes downregulation of genes in CUMS mice. Our findings improve the current understanding of the molecular mechanisms underlying DBS effects on depression.
Collapse
Affiliation(s)
- Nan Song
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Jun Du
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Yan Gao
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Shenglian Yang
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| |
Collapse
|
7
|
Pharmacogenetic Aspects of Type 2 Diabetes Treatment. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this article, we analyze the role of different variants of the KCNJ11, TCF7L2, SLC22A1, SLC22A3, CYP2C9, CYP2C8, PPARγ genes polymorphisms in efficacy of diabetes mellitus pharmacotherapy. T allele of the KCNJ11 rs2285676 gene polymorphism and G allele of KCNJ11 rs5218 gene polymorphism are associated with the response to IDPP-4 therapy; the presence of KCNJ11 gene rs5210 polymorphism A allele is a predictor of poor response. The effect of rs7903146 polymorphism of TCF7L2 gene was evaluated on the response to treatment of patients taking linagliptin. Linagliptin significantly reduced HbA1c levels for all three rs7903146 genotypes (CC: –0.82 %; CT: –0.77 %; TT: –0.57 %). A significantly smaller effect of therapy was observed with the genotype with ТТ. The rs622342 polymorphism of SLC22A1 gene was studied in effectiveness of metformin. The researches demonstrated that carriers of variant AA had an average decrease of HbA1c of 0.53 %, heterozygous – decrease of 0.32 %, and carriers of a minor variant of SS had an increase of 0.2 % in the level of HbA1c. A significant effect of CYP2C9 polymorphisms on the pharmacokinetic parameters of PSM was noted. When studying the kinetics of glibenclamide, it was found that carriage of the allele *2 significantly reduces glibenclamide metabolism: homozygous carriers had clearance 90 % lower than homozygous carriers of the wild variant. The studies confirmed the association of the allelic variants of Thr394Thr and Gly482Ser of PPARγ gene with higher efficacy of the rosiglitazone. The data obtained from the analysis of the association of the Pro12Ala polymorphism of PPARγ gene and the response to therapy is contradictory. Thus the personalized approach, based on the knowledge of polymorphism options, will allow choosing the most effective drug with transparent kinetics for each individual patient.
Collapse
|
8
|
Li Y, Shen K, Li C, Yang Y, Yang M, Tao W, He S, Shi L, Yao Y. Identifying the association between single nucleotide polymorphisms in KCNQ1, ARAP1, and KCNJ11 and type 2 diabetes mellitus in a Chinese population. Int J Med Sci 2020; 17:2379-2386. [PMID: 32922204 PMCID: PMC7484634 DOI: 10.7150/ijms.48072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) has a high global prevalence, and insufficient insulin secretion is one of the major reasons for its development. Therefore, investigating the association between T2DM and the single nucleotide polymorphisms (SNPs) in genes associated with insulin secretion is necessary. Methods: T2DM (1,194) and nondiabetic (NDM) (1,292) subjects were enrolled and the ten single nucleotide polymorphisms (SNPs) in KCNQ1, ARAP1, and KCNJ11 associated with insulin secretion were genotyped in a Chinese population. Results: Our data revealed that the rs2237897T allele in KCNQ1 is the protective allele for T2DM (P<0.001, OR=0.793; 95%CI: 0.705-0.893). However, the A allele of rs1552224 in ARAP1 may be a risk factor for T2DM (P=0.002, OR=12.070; 95% CI: 1.578-92.337). The haplotype analysis revealed that rs151290-rs2237892CC and rs2237895-rs2237897CC in KCNQ1 constitute the risk haplotype in T2DM development (P=0.010, OR=1.160; 95% CI: 1.037-1.299 and P=0.004, OR=1.192; 95% CI: 1.057-1.344). Moreover, rs2237895-rs2237897AT in KCNQ1 constitutes the protective haplotype in T2DM (P=0.001, OR=0.819; 95% CI: 0.727-0.923). In the inheritance models analysis, the rs2283228 (C/A-C/C) genotype is the protective factor compared to the A/A genotype (P=0.005, OR=0.79; 95% CI: 0.68-0.93). For rs2237897, the C/T-T/T genotype is the protective factor compared to the C/C genotype (P<0.001, OR=0.74; 95% CI: 0.63-0.87). Furthermore, when compared with the rs2237897 (C/T-T/T) genotype, rs2237897C/C genotype showed higher HbA1C levels (8.731±2.697 vs 9.282±2.921, P=0.001). Conclusion: Our results revealed that genetic variations in KCNQ1 and ARAP1 were associated with T2DM susceptibility in a Chinese population.
Collapse
Affiliation(s)
- Yiping Li
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Keyu Shen
- Department of Medicine, Dentistry and Healthy Science, The University of Melbourne, Melbourne VIC3010, Australia
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Man Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Wenyu Tao
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Siqi He
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| |
Collapse
|
9
|
Sarkar P, Bhowmick A, Baruah MP, Bhattacharjee S, Subhadra P, Banu S. Determination of individual type 2 diabetes risk profile in the North East Indian population & its association with anthropometric parameters. Indian J Med Res 2019; 150:390-398. [PMID: 31823921 PMCID: PMC6902361 DOI: 10.4103/ijmr.ijmr_888_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background & objectives: Diabetes genomics research has illuminated single nucleotide polymorphism (SNP) in several genes including, fat mass and obesity associated (FTO) (rs9939609 and rs9926289), potassium voltage-gated channel subfamily J member 11 (rs5219), SLC30A8 (rs13266634) and peroxisome proliferator-activated receptor gamma 2 (rs1805192). The present study was conducted to investigate the involvement of these polymorphisms in conferring susceptibility to type 2 diabetes (T2D) in the North East Indian population, and also to establish their association with anthropometric parameters. Methods: DNA was extracted from blood samples of 155 patients with T2D and 100 controls. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing. To confirm the association between the inheritance of SNP and T2D development, logistic regression analysis was performed. Results: For the rs9939609 variant (FTO), the dominant model AA/(AT+TT) revealed significant association with T2D [odds ratio (OR)=2.03, P=0.021], but was non-significant post correction for multiple testing (P=0.002). For the rs13266634 variant (SLC30A8), there was considerable but non-significant difference in the distribution pattern of genotypic polymorphisms between the patients and the controls (P=0.004). Significant association was observed in case of the recessive model (CC+CT)/TT (OR=4.56 P=0.001), after adjusting for age, gender and body mass index. In addition, a significant association (P=0.001) of low-density lipoprotein (mg/dl) could be established with the FTO (rs9926289) polymorphism assuming dominant model. Interpretation & conclusions: The current study demonstrated a modest but significant effect of SLC30A8 (rs13266634) polymorphisms on T2D predisposition. Considering the burgeoning prevalence of T2D in the Indian population, the contribution of these genetic variants studied, to the ever-increasing number of T2D cases, appears to be relatively low. This study may serve as a foundation for performing future genome-wide association studies (GWAS) involving larger populations.
Collapse
Affiliation(s)
- Purabi Sarkar
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam, India
| | - Ananya Bhowmick
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam, India
| | - Manash P Baruah
- Department of Endocrinology, Excelcare Hospitals, Guwahati, Assam, India
| | | | - Poornima Subhadra
- Department of Genetics & Molecular Medicine, Kamineni Academy of Medical Sciences & Research Center, Hyderabad, Telangana, India
| | - Sofia Banu
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
10
|
Muftin NQ, Jubair S. KCNJ11 polymorphism is associated with type 2 diabetes mellitus in Iraqi patients. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Werissa NA, Piko P, Fiatal S, Kosa Z, Sandor J, Adany R. SNP-Based Genetic Risk Score Modeling Suggests No Increased Genetic Susceptibility of the Roma Population to Type 2 Diabetes Mellitus. Genes (Basel) 2019; 10:genes10110942. [PMID: 31752367 PMCID: PMC6896051 DOI: 10.3390/genes10110942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In a previous survey, an elevated fasting glucose level (FG) and/or known type 2 diabetes mellitus (T2DM) were significantly more frequent in the Roma population than in the Hungarian general population. We assessed whether the distribution of 16 single nucleotide polymorphisms (SNPs) with unequivocal effects on the development of T2DM contributes to this higher prevalence. METHODS Genetic risk scores, unweighted (GRS) and weighted (wGRS), were computed and compared between the study populations. Associations between GRSs and FG levels and T2DM status were investigated in separate and combined study populations. RESULTS The Hungarian general population carried a greater genetic risk for the development of T2DM (GRSGeneral = 15.38 ± 2.70 vs. GRSRoma = 14.80 ± 2.68, p < 0.001; wGRSGeneral = 1.41 ± 0.32 vs. wGRSRoma = 1.36 ± 0.31, p < 0.001). In the combined population models, GRSs and wGRSs showed significant associations with elevated FG (p < 0.001) and T2DM (p < 0.001) after adjusting for ethnicity, age, sex, body mass index (BMI), high-density Lipoprotein Cholesterol (HDL-C), and triglyceride (TG). In these models, the effect of ethnicity was relatively strong on both outcomes (FG levels: βethnicity = 0.918, p < 0.001; T2DM status: ORethnicity = 2.484, p < 0.001). CONCLUSIONS The higher prevalence of elevated FG and/or T2DM among Roma does not seem to be directly linked to their increased genetic load but rather to their environmental/cultural attributes. Interventions targeting T2DM prevention among Roma should focus on harmful environmental exposures related to their unhealthy lifestyle.
Collapse
Affiliation(s)
- Nardos Abebe Werissa
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
- Doctorial School of Health Sciences, University of Debrecen, 4028 Debrecen, Hungary
| | - Peter Piko
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
| | - Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, 4028 Debrecen, Hungary; (S.F.); (J.S.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
| | - Zsigmond Kosa
- Department of Health Visitor Methodology and Public Health, Faculty of Health, University of Debrecen, 4400 Nyíregyháza, Hungary;
| | - Janos Sandor
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, 4028 Debrecen, Hungary; (S.F.); (J.S.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
| | - Roza Adany
- MTA−DE Public Health Research Group of the Hungarian Academy of Sciences, Public Health Research Institute, University of Debrecen, 4028 Debrecen, Hungary; (N.A.W.); (P.P.)
- WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, 4028 Debrecen, Hungary
- Correspondence: ; Tel: +36-5251-2764
| |
Collapse
|
12
|
Chatterjee R, Davenport CA, Raffield LM, Maruthur N, Lange L, Selvin E, Butler K, Yeh HC, Wilson JG, Correa A, Edelman D, Hauser E. KCNJ11 variants and their effect on the association between serum potassium and diabetes risk in the Atherosclerosis Risk in Communities (ARIC) Study and Jackson Heart Study (JHS) cohorts. PLoS One 2018; 13:e0203213. [PMID: 30169531 PMCID: PMC6118367 DOI: 10.1371/journal.pone.0203213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/16/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the Atherosclerosis Risk in Communities (ARIC) Study and Jackson Heart Study (JHS) cohorts, serum potassium (K) is an independent predictor of diabetes risk, particularly among African-American participants. Experimental studies show that serum K levels affects insulin secretion. The KCNJ11 gene encodes for a K channel that regulates insulin secretion and whose function is affected by serum K levels. Variants in KCNJ11 are associated with increased diabetes risk. We hypothesized that there could be a gene-by-environment interaction between KCNJ11 variation and serum K on diabetes risk. METHODS Evaluating a combined cohort of ARIC and JHS participants, we sought to determine if KCNJ11 variants are risk factors for diabetes; and if KCNJ11 variants modify the association between serum K and diabetes risk. Among participants without diabetes at baseline, we performed multivariable logistic regression to determine the effect of serum K, KCNJ11 variants, and their interactions on the odds of incident diabetes mellitus over 8-9 years in the entire cohort and by race. RESULTS Of 11,812 participants, 3220 (27%) participants developed diabetes. 48% and 47% had 1 or 2 diabetes risk alleles of rs5215 and rs5219, respectively. Caucasians had higher proportions of these risk alleles compared to African Americans (60% vs 17% for rs5215 and 60% vs 13% for rs5219, p<0.01). Serum K was a significant independent predictor of incident diabetes. Neither rs5215 nor rs5219 was associated with incident diabetes. In multivariable models, we found no statistically significant interactions between race and either rs5215 or rs5219 (P-values 0.493 and 0.496, respectively); nor between serum K and either rs5215 or rs5219 on odds of incident diabetes (P-values 0.534 and 0.687, respectively). CONCLUSION In this cohort, rs5215 and rs5219 of KCNJ11 were not significant predictors of incident diabetes nor effect modifiers of the association between serum K and incident diabetes.
Collapse
Affiliation(s)
| | | | - Laura M. Raffield
- University of North Carolina, Chapel Hill, NC, United States of America
| | - Nisa Maruthur
- Johns Hopkins University,Baltimore, MD, United States of America
| | - Leslie Lange
- University of Colorado, Denver,CO, United States of America
| | - Elizabeth Selvin
- Johns Hopkins University,Baltimore, MD, United States of America
| | - Kenneth Butler
- University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Hsin-Chieh Yeh
- Johns Hopkins University,Baltimore, MD, United States of America
| | - James G. Wilson
- University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, United States of America
| | - David Edelman
- Duke University, Durham, NC, United States of America
| | | |
Collapse
|
13
|
Rizvi S, Raza ST, Mahdi F, Singh SP, Rajput M, Rahman Q. Genetic polymorphisms inKCNJ11 (E23K, rs5219)andSDF-1β (G801A, rs1801157)genes are associated with the risk of type 2 diabetes mellitus. Br J Biomed Sci 2018; 75:139-144. [DOI: 10.1080/09674845.2018.1473939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S Rizvi
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
- Science and Technology, Amity Institute of Biotechnology, Amity University Uttar Pradesh , Lucknow, India
| | - ST Raza
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - F Mahdi
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - SP Singh
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - M Rajput
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital , Lucknow, India
| | - Q Rahman
- Science and Technology, Amity Institute of Biotechnology, Amity University Uttar Pradesh , Lucknow, India
| |
Collapse
|
14
|
Association of KCNJ11(RS5219) gene polymorphism with biochemical markers of glycemic status and insulin resistance in gestational diabetes mellitus. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Sharaf SA, Kantoush NA, Ayoub DF, Ibrahim AA, Abdelaal AA, Aziz RA, ElHefnawi MM, Ahmed AN. Altered expression of WFS1 and NOTCH2 genes associated with diabetic nephropathy in T2DM patients. Diabetes Res Clin Pract 2018; 140:304-313. [PMID: 29626590 DOI: 10.1016/j.diabres.2018.03.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022]
Abstract
AIM The increased incidence of type 2 diabetes mellitus (T2DM) and the importance of early identification and management of its complications, especially diabetic nephropathy (DN), have spotted the light on genetic factors that increase risk of T2DM and its related nephropathy. The present study aimed at investigating expression of (KCNJ11, ABCC8, JAZF1, WFS1, PPARG, NOTCH2 and EXOSC4) genes in peripheral blood of T2DM patients. METHOD The study included 30 non-complicated T2DM patients, 30 patients with DN and 40 healthy controls. Quantitative Real Time PCR Array was used to study gene expression. RESULTS NOTCH2 showed higher expression while KCNJ11, JAZF1, WFS1 and PPARG genes showed lower expression in DN patients compared to non-complicated patients. KCNJ11, JAZF1, WFS1, PPARG, and EXOSC4 expression showed significant negative correlation with microalbumin, while NOTCH2 expression was significantly positively correlated with microalbumin. AS regard HbA1c and studied genes expression, there was significant negative correlation between WFS1 expression and HbA1c, while NOTCH2, KCNJ11, JAZF1, PPARG, EXOSC4 expression didn't show significant correlation with HbA1c. Risk ratio of studied genes expression showed that WFS1 and NOTCH2 had highest risk ratio (30) and highest sensitivity and specificity, in relation to DN and they were the best predictors in the group of studied genes at cut off value of ≤0.861 for WFS1 and ≥0.678 for NOTCH2. CONCLUSION Altered expression of WFS1 and NOTCH2 genes may play a role in pathogenesis and development of DN in patients with T2DM. These results may contribute in early identification and management of DN.
Collapse
Affiliation(s)
- Sahar A Sharaf
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nagwa A Kantoush
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Dina F Ayoub
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Alshaymaa A Ibrahim
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt.
| | - Amaal A Abdelaal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rokaya Abdel Aziz
- Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud M ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, Division of Engineering Research, National Research Centre, Cairo, Egypt
| | - Amira N Ahmed
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
16
|
Severino P, D'Amato A, Netti L, Pucci M, De Marchis M, Palmirotta R, Volterrani M, Mancone M, Fedele F. Diabetes Mellitus and Ischemic Heart Disease: The Role of Ion Channels. Int J Mol Sci 2018. [PMID: 29534462 PMCID: PMC5877663 DOI: 10.3390/ijms19030802] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is one the strongest risk factors for cardiovascular disease and, in particular, for ischemic heart disease (IHD). The pathophysiology of myocardial ischemia in diabetic patients is complex and not fully understood: some diabetic patients have mainly coronary stenosis obstructing blood flow to the myocardium; others present with coronary microvascular disease with an absence of plaques in the epicardial vessels. Ion channels acting in the cross-talk between the myocardial energy state and coronary blood flow may play a role in the pathophysiology of IHD in diabetic patients. In particular, some genetic variants for ATP-dependent potassium channels seem to be involved in the determinism of IHD.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Andrea D'Amato
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Lucrezia Netti
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Mariateresa Pucci
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marialaura De Marchis
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Clinical Oncology Oncogenomic Research Center, 'Aldo Moro' University of Bari, 70124 Bari, Italy.
| | - Maurizio Volterrani
- Department of Cardiac Rehabilitation, IRCCS San Raffaele, 00163 Rome, Italy.
| | - Massimo Mancone
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
17
|
Xu M, Hu H, Deng D, Chen M, Xu Z, Wang Y. Prediabetes is associated with genetic variations in the gene encoding the Kir6.2 subunit of the pancreatic ATP-sensitive potassium channel (KCNJ11): A case-control study in a Han Chinese youth population. J Diabetes 2018; 10:121-129. [PMID: 28449408 DOI: 10.1111/1753-0407.12565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/06/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The E23K variant of the potassium voltage-gated channel subfamily J member 11 (KCNJ11) gene has been reported to be associated with type 2 diabetes (T2D) in many populations. However, little is known about the role of E23K in the development of prediabetes in Chinese youth. METHODS To investigate the role of E23K in the development of prediabetes, 279 subjects with prediabetes and 240 normal controls (mean [± SD] age 18.1 ± 3.2 and 17.8 ± 4.3 years, respectively) were recruited to the study. Height, weight, and hip and waist circumferences were measured by trained physicians. Genotyping of KCNJ11 polymorphisms and clinical laboratory tests to determine cholesterol, triglyceride (TG), blood glucose, and insulin levels were performed. RESULTS The carrier rate of K23 allele-containing genotypes was higher for prediabetic than control subjects (P = 0.005). Logistic regression analyses revealed that higher body mass index percentiles (P = 0.013), lower insulin levels at 30 min during an oral glucose tolerance test (P = 0.001), a higher ratio of total cholesterol: high-density lipoprotein cholesterol (P = 0.001), and a K allele-containing genotype (P = 0.019) are independent risk factors for prediabetes in Chinese Han youth. Furthermore, K23 allele-containing genotypes were associated with impaired indices of insulin secretion and β-cell function in female youth with prediabetes. These effects were not seen in male youth with prediabetes. CONCLUSIONS The results confirm that the common E23K polymorphism of KCNJ11 carries a higher susceptibility to the development of prediabetes in the Chinese Han population. The results suggest that E23K may have a greater effect on the development of T2D in female Chinese youth.
Collapse
Affiliation(s)
- Min Xu
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Honglin Hu
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Zhenshan Xu
- AnHui AnKe Biotechnology Group, Hefei, China
| | - Youmin Wang
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| |
Collapse
|
18
|
Jiang F, Liu N, Chen XZ, Han KY, Zhu CZ. Study on the correlation between KCNJ11 gene polymorphism and metabolic syndrome in the elderly. Exp Ther Med 2017; 14:2031-2035. [PMID: 28962121 PMCID: PMC5609148 DOI: 10.3892/etm.2017.4714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to examine the correlation between KCNJ11 gene polymorphism and metabolic syndrome in elderly patients. From January 2014 to January 2015, 54 elderly patients with metabolic syndrome were enrolled in this study as the observation group. During the same period, 46 healthy elderly individuals were enrolled in this study as the control group. KCNJ11 gene polymorphism (rs28502) was analyzed using polymerase chain reaction-restriction fragment length polymorphism. The expression levels of mRNA in different genotypes were detected using FQ-PCR. ELISA was used to evaluate the KCNJ11 protein expression in different genotypes. KCNJ11 gene polymorphism and metabolic syndrome was studied by measuring the blood pressure levels in patients with different genotypes. Three genotypes of KCNJ11 gene in rs28502 were CC, CT and TT. The CC, CT and TT genotype frequencies in healthy population were 8.5, 9.2 and 82.2%, respectively, while the genotype frequencies in patients with metabolic syndrome were 42.4, 49.8 and 7.8%, respectively. There were significant differences between groups (P≤0.05). However, the genotype frequencies of C/T in healthy individuals and metabolic syndrome patients were 35.3 and 38.3%, respectively. There were no significant differences between groups (P>0.05). FQ-PCR results showed that the KCNJ11 mRNA expression levels in the control and observation groups had no significant differences (P>0.05). However, the results obtained from ELISA analysis revealed that KCNJ11 protein expression level in the observation group was significantly higher than that in the control group (P<0.05). In conclusion, KCNJ11 gene polymorphism is associated with metabolic syndrome in the elderly. Elderly patients with the CC and TT genotypes are more likely to develop metabolic syndrome.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Ning Liu
- Department of General Surgery, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Xiao Zhuang Chen
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Kun Yuan Han
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Cai Zhong Zhu
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
19
|
Gallardo-Blanco HL, Villarreal-Perez JZ, Cerda-Flores RM, Figueroa A, Sanchez-Dominguez CN, Gutierrez-Valverde JM, Torres-Muñoz IC, Lavalle-Gonzalez FJ, Gallegos-Cabriales EC, Martinez-Garza LE. Genetic variants in KCNJ11, TCF7L2 and HNF4A are associated with type 2 diabetes, BMI and dyslipidemia in families of Northeastern Mexico: A pilot study. Exp Ther Med 2016; 13:523-529. [PMID: 28352326 PMCID: PMC5348709 DOI: 10.3892/etm.2016.3990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate whether genetic markers considered risk factors for metabolic syndromes, including dyslipidemia, obesity and type 2 diabetes mellitus (T2DM), can be applied to a Northeastern Mexican population. A total of 37 families were analyzed for 63 single nucleotide polymorphisms (SNPs), and the age, body mass index (BMI), glucose tolerance values and blood lipid levels, including those of cholesterol, low-density lipoprotein (LDL), very LDL (VLDL), high-density lipoprotein (HDL) and triglycerides were evaluated. Three genetic markers previously associated with metabolic syndromes were identified in the sample population, including KCNJ11, TCF7L2 and HNF4A. The KCNJ11 SNP rs5210 was associated with T2DM, the TCF7L2 SNP rs11196175 was associated with BMI and cholesterol and LDL levels, the TCF7L2 SNP rs12255372 was associated with BMI and HDL, VLDL and triglyceride levels, and the HNF4A SNP rs1885088 was associated with LDL levels (P<0.05).
Collapse
Affiliation(s)
- Hugo Leonid Gallardo-Blanco
- Department of Genetics, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | - Jesus Zacarías Villarreal-Perez
- Department of Endocrinology, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | | | - Andres Figueroa
- Department of Computer Science, University of Texas Rio Grande Valley, TX 78539, USA
| | - Celia Nohemi Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | | | - Iris Carmen Torres-Muñoz
- Department of Genetics, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | - Fernando Javier Lavalle-Gonzalez
- Department of Endocrinology, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| | | | - Laura Elia Martinez-Garza
- Department of Genetics, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León, CP 64460, Mexico
| |
Collapse
|
20
|
Rizvi S, Raza ST, Rahman Q, Mahdi F. Role of GNB3, NET, KCNJ11, TCF7L2 and GRL genes single nucleotide polymorphism in the risk prediction of type 2 diabetes mellitus. 3 Biotech 2016; 6:255. [PMID: 28330327 PMCID: PMC5135703 DOI: 10.1007/s13205-016-0572-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/19/2016] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes (T2DM) is a polygenic metabolic disorder characterized by hyperglycemia occurring as a result of impaired insulin secretion or insulin resistance. Various environmental and genetic factors interact and increase the risk of T2DM and its complications. Among the various genetic factors associated with T2DM, single nucleotide polymorphism in different candidate genes have been studied intensively and the resulting genetic variants have been found to have either positive or negative association with T2DM thereby increasing or decreasing the risk of T2DM, respectively. In this review, we will focus on Guanine nucleotide-binding protein subunit beta 3 (GNB3), Norepinephrine Transporter (NET), Potassium Channel gene (KCNJ11), Transcription Factor 7-Like 2 (TCF7L2) and Glucocorticoid receptor (GRL) genes and their association with T2DM studied in different ethnic groups. The products of these genes are involved in the biochemical pathway leading to T2DM. Polymorphisms in these genes have been intensively studied in individuals of different ethnic origins. Results show that genetic variants of TCF7L2 and KCNJ11 genes have potential to emerge as a risk biomarker for T2DM whereas results of GNB3, GRL and NET genes have been controversial when studied in individuals of different ethnicities. We have tried to summarize the results generated globally in context to the selected genes which could possibly help researchers working in this field and would eventually help in understanding the mechanistic pathways of T2DM leading early diagnosis and prevention.
Collapse
|
21
|
Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, Rice K, Morrison AC, Lu Y, Weiss S, Guo X, Palmas W, Martin LW, Chen YDI, Surendran P, Drenos F, Cook JP, Auer PL, Chu AY, Giri A, Zhao W, Jakobsdottir J, Lin LA, Stafford JM, Amin N, Mei H, Yao J, Voorman A, Larson MG, Grove ML, Smith AV, Hwang SJ, Chen H, Huan T, Kosova G, Stitziel NO, Kathiresan S, Samani N, Schunkert H, Deloukas P, Li M, Fuchsberger C, Pattaro C, Gorski M, Kooperberg C, Papanicolaou GJ, Rossouw JE, Faul JD, Kardia SLR, Bouchard C, Raffel LJ, Uitterlinden AG, Franco OH, Vasan RS, O'Donnell CJ, Taylor KD, Liu K, Bottinger EP, Gottesman O, Daw EW, Giulianini F, Ganesh S, Salfati E, Harris TB, Launer LJ, Dörr M, Felix SB, Rettig R, Völzke H, Kim E, Lee WJ, Lee IT, Sheu WHH, Tsosie KS, Edwards DRV, Liu Y, Correa A, Weir DR, Völker U, Ridker PM, Boerwinkle E, Gudnason V, Reiner AP, van Duijn CM, Borecki IB, Edwards TL, Chakravarti A, Rotter JI, Psaty BM, Loos RJF, Fornage M, Ehret GB, Newton-Cheh C, Levy D, Chasman DI. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 2016; 48:1162-70. [PMID: 27618448 PMCID: PMC5320952 DOI: 10.1038/ng.3660] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/05/2016] [Indexed: 11/08/2022]
Abstract
Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure-associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles in transcription or as hubs in protein-protein interaction networks. Genetic risk scores constructed from the identified variants were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure-associated loci suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.
Collapse
Affiliation(s)
- Chunyu Liu
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nora Franceschini
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston Texas, USA
| | - Yingchang Lu
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefan Weiss
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Walter Palmas
- Division of General Medicine, Columbia University Medical Center, New York, New York, USA
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Fotios Drenos
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Paul L Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Audrey Y Chu
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ayush Giri
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Li-An Lin
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeanette M Stafford
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Arend Voorman
- Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Martin G Larson
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston Texas, USA
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Han Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tianxiao Huan
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Gulum Kosova
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sekar Kathiresan
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Panos Deloukas
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Man Li
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christian Fuchsberger
- Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), Bolzano, Italy (affiliated with the University of Lübeck, Lübeck, Germany)
| | - Cristian Pattaro
- Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), Bolzano, Italy (affiliated with the University of Lübeck, Lübeck, Germany)
| | - Mathias Gorski
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - George J Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jacques E Rossouw
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Claude Bouchard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Leslie J Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Ramachandran S Vasan
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Department of Preventive Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christopher J O'Donnell
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Cardiology Section, Department of Medicine, Boston Veterans Administration Healthcare, Boston, Massachusetts, USA
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kiang Liu
- Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omri Gottesman
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Santhi Ganesh
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elias Salfati
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Lenore J Launer
- Neuroepidemiology Section, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Rainer Rettig
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Physiology, University of Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- DZD (German Center for Diabetes Research), site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Eric Kim
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Krystal S Tsosie
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yongmei Liu
- Epidemiology and Prevention Center for Genomics and Personalized Medicine Research, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston Texas, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd L Edwards
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Health Services, University of Washington, Seattle, Washington, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cardiology, Geneva University Hospitals, Geneva, Switzerland
| | - Christopher Newton-Cheh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Sokolova EA, Bondar IA, Shabelnikova OY, Pyankova OV, Filipenko ML. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis. PLoS One 2015; 10:e0124662. [PMID: 25955821 PMCID: PMC4425644 DOI: 10.1371/journal.pone.0124662] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
The genes ABCC8 and KCNJ11 have received intense focus in type 2 diabetes mellitus (T2DM) research over the past two decades. It has been hypothesized that the p.E23K (KCNJ11) mutation in the 11p15.1 region may play an important role in the development of T2DM. In 2009, Hamming et al. found that the p.1369A (ABCC8) variant may be a causal factor in the disease; therefore, in this study we performed a meta-analysis to evaluate the association between these single nucleotide polymorphisms (SNPs), including our original data on the Siberian population (1384 T2DM and 414 controls). We found rs5219 and rs757110 were not associated with T2DM in this population, and that there was linkage disequilibrium in Siberians (D’=0.766, r2= 0.5633). In addition, the haplotype rs757110[T]-rs5219[C] (p.23K/p.S1369) was associated with T2DM (OR = 1.52, 95% CI: 1.04-2.24). We included 44 original studies published by June 2014 in a meta-analysis of the p.E23K association with T2DM. The total OR was 1.14 (95% CI: 1.11-1.17) for p.E23K for a total sample size of 137,298. For p.S1369A, a meta-analysis was conducted on a total of 10 studies with a total sample size of 14,136 and pooled OR of 1.14 [95% CI (1.08-1.19); p = 2 x 10-6]. Our calculations identified causal genetic variation within the ABCC8/KCNJ11 region for T2DM with an OR of approximately 1.15 in Caucasians and Asians. Moreover, the OR value was not dependent on the frequency of p.E23K or p.S1369A in the populations.
Collapse
Affiliation(s)
- Ekaterina Alekseevna Sokolova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Irina Arkadievna Bondar
- Novosibirsk State Regional Hospital, Regional Diabetes center, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Olesya Yurievna Shabelnikova
- Novosibirsk State Regional Hospital, Regional Diabetes center, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Olga Vladimirovna Pyankova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Maxim Leonidovich Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Kazan Federal University, Kazan, Russia
- * E-mail:
| |
Collapse
|
23
|
Liao S, Liu Y, Chen X, Tan Y, Mei J, Song W, Gan L, Wang H, Yin S, Dong X, Chi S, Deng S. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women. Reprod Sci 2015; 22:1421-8. [DOI: 10.1177/1933719115580995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shunyao Liao
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yuande Tan
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenzhong Song
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Gan
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Yin
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjue Dong
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shu Chi
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoping Deng
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Human Islet Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 2015; 48:476-82. [PMID: 25583094 DOI: 10.1016/j.clinbiochem.2014.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dianne Heloisa Bonfanti
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Larissa Pontes Alcazar
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Priscila Akemi Arakaki
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Laysa Toschi Martins
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Bruna Carla Agustini
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | | | | |
Collapse
|
25
|
Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res 2015; 2015:908152. [PMID: 26448950 PMCID: PMC4584059 DOI: 10.1155/2015/908152] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM.
Collapse
Affiliation(s)
- Polin Haghvirdizadeh
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Monir Sadat Haerian
- Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4763, Tehran, Iran
- Food and Drug Control Reference Labs Center (FDCRLC), Ministry of Health and Medical Education, Tehran 131456-8784, Iran
| | - Batoul Sadat Haerian
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- *Batoul Sadat Haerian:
| |
Collapse
|
26
|
Abstract
Glinides, including repaglinide, nateglinide and mitiglinide, are a type of fasting insulin secretagogue that could help to mimic early-phase insulin release, thus providing improved control of the postprandial glucose levels. Glinides stimulate insulin secretion by inhibiting ATP-sensitive potassium channels in the pancreatic β-cell membrane. Although glinides have been widely used clinically and display excellent safety and efficacy, the response to glinides varies among individuals, which is partially due to genetic factors involved in drug absorption, distribution, metabolism and targeting. Several pharmacogenomic studies have demonstrated that variants of genes involved in the pharmacokinetics or pharmacodynamics of glinides are associated with the drug response. Polymorphisms of genes involved in drug metabolism, such as CYP2C9, CYP2C8 and SLCO1B1, may influence the efficacy of glinides and the incidence of adverse effects. In addition, Type 2 diabetes mellitus susceptibility genes, such as KCNQ1, PAX4 and BETA2, also influence the efficacy of glinides. In this article, we review and discuss current pharmacogenomics researches on glinides, and hopefully provide useful data and proof for clinical application.
Collapse
Affiliation(s)
- Miao Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| |
Collapse
|
27
|
Jiang YD, Chuang LM, Pei D, Lee YJ, Wei JN, Sung FC, Chang TJ. Genetic Variations in the Kir6.2 Subunit (KCNJ11) of Pancreatic ATP-Sensitive Potassium Channel Gene Are Associated with Insulin Response to Glucose Loading and Early Onset of Type 2 Diabetes in Childhood and Adolescence in Taiwan. Int J Endocrinol 2014; 2014:983016. [PMID: 25309595 PMCID: PMC4189766 DOI: 10.1155/2014/983016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/20/2014] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of E23K polymorphism of the KCNJ11 gene on early onset of type 2 diabetes in school-aged children/adolescents in Taiwan, we recruited 38 subjects with type 2 diabetes (ages 18.6 ± 6.6 years; body mass index percentiles 83.3 ± 15.4) and 69 normal controls (ages 17.3 ± 3.8 years; body mass index percentiles 56.7 ± 29.0) from a national surveillance for childhood/adolescent diabetes in Taiwan. We searched for the E23K polymorphism of the KCNJ11 gene. We found that type 2 diabetic subjects had higher carrier rate of E23K polymorphism of KCNJ11 gene than control subjects (P = 0.044). After adjusting for age, gender, body mass index percentiles, and fasting plasma insulin, the E23K polymorphism contributed to an increased risk for type 2 diabetes (P = 0.047). K23-allele-containing genotypes conferring increased plasma insulin level during OGTT in normal subjects. However, the diabetic subjects with the K23-allele-containing genotypes had lower fasting plasma insulin levels after adjustment of age and BMI percentiles. In conclusion, the E23K variant of the KCNJ11 gene conferred higher susceptibility to type 2 diabetes in children/adolescents. Furthermore, in normal glucose-tolerant children/adolescents, K23 allele carriers had a higher insulin response to oral glucose loading.
Collapse
Affiliation(s)
- Yi-Der Jiang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 10002, Taiwan
- Graduate Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei 10002, Taiwan
| | - Dee Pei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cardinal Tien Hospital, Xindian 23148, Taiwan
| | - Yann-Jinn Lee
- Department of Pediatrics, Mackay General Hospital, Taipei 10449, Taiwan
| | - Jun-Nan Wei
- Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Fung-Chang Sung
- Institute of Environmental Health, College of Public Health, China Medical University, Taichung 40447, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 10002, Taiwan
- *Tien-Jyun Chang:
| |
Collapse
|