1
|
He Y, Chen S, Li C, Yang S, Sun Z, Hou S, Xu Z, Yang G. Walnut phosphatase 2A proteins interact with basic leucine zipper protein JrVIP1 to regulate osmotic stress response via calcium signaling. FORESTRY RESEARCH 2024; 4:e016. [PMID: 39524406 PMCID: PMC11543299 DOI: 10.48130/forres-0024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/07/2024] [Indexed: 11/16/2024]
Abstract
Walnut is an important economic tree species that is susceptible to osmotic stress. Scientific cultivation management is an important way to improve the yield and quality of walnuts, which requires understanding the regulatory mechanisms in response to osmotic stress. Therefore, in this study, 15 protein phosphatase 2A (PP2A) genes were identified from the walnut transcriptome (named JrPP2A01~15) and their potential function responses to osmotic stress were elucidated. The open reading frame (ORF) of JrPP2A01~15 ranges from 651 to 1,764 bp in length, the molecular weight of the encoded proteins are 24.15-65.61 kDa, and the theoretical isoelectric points are 4.80-8.37. These JrPP2As were unevenly distributed on 10 chromosomes and divided into five groups based on the composition of conserved domains, motifs, and exon/intron organizations. The five groups are JrPP2AAs, JrPP2AB's, JrPP2AB''s, JrPP2AB55s, and JrPP2ACs, including 1, 5, 2, 3, and 4 members, accordingly. The cis-elements in JrPP2As' promoters were involved in responses to hormone and abiotic stress. Most JrPP2A genes, excluding JrPP2A01, JrPP2A02, JrPP2A05, JrPP2A06, and JrPP2A13, could be induced significantly by PEG6000, NaCl, CaCl2 and ABA. JrPP2A02, JrPP2A05, JrPP2A07, JrPP2A09, and JrPP2A14, could independently interact with a bZIP transcription factor JrVIP1. Moreover, overexpression of JrPP2A07, JrPP2A09, and JrPP2A14 could significantly decrease ROS accumulation while increasing calcium (Ca) uptake exposed to PEG6000 and NaCl stresses, which was mediated by exogenous CaCl2 and ABA. These results suggested that JrPP2A genes play potential key roles in walnut response to drought and salt-inducing osmotic stress involving Ca- and ABA-dependent signaling pathways.
Collapse
Affiliation(s)
- Yi He
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuwen Chen
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenhao Li
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shen Yang
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongyu Sun
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siyu Hou
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenggang Xu
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guiyan Yang
- Shaanxi Province Walnut Engineering Technology Research Center, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Lin QJ, Chu J, Kumar V, Yuan DP, Li ZM, Mei Q, Xuan YH. Protein Phosphatase 2A Catalytic Subunit PP2A-1 Enhances Rice Resistance to Sheath Blight Disease. Front Genome Ed 2021; 3:632136. [PMID: 34713255 PMCID: PMC8525387 DOI: 10.3389/fgeed.2021.632136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
Rice (Oryza sativa) production is damaged to a great extent by sheath blight disease (ShB). However, the defense mechanism in rice against this disease is largely unknown. Previous transcriptome analysis identified a significantly induced eukaryotic protein phosphatase 2A catalytic subunit 1 (PP2A-1) after the inoculation of Rhizoctonia solani. Five genes encoding PP2A exist in rice genome, and these five genes are ubiquitously expressed in different tissues and stages. Inoculation of R. solani showed that the genome edited pp2a-1 mutants using the CRISPR/Cas9 were more susceptible to ShB than the wild-type control, but other PP2A gene mutants exhibited similar response to ShB compared to wild-type plants. In parallel, PP2A-1 expression level was higher in the activation tagging line, and PP2A-1 overexpression inhibited plant height and promoted the resistance to ShB. PP2A-1-GFP was localized in the cytoplasm and nucleus. In addition, R. solani-dependent induction kinetics of pathogen-related genes PBZ1 and PR1b was lower in pp2a-1 mutants but higher in PP2A-1 activation line compared to those in the wild-type. In conclusion, our analysis shows that PP2A-1 is a member of protein phosphatase, which regulates rice resistance to ShB. This result broadens the understanding of the defense mechanism against ShB and provides a potential target for rice breeding for disease resistance.
Collapse
Affiliation(s)
- Qiu Jun Lin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Xiong Y, Fan XH, Wang Q, Yin ZG, Sheng XW, Chen J, Zhou YB, Chen M, Ma YZ, Ma J, Xu ZS. Genomic Analysis of Soybean PP2A-B ' ' Family and Its Effects on Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:784038. [PMID: 35195114 PMCID: PMC8847135 DOI: 10.3389/fpls.2021.784038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
Abiotic stresses induce the accumulation of reactive oxygen species (ROS) and significantly affect plant growth. Protein phosphatase 2A (PP2A) plays an important role in controlling intracellular and extracellular ROS signals. However, the interaction between PP2A, ROS, and stress tolerance remains largely unclear. In this study, we found that the B ' ' subunit of PP2A (PP2A-B ' ' ) can be significantly induced and was analyzed using drought- and salt-induced soybean transcriptome data. Eighty-three soybean PP2A-B ' ' genes were identified from the soybean genome via homologous sequence alignment, which was distributed across 20 soybean chromosomes. Among soybean PP2A-B ' ' family genes, 26 GmPP2A-B ' ' members were found to be responsive to drought and salt stresses in soybean transcriptome data. Quantitative PCR (qPCR) analysis demonstrated that GmPP2A-B ' ' 71 had the highest expression levels under salt and drought stresses. Functional analysis demonstrated that overexpression of GmPP2A-B ' ' 71 in soybeans can improve plant tolerance to drought and salt stresses; however, the interference of GmPP2A-B ' ' 71 in soybean increased the sensibility to drought and salt stresses. Further analysis demonstrated that overexpression of GmPP2A-B ' ' 71 in soybean could enhance the expression levels of stress-responsive genes, particularly genes associated with ROS elimination. These results indicate that PP2A-B ' ' can promote plant stress tolerance by regulating the ROS signaling, which will contribute to improving the drought resistance of crops.
Collapse
Affiliation(s)
- Yang Xiong
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xu-Hong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, China
| | - Qiang Wang
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zheng-Gong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xue-Wen Sheng
- College of Modern Agriculture, Changchun Vocational Institute of Technology, Changchun, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
- *Correspondence: Jian Ma,
| | - Zhao-Shi Xu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| |
Collapse
|
4
|
Martinez SA, Shorinola O, Conselman S, See D, Skinner DZ, Uauy C, Steber CM. Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:719-736. [PMID: 31993676 PMCID: PMC7021667 DOI: 10.1007/s00122-019-03503-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 05/09/2023]
Abstract
Using bulked segregant analysis of exome sequence, we fine-mapped the ABA-hypersensitive mutant ERA8 in a wheat backcross population to the TaMKK3-A locus of chromosome 4A. Preharvest sprouting (PHS) is the germination of mature grain on the mother plant when it rains before harvest. The ENHANCED RESPONSE TO ABA8 (ERA8) mutant increases seed dormancy and, consequently, PHS tolerance in soft white wheat 'Zak.' ERA8 was mapped to chromosome 4A in a Zak/'ZakERA8' backcross population using bulked segregant analysis of exome sequenced DNA (BSA-exome-seq). ERA8 was fine-mapped relative to mutagen-induced SNPs to a 4.6 Mb region containing 70 genes. In the backcross population, the ERA8 ABA-hypersensitive phenotype was strongly linked to a missense mutation in TaMKK3-A-G1093A (LOD 16.5), a gene associated with natural PHS tolerance in barley and wheat. The map position of ERA8 was confirmed in an 'Otis'/ZakERA8 but not in a 'Louise'/ZakERA8 mapping population. This is likely because Otis carries the same natural PHS susceptible MKK3-A-A660S allele as Zak, whereas Louise carries the PHS-tolerant MKK3-A-C660R allele. Thus, the variation for grain dormancy and PHS tolerance in the Louise/ZakERA8 population likely resulted from segregation of other loci rather than segregation for PHS tolerance at the MKK3 locus. This inadvertent complementation test suggests that the MKK3-A-G1093A mutation causes the ERA8 phenotype. Moreover, MKK3 was a known ABA signaling gene in the 70-gene 4.6 Mb ERA8 interval. None of these 70 genes showed the differential regulation in wild-type Zak versus ERA8 expected of a promoter mutation. Thus, the working model is that the ERA8 phenotype results from the MKK3-A-G1093A mutation.
Collapse
Affiliation(s)
- Shantel A Martinez
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | | | - Samantha Conselman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Deven See
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA
| | - Daniel Z Skinner
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Camille M Steber
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
5
|
Bheri M, Pandey GK. PP2A Phosphatases Take a Giant Leap in the Post-Genomics Era. Curr Genomics 2019; 20:154-171. [PMID: 31929724 PMCID: PMC6935955 DOI: 10.2174/1389202920666190517110605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Protein phosphorylation is an important reversible post-translational modifica-tion, which regulates a number of critical cellular processes. Phosphatases and kinases work in a con-certed manner to act as a "molecular switch" that turns-on or - off the regulatory processes driving the growth and development under normal circumstances, as well as responses to multiple stresses in plant system. The era of functional genomics has ushered huge amounts of information to the framework of plant systems. The comprehension of who's who in the signaling pathways is becoming clearer and the investigations challenging the conventional functions of signaling components are on a rise. Protein phosphatases have emerged as key regulators in the signaling cascades. PP2A phosphatases due to their diverse holoenzyme compositions are difficult to comprehend. CONCLUSION In this review, we highlight the functional versatility of PP2A members, deciphered through the advances in the post-genomic era.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
6
|
Zhu X, Wang Y, Su Z, Lv L, Zhang Z. Silencing of the Wheat Protein Phosphatase 2A Catalytic Subunit TaPP2Ac Enhances Host Resistance to the Necrotrophic Pathogen Rhizoctonia cerealis. FRONTIERS IN PLANT SCIENCE 2018; 9:1437. [PMID: 30429858 PMCID: PMC6220131 DOI: 10.3389/fpls.2018.01437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/10/2018] [Indexed: 05/09/2023]
Abstract
Eukaryotic type 2A protein phosphatases (protein phosphatase 2A, PP2A) consist of a scaffold subunit A, a regulatory subunit B, and a catalytic subunit C. Little is known about the roles of PP2Ac proteins that are involved in plant responses to necrotrophic fungal pathogens. Sharp eyespot, caused by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease of wheat (Triticum aestivum), an important staple food crop. Here, we isolated TaPP2Ac-4D from wheat, which encodes a catalytic subunit of the heterotrimeric PP2A, and characterized its properties and role in plant defense response to R. cerealis. Based on the sequence alignment of TaPP2Ac-4D with the draft sequences of wheat chromosomes from the International Wheat Genome Sequencing Consortium (IWGSC), it was found that TaPP2Ac-4D gene is located on the long arm of the wheat chromosome 4D and has two homologs assigned on wheat chromosomes 4A and 4B. Sequence and phylogenetic tree analyses revealed that the TaPP2Ac protein is a typical member of the PP2Ac family and belongs to the subfamily II. TaPP2Ac-4B and TaPP2Ac-4D displayed higher transcriptional levels in the R. cerealis-susceptible wheat cultivar Wenmai 6 than those seen in the resistant wheat line CI12633. The transcriptional levels of TaPP2Ac-4B and TaPP2Ac-4D were significantly elevated in wheat R. cerealis after infection and upon H2O2 treatment. Virus-induced gene silencing results revealed that the transcriptional knockdown of TaPP2Ac-4D and TaPP2Ac-4B significantly increased wheat resistance to R. cerealis infection. Meanwhile, the transcriptional levels of certain pathogenesis-related (PR) and reactive oxygen species (ROS)-scavenging enzyme encoding genes were increased in TaPP2Ac-silenced wheat plants. These results suggest that TaPP2Ac-4B and TaPP2Ac-4D negatively regulate defense response to R. cerealis infection possibly through modulation of the expression of certain PR and ROS-scavenging enzyme genes in wheat. This study reveals a novel function of the plant PP2Ac genes in plant immune responses.
Collapse
Affiliation(s)
- Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhenqi Su
- Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Liangjie Lv
- Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zengyan Zhang,
| |
Collapse
|
7
|
Liang WW, Huang JH, Li CP, Yang LT, Ye X, Lin D, Chen LS. MicroRNA-mediated responses to long-term magnesium-deficiency in Citrus sinensis roots revealed by Illumina sequencing. BMC Genomics 2017; 18:657. [PMID: 28836935 PMCID: PMC5571589 DOI: 10.1186/s12864-017-3999-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/01/2017] [Indexed: 01/17/2023] Open
Abstract
Background Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in ‘Xuegan’ (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. Results We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. Conclusions We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3999-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Wei Liang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Chun-Ping Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Lin
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Wang J, Pei L, Jin Z, Zhang K, Zhang J. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS One 2017; 12:e0176538. [PMID: 28448624 PMCID: PMC5407761 DOI: 10.1371/journal.pone.0176538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.
Collapse
Affiliation(s)
- Jiemin Wang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Laming Pei
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhe Jin
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Kewei Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Juren Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| |
Collapse
|
9
|
PP2A Phosphatase as a Regulator of ROS Signaling in Plants. Antioxidants (Basel) 2016; 5:antiox5010008. [PMID: 26950157 PMCID: PMC4808757 DOI: 10.3390/antiox5010008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/21/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants.
Collapse
|