1
|
Potes Y, Díaz-Luis A, Bermejo-Millo JC, Pérez-Martínez Z, de Luxán-Delgado B, Rubio-González A, Menéndez-Valle I, Gutiérrez-Rodríguez J, Solano JJ, Caballero B, Vega-Naredo I, Coto-Montes A. Melatonin Alleviates the Impairment of Muscle Bioenergetics and Protein Quality Control Systems in Leptin-Deficiency-Induced Obesity. Antioxidants (Basel) 2023; 12:1962. [PMID: 38001815 PMCID: PMC10669624 DOI: 10.3390/antiox12111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid β-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Juan C. Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Beatriz de Luxán-Delgado
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Iván Menéndez-Valle
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
- Immunology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Juan J. Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, 33012 Oviedo, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33006 Oviedo, Spain
| |
Collapse
|
2
|
Igual Gil C, Löser A, Lossow K, Schwarz M, Weber D, Grune T, Kipp AP, Klaus S, Ost M. Temporal dynamics of muscle mitochondrial uncoupling-induced integrated stress response and ferroptosis defense. Front Endocrinol (Lausanne) 2023; 14:1277866. [PMID: 37941910 PMCID: PMC10627798 DOI: 10.3389/fendo.2023.1277866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (mUcp1-transgenic, TG). TG mice are characterized by increased muscle ISR, elevated oxidative stress defense, and increased secretion of FGF21 and GDF15 as ISR-induced myokines. We observed a temporal signature of both cell-autonomous and systemic ISR in the context of endocrine myokine signaling and cellular redox balance, but not of ferroptotic signature which was also increased in TG muscle. We show a progressive increase of muscle ISR on transcriptional level during the active phase (night time), with a subsequent peak in circulating FGF21 and GDF15 in the early resting phase. Moreover, we found highest levels of muscle oxidative defense (GPX and NQO1 activity) between the late active to early resting phase, which could aim to counteract excessive iron-dependent lipid peroxidation and ferroptosis in muscle of TG mice. These findings highlight the temporal dynamics of cell-autonomous and endocrine ISR signaling under skeletal muscle mitochondrial uncoupling, emphasizing the importance of considering such dissociation in translational strategies and sample collection for diagnostic biomarker analysis.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Tilman Grune
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Anna P. Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- TraceAge-Deutsche Forschungsgemeinschaft (DFG) Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
4
|
The Role of GDF15 as a Myomitokine. Cells 2021; 10:cells10112990. [PMID: 34831213 PMCID: PMC8616340 DOI: 10.3390/cells10112990] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15–GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy.
Collapse
|
5
|
Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility? Antioxidants (Basel) 2021; 10:antiox10111746. [PMID: 34829617 PMCID: PMC8614977 DOI: 10.3390/antiox10111746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Uncoupling proteins (UCPs) are transmembrane proteins members of the mitochondrial anion transporter family present in the mitochondrial inner membrane. Currently, six homologs have been identified (UCP1-6) in mammals, with ubiquitous tissue distribution and multiple physiological functions. UCPs are regulators of key events for cellular bioenergetic metabolism, such as membrane potential, metabolic efficiency, and energy dissipation also functioning as pivotal modulators of ROS production and general cellular redox state. UCPs can act as proton channels, leading to proton re-entry the mitochondrial matrix from the intermembrane space and thus collapsing the proton gradient and decreasing the membrane potential. Each homolog exhibits its specific functions, from thermogenesis to regulation of ROS production. The expression and function of UCPs are intimately linked to diabesity, with their dysregulation/dysfunction not only associated to diabesity onset, but also by exacerbating oxidative stress-related damage. Male infertility is one of the most overlooked diabesity-related comorbidities, where high oxidative stress takes a major role. In this review, we discuss in detail the expression and function of the different UCP homologs. In addition, the role of UCPs as key regulators of ROS production and redox homeostasis, as well as their influence on the pathophysiology of diabesity and potential role on diabesity-induced male infertility is debated.
Collapse
|
6
|
Vidimce J, Pillay J, Shrestha N, Dong LF, Neuzil J, Wagner KH, Holland OJ, Bulmer AC. Mitochondrial Function, Fatty Acid Metabolism, and Body Composition in the Hyperbilirubinemic Gunn Rat. Front Pharmacol 2021; 12:586715. [PMID: 33762933 PMCID: PMC7982585 DOI: 10.3389/fphar.2021.586715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Circulating bilirubin is associated with reduced adiposity in human and animal studies. A possible explanation is provided by in vitro data that demonstrates that bilirubin inhibits mitochondrial function and decreases efficient energy production. However, it remains unclear whether hyperbilirubinemic animals have similar perturbed mitochondrial function and whether this is important for regulation of energy homeostasis. Aim: To investigate the impact of unconjugated hyperbilirubinemia on body composition, and mitochondrial function in hepatic tissue and skeletal muscle. Materials and Methods: 1) Food intake and bodyweight gain of 14-week old hyperbilirubinemic Gunn (n = 19) and normobilirubinemic littermate (control; n = 19) rats were measured over a 17-day period. 2) Body composition was determined using dual-energy X-ray absorptiometry and by measuring organ and skeletal muscle masses. 3) Mitochondrial function was assessed using high-resolution respirometry of homogenized liver and intact permeabilized extensor digitorum longus and soleus fibers. 4) Liver tissue was flash frozen for later gene (qPCR), protein (Western Blot and citrate synthase activity) and lipid analysis. Results: Female hyperbilirubinemic rats had significantly reduced fat mass (Gunn: 9.94 ± 5.35 vs. Control: 16.6 ± 6.90 g, p < 0.05) and hepatic triglyceride concentration (Gunn: 2.39 ± 0.92 vs. Control: 4.65 ± 1.67 mg g-1, p < 0.01) compared to normobilirubinemic controls. Furthermore, hyperbilirubinemic rats consumed fewer calories daily (p < 0.01) and were less energetically efficient (Gunn: 8.09 ± 5.75 vs. Control: 14.9 ± 5.10 g bodyweight kcal-1, p < 0.05). Hepatic mitochondria of hyperbilirubinemic rats demonstrated increased flux control ratio (FCR) via complex I and II (CI+II) (Gunn: 0.78 ± 0.16 vs. Control: 0.62 ± 0.09, p < 0.05). Similarly, exogenous addition of 31.3 or 62.5 μM unconjugated bilirubin to control liver homogenates significantly increased CI+II FCR (p < 0.05). Hepatic PGC-1α gene expression was significantly increased in hyperbilirubinemic females while FGF21 and ACOX1 was significantly greater in male hyperbilirubinemic rats (p < 0.05). Finally, hepatic mitochondrial complex IV subunit 1 protein expression was significantly increased in female hyperbilirubinemic rats (p < 0.01). Conclusions: This is the first study to comprehensively assess body composition, fat metabolism, and mitochondrial function in hyperbilirubinemic rats. Our findings show that hyperbilirubinemia is associated with reduced fat mass, and increased hepatic mitochondrial biogenesis, specifically in female animals, suggesting a dual role of elevated bilirubin and reduced UGT1A1 function on adiposity and body composition.
Collapse
Affiliation(s)
- Josif Vidimce
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Johara Pillay
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Nirajan Shrestha
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Lan-Feng Dong
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
7
|
Regulation of diurnal energy balance by mitokines. Cell Mol Life Sci 2021; 78:3369-3384. [PMID: 33464381 PMCID: PMC7814174 DOI: 10.1007/s00018-020-03748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease.
Collapse
|
8
|
Xu C, Markova M, Seebeck N, Loft A, Hornemann S, Gantert T, Kabisch S, Herz K, Loske J, Ost M, Coleman V, Klauschen F, Rosenthal A, Lange V, Machann J, Klaus S, Grune T, Herzig S, Pivovarova-Ramich O, Pfeiffer AFH. High-protein diet more effectively reduces hepatic fat than low-protein diet despite lower autophagy and FGF21 levels. Liver Int 2020; 40:2982-2997. [PMID: 32652799 DOI: 10.1111/liv.14596] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent and nutrition intervention remains the most important therapeutic approach for NAFLD. Our aim was to investigate whether low- (LP) or high-protein (HP) diets are more effective in reducing liver fat and reversing NAFLD and which mechanisms are involved. METHODS 19 participants with morbid obesity undergoing bariatric surgery were randomized into two hypocaloric (1500-1600 kcal/day) diet groups, a low protein (10E% protein) and a high protein (30E% protein), for three weeks prior to surgery. Intrahepatic lipid levels (IHL) and serum fibroblast growth factor 21 (FGF21) were measured before and after the dietary intervention. Autophagy flux, histology, mitochondrial activity and gene expression analyses were performed in liver samples collected during surgery. RESULTS IHL levels decreased by 42.6% in the HP group, but were not significantly changed in the LP group despite similar weight loss. Hepatic autophagy flux and serum FGF21 increased by 66.7% and 42.2%, respectively, after 3 weeks in the LP group only. Expression levels of fat uptake and lipid biosynthesis genes were lower in the HP group compared with those in the LP group. RNA-seq analysis revealed lower activity of inflammatory pathways upon HP diet. Hepatic mitochondrial activity and expression of β-oxidation genes did not increase in the HP group. CONCLUSIONS HP diet more effectively reduces hepatic fat than LP diet despite of lower autophagy and FGF21. Our data suggest that liver fat reduction upon HP diets result primarily from suppression of fat uptake and lipid biosynthesis.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Anne Loft
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department for Internal Medicine I and Clinical Chemistry, Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg and Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Thomas Gantert
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Stefan Kabisch
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen Herz
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Jennifer Loske
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Verena Coleman
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Frederick Klauschen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Volker Lange
- Centre for Obesity and Metabolic Surgery, Vivantes Hospital, Berlin, Germany.,Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, The University of Tübingen, Tübingen, Germany.,Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Klaus
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Tilman Grune
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany.,Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department for Internal Medicine I and Clinical Chemistry, Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg and Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Olga Pivovarova-Ramich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Ajoolabady A, Aslkhodapasandhokmabad H, Aghanejad A, Zhang Y, Ren J. Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Res Rev 2020; 62:101129. [PMID: 32711157 DOI: 10.1016/j.arr.2020.101129] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Mitophagy serves as a cardinal regulator in the maintenance of mitochondrial integrity, function, and cardiovascular homeostasis, through the fine control and governance of cellular metabolism, ATP production, redox balance, and mitochondrial quality and quantity control. As a unique form of selective autophagy, mitophagy specifically recognizes and engulfs long-lived or damaged (depolarized) mitochondria through formation of the double-membraned intracellular organelles - mitophagosomes, ultimately resulting in lysosomal degradation. Levels of mitophagy are reported to be altered in pathological settings including cardiovascular diseases and biological ageing although the precise nature of mitophagy change in ageing and ageing-associated cardiovascular deterioration remains poorly defined. Ample clinical and experimental evidence has depicted a convincing tie between cardiovascular ageing and altered mitophagy. In particular, ageing perturbs multiple enigmatic various signal machineries governing mitophagy, mitochondrial quality, and mitochondrial function, contributing to ageing-elicited anomalies in the cardiovascular system. This review will update novel regulatory mechanisms of mitophagy especially in the perspective of advanced ageing, and discuss how mitophagy dysregulation may be linked to cardiovascular abnormalities in ageing. We hope to pave the way for development of new therapeutic strategies against the growing health and socieconomical issue of cardiovascular ageing through targeting mitophagy.
Collapse
|
10
|
Ost M, Igual Gil C, Coleman V, Keipert S, Efstathiou S, Vidic V, Weyers M, Klaus S. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress. EMBO Rep 2020; 21:e48804. [PMID: 32026535 PMCID: PMC7054681 DOI: 10.15252/embr.201948804] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction promotes metabolic stress responses in a cell-autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1-TG) with compromised muscle-specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1-TG mice show a skeletal muscle-specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1-TG mice does not affect muscle wasting or transcriptional cell-autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress-induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15-dependent daytime-restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress-induced GDF15 in the regulation of systemic energy metabolism.
Collapse
Affiliation(s)
- Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Verena Coleman
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sotirios Efstathiou
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Veronika Vidic
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Miriam Weyers
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
11
|
Klaus S, Ost M. Mitochondrial uncoupling and longevity - A role for mitokines? Exp Gerontol 2019; 130:110796. [PMID: 31786315 DOI: 10.1016/j.exger.2019.110796] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Aging has been viewed both as a random process due to accumulation of molecular and cellular damage over time and as a programmed process linked to cellular pathway important for growth and maturation. These views converge on mitochondria as both the major producer of damaging reactive oxidant species (ROS) and as signaling organelles. A finite proton leak across the inner mitochondrial membrane leading to a slight uncoupling of oxidative phosphorylation and respiration is an intrinsic property of all mitochondria and according to the "uncoupling to survive" hypothesis it has evolved to protect against ROS production to minimize oxidative damage. This hypothesis is supported by evidence linking an increased endogenous, uncoupling protein (UCP1) mediated, as well as experimentally induced mitochondrial uncoupling to an increased lifespan in rodents. This is possibly due to the synergistic activation of molecular pathways linked to life extending effects of caloric restriction as well as a mitohormetic response. Mitohormesis is an adaptive stress response through mitonuclear signaling which increases stress resistance resulting in health promoting effects. Part of this response is the induction of fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), two stress-induced mitokines which elicit beneficial systemic metabolic effects via endocrine action.
Collapse
Affiliation(s)
- Susanne Klaus
- German Institute of Human Nutrition in Potsdam Rehbrücke, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, Potsdam, Germany.
| | - Mario Ost
- German Institute of Human Nutrition in Potsdam Rehbrücke, Nuthetal, Germany
| |
Collapse
|
12
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
13
|
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling. Sci Rep 2018; 8:2446. [PMID: 29402993 PMCID: PMC5799251 DOI: 10.1038/s41598-018-20901-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is usually associated with various metabolic disorders and ageing. However, salutary effects in response to mild mitochondrial perturbations have been reported in multiple organisms, whereas molecular regulators of cell-autonomous stress responses remain elusive. We addressed this question by asking whether the nuclear factor erythroid-derived-like 2 (Nrf2), a transcription factor and master regulator of cellular redox status is involved in adaptive physiological responses including muscle mitohormesis. Using a transgenic mouse model with skeletal muscle-specific mitochondrial uncoupling and oxidative phosphorylation (OXPHOS) inefficiency (UCP1-transgenic, TG) we show that additional genetic ablation of Nrf2 abolishes an adaptive muscle NAD(P)H quinone dehydrogenase 1 (NQO1) and catalase induction. Deficiency of Nrf2 also leads to decreased mitochondrial respiratory performance although muscle functional integrity, fiber-type profile and mitochondrial biogenesis were not significantly altered. Importantly, Nrf2 ablation did not abolish the induction of key genes and proteins of muscle integrated stress response including the serine, one-carbon cycle, and glycine synthesis (SOG) pathway in TG mice while further increasing glutathione peroxidase (GPX) activity linked to increased GPX1 protein levels. Conclusively, our results tune down the functions controlled by Nrf2 in muscle mitohormesis and oxidative stress defense during mitochondrial OXPHOS inefficiency.
Collapse
|
14
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, Jeffers J, Souvenir R, Mcglauflin R, Seei A, Funari T, Sesaki H, Potthoff MJ, Adams CM, Anderson EJ, Abel ED. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J 2017; 36:2126-2145. [PMID: 28607005 PMCID: PMC5510002 DOI: 10.15252/embj.201696179] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism.
Collapse
Affiliation(s)
- Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Satya M Tadinada
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Frederick M Zasadny
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Karen Jesus Oliveira
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karla Maria Pereira Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Angela Olvera
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Jennifer Jeffers
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Rhonda Souvenir
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Rose Mcglauflin
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Alec Seei
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Trevor Funari
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew J Potthoff
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Christopher M Adams
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Ethan J Anderson
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Ost M, Keipert S, Klaus S. Targeted mitochondrial uncoupling beyond UCP1 – The fine line between death and metabolic health. Biochimie 2017; 134:77-85. [DOI: 10.1016/j.biochi.2016.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/07/2016] [Accepted: 11/13/2016] [Indexed: 12/25/2022]
|
17
|
Flouris AD, Shidlovskii YV, Shaposhnikov AV, Yepiskoposyan L, Nadolnik L, Karabon L, Kowalska A, Carrillo AE, Metsios GS, Sakellariou P. Role of UCP1 Gene Variants in Interethnic Differences in the Development of Cardio-Metabolic Diseases. Front Genet 2017; 8:7. [PMID: 28194159 PMCID: PMC5277005 DOI: 10.3389/fgene.2017.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/16/2017] [Indexed: 12/04/2022] Open
Abstract
Cardio-metabolic diseases (CMDs) comprise a cluster of risk factors that contribute to chronic pathological conditions with adverse consequences for cardiovascular function and metabolic processes. A wide range of CMD prevalence rates among different ethnic groups has been documented. In view of accumulated evidence, there is a trend toward increasing CMD prevalence rates in Eastern Europe and Western Asia. Numerous studies have revealed an association between uncoupling protein 1 (UCP1) gene variants and CMDs. UCP1 activity is essential for brown adipose tissue (BAT)-mediated thermogenesis. Experimental animal studies and epidemiological studies in humans highlight the significance of BAT-mediated thermogenesis in protecting against obesity and maintaining a lean phenotype. We hypothesize that the genetic variation in UCP1 gene expression observed among different ethnic groups could contribute to the ethnic-specific predisposition to CMD development. Constructing such prevalence maps of UCP1 gene variants could contribute significantly into identifying high-risk ethnic groups predisposed to the development of CMDs, and further shaping public health policies by the improvement of existing preventive and management strategies.
Collapse
Affiliation(s)
- Andreas D Flouris
- FAME Laboratory, Institute of Research and Technology Thessaly, Centre for Research and Technology Hellas Trikala, Greece
| | | | | | | | - Liliya Nadolnik
- Institute of Biochemistry of Biologically Active Compounds - National Academy of Sciences of Belarus Grodno, Belarus
| | - Lidia Karabon
- Institute of Immunology and Experimental Therapy - Polish Academy of Sciences Wrocław, Poland
| | - Anna Kowalska
- Institute of Immunology and Experimental Therapy - Polish Academy of Sciences Wrocław, Poland
| | - Andres E Carrillo
- FAME Laboratory, Institute of Research and Technology Thessaly, Centre for Research and Technology HellasTrikala, Greece; Department of Exercise Science, Chatham University, PittsburghPA, USA
| | - George S Metsios
- Faculty of Education, Health and Wellbeing, Wolverhampton University Walsall, UK
| | - Paraskevi Sakellariou
- FAME Laboratory, Institute of Research and Technology Thessaly, Centre for Research and Technology Hellas Trikala, Greece
| |
Collapse
|
18
|
Fritzen AM, Frøsig C, Jeppesen J, Jensen TE, Lundsgaard AM, Serup AK, Schjerling P, Proud CG, Richter EA, Kiens B. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cell Signal 2016; 28:663-74. [DOI: 10.1016/j.cellsig.2016.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/26/2022]
|
19
|
Maixner DW, Yan X, Hooks SB, Weng HR. AMPKα1 knockout enhances nociceptive behaviors and spinal glutamatergic synaptic activities via production of reactive oxygen species in the spinal dorsal horn. Neuroscience 2016; 326:158-169. [PMID: 27058143 DOI: 10.1016/j.neuroscience.2016.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022]
Abstract
Emerging studies have shown that pharmacological activation of adenosine monophosphate-activated protein kinase (AMPK) produces potent analgesic effects in different animal pain models. Currently, the spinal molecular and synaptic mechanism by which AMPK regulates the pain signaling system remains unclear. To address this issue, we utilized the Cre-LoxP system to conditionally knockout the AMPKα1 gene in the nervous system of mice. We demonstrated that AMPKα1 is imperative for maintaining normal nociception, and mice deficient for AMPKα1 exhibit mechanical allodynia. This is concomitantly associated with increased glutamatergic synaptic activities in neurons located in the superficial spinal dorsal horn, which results from the increased glutamate release from presynaptic terminals and function of ligand-gated glutamate receptors at the postsynaptic neurons. Additionally, AMPKα1 knockout mice have increased activities of extracellular signal-regulated kinases (ERK) and p38 mitogen-activated protein kinases (p38), as well as elevated levels of interleukin-1β (IL-1β), reactive oxygen species (ROS), and heme oxygenase 1 (HO-1) in the spinal dorsal horn. Systemic administration of a non-specific ROS scavenger (phenyl-N-tert-butylnitrone, PBN) or a HO-1 activator (Cobalt protoporphyrin IX, CoPP) attenuated allodynia in AMPKα1 knockout mice. Bath-perfusion of the ROS scavenger or HO-1 activator effectively attenuated the increased ROS levels and glutamatergic synaptic activities in the spinal dorsal horn. Our findings suggest that ROS are the key down-stream signaling molecules mediating the behavioral hypersensitivity in AMPKα1 knockout mice. Thus, targeting AMPKα1 may represent an effective approach for the treatment of pathological pain conditions associated with neuroinflammation at the spinal dorsal horn.
Collapse
Affiliation(s)
- Dylan W Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602, USA
| | - Xisheng Yan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602, USA.,Department of Cardiovascular Medicine, The Third Hospital of Wuhan, Wuhan 430074, Hubei Province, China.,Department of Endocrinology and Metabolism, Shanghai Tenth People's hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602, USA
| |
Collapse
|
20
|
Fritzen AM, Madsen AB, Kleinert M, Treebak JT, Lundsgaard AM, Jensen TE, Richter EA, Wojtaszewski J, Kiens B, Frøsig C. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. J Physiol 2016; 594:745-61. [PMID: 26614120 DOI: 10.1113/jp271405] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/25/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle. An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content. An acute bout of exercise regulates autophagy by a local contraction-induced mechanism. Exercise training increases the capacity for formation of autophagosomes in human muscle. AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy-inhibiting effect of insulin. Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exercise training and subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (P<0.01) lipidation of microtubule-associated protein 1A/1B-light chain 3 (LC3) (∼ 50%) and the LC3-II/LC3-I ratio (∼ 60%) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3-II/LC3-I ratio did not correlate with activation of 5'AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5-aminoimidazole-4-carboxamide riboside (AICAR) in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (P<0.01) the LC3-II/LC3-I ratio (∼ 80%) in muscle of the exercised and non-exercised leg in humans. This coincided with increased Ser-757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3-II/LC3-I ratio. In response to 3 weeks of one-legged exercise training, the LC3-II/LC3-I ratio decreased (P<0.05) in both trained and untrained muscle and this change was largely driven by an increase in LC3-I content. Taken together, acute exercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy-inhibiting effect of insulin.
Collapse
Affiliation(s)
- Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Agnete B Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Frøsig
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, the August Krogh Centre, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Ost M, Coleman V, Voigt A, van Schothorst EM, Keipert S, van der Stelt I, Ringel S, Graja A, Ambrosi T, Kipp AP, Jastroch M, Schulz TJ, Keijer J, Klaus S. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab 2015; 5:79-90. [PMID: 26909316 PMCID: PMC4735627 DOI: 10.1016/j.molmet.2015.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. Methods We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21−/−) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Results Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPRmt) and amino acid biosynthetic pathways did not require the presence of FGF21. Conclusions Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial stress adaptation and powerful therapeutic target during muscle mitochondrial disease. Muscle mitochondrial stress-induced browning of white adipose tissue fully requires FGF21. Negligible role of myokine FGF21 on whole body metabolic adaptations. Muscle mitohormesis and starvation-like response operates independently of FGF21 action.
Collapse
Affiliation(s)
- Mario Ost
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany.
| | - Verena Coleman
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Anja Voigt
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | | | - Susanne Keipert
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, 6708, Netherlands
| | - Sebastian Ringel
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Antonia Graja
- Research Group Adipocyte Development, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Thomas Ambrosi
- Research Group Adipocyte Development, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Anna P Kipp
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Tim J Schulz
- Research Group Adipocyte Development, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, 6708, Netherlands
| | - Susanne Klaus
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition, Nuthetal, 14558, Germany
| |
Collapse
|
22
|
Skeletal muscle mitochondrial uncoupling prevents diabetes but not obesity in NZO mice, a model for polygenic diabesity. GENES AND NUTRITION 2015; 10:57. [PMID: 26584809 DOI: 10.1007/s12263-015-0507-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
Abstract
Induction of skeletal muscle (SM) mitochondrial stress by expression of uncoupling protein 1 (UCP1) in mice results in a healthy metabolic phenotype associated with increased secretion of FGF21 from SM. Here, we investigated whether SM mitochondrial uncoupling can compensate obesity and insulin resistance in the NZO mouse, a polygenic diabesity model. Male NZO mice were crossed with heterozygous UCP1 transgenic (tg) mice (mixed C57BL/6/CBA background) and further backcrossed to obtain F1 and N2 offspring with 50 and 75 % NZO background, respectively. Male F1 and N2 progeny were fed a high-fat diet ad libitum for 20 weeks from weaning. Blood glucose was reduced, and diabetes (severe hyperglycemia >300 mg/dl) was fully prevented in both F1- and N2-tg progeny compared to a diabetes prevalence of 15 % in F1 and 42 % in N2 wild type. In contrast, relative body fat content and plasma insulin were decreased, and glucose tolerance was improved, in F1-tg only. Both F1 and N2-tg showed decreased lean body mass. Accordingly, induction of SM stress response including FGF21 expression and secretion was similar in both F1 and N2-tg mice. In white adipose tissue, expression of FGF21 target genes was enhanced in F1 and N2-tg mice, whereas lipid metabolism genes were induced in F1-tg only. There was no evidence for induction of browning in either UCP1 backcross. We conclude that SM mitochondrial uncoupling induces FGF21 expression and prevents diabetes in mice with a 50-75 % NZO background independent of its effects on adipose tissue.
Collapse
|
23
|
Busiello RA, Savarese S, Lombardi A. Mitochondrial uncoupling proteins and energy metabolism. Front Physiol 2015; 6:36. [PMID: 25713540 PMCID: PMC4322621 DOI: 10.3389/fphys.2015.00036] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the metabolic factors that contribute to energy metabolism (EM) is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate (RMR) and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1), which was the first in this family to be discovered, the reactions catalyzed by its homolog UCP3 and the physiological role remain under debate. This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.
Collapse
Affiliation(s)
- Rosa A Busiello
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio Benevento, Italy
| | - Sabrina Savarese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli Napoli, Italy
| |
Collapse
|
24
|
Ost M, Keipert S, Schothorst EM, Donner V, Stelt I, Kipp AP, Petzke K, Jove M, Pamplona R, Portero‐Otin M, Keijer J, Klaus S. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J 2014; 29:1314-28. [DOI: 10.1096/fj.14-261503] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Mario Ost
- German Institute of Human NutritionPotsdam‐RehbrueckeGermany
| | - Susanne Keipert
- German Institute of Human NutritionPotsdam‐RehbrueckeGermany
| | | | - Verena Donner
- German Institute of Human NutritionPotsdam‐RehbrueckeGermany
| | - Inge Stelt
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Anna P. Kipp
- German Institute of Human NutritionPotsdam‐RehbrueckeGermany
| | | | - Mariona Jove
- Biomedical Research InstituteUniversity of LleidaLleidaSpain
| | | | | | - Jaap Keijer
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Susanne Klaus
- German Institute of Human NutritionPotsdam‐RehbrueckeGermany
| |
Collapse
|