1
|
Tohidi E, Ghaemi M, Golvajouei MS. A review on camelid nanobodies with potential application in veterinary medicine. Vet Res Commun 2024; 48:2051-2068. [PMID: 38869749 DOI: 10.1007/s11259-024-10432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The single variable domains of camelid heavy-chain only antibodies, known as nanobodies, have taken a long journey since their discovery in 1989 until the first nanobody-based drug's entrance to the market in 2022. On account of their unique properties, nanobodies have been successfully used for diagnosis and therapy against various diseases or conditions. Although research on the application of recombinant antibodies has focused on human medicine, the development of nanobodies has paved the way for incorporating recombinant antibody production in favour of veterinary medicine. Currently, despite many efforts in developing these biomolecules with diversified applications, significant opportunities exist for exploiting these highly versatile and cost-effective antibodies in veterinary medicine. The present study attempts to identify existing gaps and shed light on paths for future research by presenting an updated review on camelid nanobodies with potential applications in veterinary medicine.
Collapse
Affiliation(s)
- Emadodin Tohidi
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mehran Ghaemi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Sadegh Golvajouei
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Nair S, Jiang Y, Marchal IS, Chernobelsky E, Huang HW, Suh S, Pan R, Kong XP, Ryoo HD, Sigurdsson EM. Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects. Cell Death Dis 2024; 15:543. [PMID: 39079958 PMCID: PMC11289317 DOI: 10.1038/s41419-024-06927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth Chernobelsky
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Huai-Wei Huang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah Suh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Bastos-Soares EA, da Silva Morais MS, Funes-Huacca M, Sousa RMO, Brilhante-Da-Silva N, Roberto SA, Prado NDR, Dos Santos CND, Marinho ACM, Soares AM, Stabeli RG, Pereira SDS, Fernandes CFC. Single-Domain Antibody-Gold Nanoparticle Bioconjugates as Immunosensors for the Detection of Hantaviruses. Mol Diagn Ther 2024; 28:479-494. [PMID: 38796660 DOI: 10.1007/s40291-024-00713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Hantavirus, a zoonotic pathogen, causes severe syndromes like hemorrhagic fever with renal syndrome (HFRS), sometimes fatal in humans. Considering the importance of detecting the hantavirus antigen, the construction of an immunosensor is essential. The structural and functional characteristics of camelid nanobodies (VHHs) encourage their application in the areas of nanobiotechnology, therapeutics, diagnostics, and basic research. Therefore, this study aimed to standardize stable bioconjugates using gold nanoparticles (AuNPs) and VHHs, in order to develop immunobiosensors for the diagnosis of hantavirus infection. METHODS Immobilized metal affinity chromatography (IMAC) was performed to obtain purified recombinant anti-hantavirus nucleocapsid nanobodies (anti-prNΔ85 VHH), while AuNPs were synthesized for bioconjugation. UV-visible spectrophotometry and transmission electron microscopy (TEM) analysis were employed to characterize AuNPs. RESULTS The bioconjugation stability parameters (VHH-AuNPs), analyzed by spectrophotometry, showed that the ideal pH value and VHH concentration were obtained at 7.4 and 50 μg/mL, respectively, after addition of 1 M NaCl, which induces AuNP aggregation. TEM performed before and after bioconjugation showed uniform, homogeneous, well-dispersed, and spherical AuNPs with an average diameter of ~ 14 ± 0.57 nm. Furthermore, high-resolution images revealed a thin white halo on the surface of the AuNPs, indicating the coating of the AuNPs with protein. A biosensor simulation test (dot blot-like [DB-like]) was performed in stationary phase to verify the binding and detection limits of the recombinant nucleocapsid protein from the Araucária hantavirus strain (prN∆85). DISCUSSION Using AuNPs/VHH bioconjugates, a specific interaction was detected between 5 and 10 min of reaction in a dose-dependent manner. It was observed that this test was sensitive enough to detect prNΔ85 at concentrations up to 25 ng/μL. Considering that nanostructured biological systems such as antibodies conjugated with AuNPs are useful tools for the development of chemical and biological sensors, the stability of the bioconjugate indicates proficiency in detecting antigens. The experimental results obtained will be used in a future immunospot assay or lateral flow immunochromatography analysis for hantavirus detection.
Collapse
Affiliation(s)
- Erika A Bastos-Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Michelle Suelen da Silva Morais
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Maribel Funes-Huacca
- Departamento de Química, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rosa Maria O Sousa
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | | | | - Anna C M Marinho
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Andreimar M Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil
- Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rodrigo G Stabeli
- Fundação Oswaldo Cruz, FIOCRUZ, Plataforma Bi-institucional de Medicina Translacional, Ribeirão Preto, SP, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | |
Collapse
|
4
|
Rizk SS, Moustafa DM, ElBanna SA, Nour El-Din HT, Attia AS. Nanobodies in the fight against infectious diseases: repurposing nature's tiny weapons. World J Microbiol Biotechnol 2024; 40:209. [PMID: 38771414 PMCID: PMC11108896 DOI: 10.1007/s11274-024-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
Collapse
Affiliation(s)
- Soha S Rizk
- Microbiology and Immunology Postgraduate Program, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dina M Moustafa
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Qin T, Wu P, Zhang Q, Kang K, Ma Y, Wang J. A functionalized Sup35NM nanofibril-assisted oriented antibody capture in lateral flow immunoassay for sensitive detection of dengue type II NS1. Mikrochim Acta 2023; 191:39. [PMID: 38110765 DOI: 10.1007/s00604-023-06109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/19/2023] [Indexed: 12/20/2023]
Abstract
Rapid and sensitive dengue non-structural protein 1 (NS1) detection assay is essential for the treatment of disease and currently releases high medical cost burdens. To address the limitations of conventional LFIA strips, we have developed an improved Sup35NM-Z-based LFIA that immobilizes antibodies on cellulose membranes in an orientated manner to increase the sensitivity of LFIA strips. A dual-functional Sup35NM nanofibril was fabricated by fusion with the antibody binding domain; resultant nanofibril from the amyloid Sup35NM was sprayed on the T-line to orientate the capture antibody and produces fluorescence signals. Antibody binding analysis showed that self-assembly of the Sup35NM monomer does not affect the binding activity of the Z-domain with the antibody. The NS1 for DENV-2 infection was chosen as a model target antigen to assess the feasibility of the Sup35NM-Z-domain-based LFIA platform. Under optimal conditions, the Sup35NM-Z-domain-based LFIA detected NS1 within 15 min with a detection limit of 1.29 ng/ml, while the detection limit of traditional LFIA with the same concentration of anti-NS1-Ab1 on the T-line by conventional physical adsorption was 2.20 ng/ml, 1.7 times higher than that of Sup35NM-Z-domain-based LFIA. As compared to traditional LFIAs, the Sup35NM-Z-based LFIA had a wide detection range of 1.29-625 ng/mL. The LFIA's clinical performance in identifying NS1 was also assessed using 15 clinical samples. The LFIA accurately recognized positive and negative samples, equal to 86.7% accuracy. The developed Sup35NM-Z-domain-based LFIA in this study offers great potential for the identification of target markers because of its greatly improved sensitivity and wider detection range.
Collapse
Affiliation(s)
- Ting Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Peidian Wu
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 510663, China
| | - Qiankun Zhang
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 510663, China
| | - Keren Kang
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 510663, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
7
|
Ren H, Zhang F, Zhu X, Lamlom SF, Zhao K, Zhang B, Wang J. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development. Front Microbiol 2023; 14:1233351. [PMID: 37799597 PMCID: PMC10548211 DOI: 10.3389/fmicb.2023.1233351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Rhizosphere microorganisms can effectively promote the stress resistance of plants, and some beneficial rhizosphere microorganisms can significantly promote the growth of crops under salt stress, which has the potential to develop special microbial fertilizers for increasing the yield of saline-alkali land and provides a low-cost and environmentally friendly new strategy for improving the crop yield of saline-alkali cultivated land by using agricultural microbial technology. Methods In May 2022, a field study in a completely randomized block design was conducted at the Heilongjiang Academy of Agricultural Sciences to explore the correlation between plant rhizosphere microorganisms and soybean growth in saline-alkali soil. Two soybean cultivars (Hening 531, a salt-tolerant variety, and 20_1846, a salt-sensitive variety) were planted at two experimental sites [Daqing (normal condition) and Harbin (saline-alkali conditions)], aiming to investigate the performance of soybean in saline-alkali environments. Results Soybeans grown in saline-alkali soil showed substantial reductions in key traits: plant height (25%), pod number (26.6%), seed yield (33%), and 100 seed weight (13%). This underscores the unsuitability of this soil type for soybean cultivation. Additionally, microbial analysis revealed 43 depleted and 56 enriched operational taxonomic units (OTUs) in the saline-alkali soil compared to normal soil. Furthermore, an analysis of ion-associated microbes identified 85 mOTUs with significant correlations with various ions. A co-occurrence network analysis revealed strong relationships between specific mOTUs and ions, such as Proteobacteria with multiple ions. In addition, the study investigated the differences in rhizosphere species between salt-tolerant and salt-sensitive soybean varieties under saline-alkali soil conditions. Redundancy analysis (RDA) indicated that mOTUs in saline-alkali soil were associated with pH and ions, while mOTUs in normal soil were correlated with Ca2+ and K+. Comparative analyses identified significant differences in mOTUs between salt-tolerant and salt-sensitive varieties under both saline-alkali and normal soil conditions. Planctomycetes, Proteobacteria, and Actinobacteria were dominant in the bacterial community of saline-alkali soil, with significant enrichment compared to normal soil. The study explored the functioning of the soybean rhizosphere key microbiome by comparing metagenomic data to four databases related to the carbon, nitrogen, phosphorus, and sulfur cycles. A total of 141 KOs (KEGG orthologues) were identified, with 66 KOs related to the carbon cycle, 16 KOs related to the nitrogen cycle, 48 KOs associated with the phosphorus cycle, and 11 KOs linked to the sulfur cycle. Significant correlations were found between specific mOTUs, functional genes, and phenotypic traits, including per mu yield (PMY), grain weight, and effective pod number per plant. Conclusion Overall, this study provides comprehensive insights into the structure, function, and salt-related species of soil microorganisms in saline-alkali soil and their associations with salt tolerance and soybean phenotype. The identification of key microbial species and functional categories offers valuable information for understanding the mechanisms underlying plant-microbe interactions in challenging soil conditions.
Collapse
Affiliation(s)
- Honglei Ren
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Fengyi Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Xiao Zhu
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Kezhen Zhao
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Bixian Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Jiajun Wang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| |
Collapse
|
8
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
9
|
Bhattacharya M, Chatterjee S, Lee SS, Chakraborty C. Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: Current update. Int J Biol Macromol 2023; 229:70-80. [PMID: 36586649 PMCID: PMC9797221 DOI: 10.1016/j.ijbiomac.2022.12.284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
In the last two years, the world encountered the SARS-CoV-2 virus, which is still dominating the population due to the absence of a viable treatment. To eradicate the global pandemic, scientists, doctors, and researchers took an exceptionally significant initiative towards the development of effective therapeutics to save many lifes. This review discusses about the single-domain antibodies (sdAbs), also called nanobodies, their structure, and their types against the infections of dreadful SARS-CoV-2 virus. A precise description highlights the nanobodies and their therapeutic application against the other selected viruses. It aims to focus on the extraordinary features of these antibodies compared to the conventional therapeutics like mAbs, convalescent plasma therapy, and vaccines. The stable structure of these nanobodies along with the suitable mechanism of action also confers greater resistance to the evolving variants with numerous mutations. The nanobodies developed against SARS-CoV-2 and its mutant variants have shown the greater neutralization potential than the primitive ones. Engineering of these specialized antibodies by modern biotechnological approaches will surely be more beneficial in treating this COVID-19 pandemic along with certain other viral infections.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
10
|
Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324:199018. [PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
Collapse
|
11
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
12
|
Saied AA, Metwally AA, Alobo M, Shah J, Sharun K, Dhama K. Bovine-derived antibodies and camelid-derived nanobodies as biotherapeutic weapons against SARS-CoV-2 and its variants: A review article. Int J Surg 2022; 98:106233. [PMID: 35065260 PMCID: PMC8768012 DOI: 10.1016/j.ijsu.2022.106233] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected 305 million individuals worldwide and killed about 5.5 million people as of January 10, 2022. SARS-CoV-2 is the third major outbreak caused by a new coronavirus in the previous two decades, following SARS-CoV and MERS-CoV. Even though vaccination against SARS-CoV-2 is considered a critical strategy for preventing virus spread in the population and limiting COVID-19 clinical manifestations, new therapeutic drugs, and management strategies are urgently needed, particularly in light of the growing number of SARS-CoV-2 variants (such as Delta and Omicron variants). However, the use of conventional antibodies has faced many challenges, such as viral escape mutants, increased instability, weak binding, large sizes, the need for large amounts of plasma, and high-cost manufacturing. Furthermore, the emergence of new SARS-CoV-2 variants in the human population and recurrent coronavirus spillovers highlight the need for broadly neutralizing antibodies that are not affected by an antigenic drift that could limit future zoonotic infection. Bovine-derived antibodies and camelid-derived nanobodies are more potent and protective than conventional human antibodies, thanks to their inbuilt characteristics, and can be produced in large quantities. In addition, it was reported that these biotherapeutics are effective against a broad spectrum of epitopes, reducing the opportunity of viral pathogens to develop mutational escape. In this review, we focus on the potential benefits behind our rationale for using bovine-derived antibodies and camelid-derived nanobodies in countering SARS-CoV-2 and its emerging variants and mutants.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt,Corresponding author. Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt,Corresponding author. Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Moses Alobo
- Grand Challenges Africa, Science for Africa Foundation, Nairobi, Kenya
| | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
14
|
Sroga P, Sloan A, Warner BM, Tierney K, Lew J, Liu G, Chan M, Deschambault Y, Stein DR, Soule G, Banadyga L, Falzarano D, Safronetz D. Polyclonal alpaca antibodies protect against hantavirus pulmonary syndrome in a lethal Syrian hamster model. Sci Rep 2021; 11:17440. [PMID: 34465819 PMCID: PMC8408274 DOI: 10.1038/s41598-021-96884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
The use of antibody-based therapies for the treatment of high consequence viral pathogens has gained interest over the last fifteen years. Here, we sought to evaluate the use of unique camelid-based IgG antibodies to prevent lethal hantavirus pulmonary syndrome (HPS) in Syrian hamsters. Using purified, polyclonal IgG antibodies generated in DNA-immunized alpacas, we demonstrate that post-exposure treatments reduced viral burdens and organ-specific pathology associated with lethal HPS. Antibody treated animals did not exhibit signs of disease and were completely protected. The unique structures and properties, particularly the reduced size, distinct paratope formation and increased solubility of camelid antibodies, in combination with this study support further pre-clinical evaluation of heavy-chain only antibodies for treatment of severe respiratory diseases, including HPS.
Collapse
Affiliation(s)
- Patrycja Sroga
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Angela Sloan
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bryce M Warner
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Guodong Liu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael Chan
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Yvon Deschambault
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Derek R Stein
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Cadham Provincial Laboratory, Winnipeg, MB, Canada
| | - Geoff Soule
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Logan Banadyga
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada. .,Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| |
Collapse
|
15
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
16
|
Chen F, Liu Z, Jiang F. Prospects of Neutralizing Nanobodies Against SARS-CoV-2. Front Immunol 2021; 12:690742. [PMID: 34122456 PMCID: PMC8194341 DOI: 10.3389/fimmu.2021.690742] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Since December 2019, the SARS-CoV-2 has erupted on a large scale worldwide and spread rapidly. Passive immunization of antibody-related molecules provides opportunities for prevention and treatment of high-risk patients and children. Nanobodies (Nbs) have many strong physical and chemical properties. They can be atomized, administered by inhalation, and can be directly applied to the infected site, with fast onset, high local drug concentration/high bioavailability, and high patient compliance (no needles). It has very attractive potential in the treatment of respiratory viruses. Rapid and low-cost development of Nbs targeting SARS-CoV-2 can quickly be achieved. Nbs against SARS-CoV-2 mutant strains also can be utilized quickly to prevent the virus from escaping. It provides important technical supports for the treatment of the SARS-CoV-2 and has the potential to become an essential medicine in the toolbox against the SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- NanoAI Biotech Co., Ltd., Huahan Technology Industrial Park, Shenzhen, China
| |
Collapse
|
17
|
Bastos-Soares EA, Sousa RMO, Gómez AF, Alfonso J, Kayano AM, Zanchi FB, Funes-Huacca ME, Stábeli RG, Soares AM, Pereira SS, Fernandes CFC. Single domain antibodies in the development of immunosensors for diagnostics. Int J Biol Macromol 2020; 165:2244-2252. [DOI: 10.1016/j.ijbiomac.2020.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
18
|
Lin Z, Lin Q, Li J, Pistolozzi M, Zhao L, Yang X, Ye Y. Spy chemistry-enabled protein directional immobilization and protein purification. Biotechnol Bioeng 2020; 117:2923-2932. [PMID: 32543719 DOI: 10.1002/bit.27460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Site-directed protein immobilization allows the homogeneous orientation of proteins with high retention of activity, which is advantageous for many applications. Here, we report a facile, specific, and efficient strategy based on the SpyTag-SpyCatcher chemistry. Two SpyTag-fused model proteins, that is, the monomeric red fluorescent protein (RFP) and the oligomeric glutaryl-7-aminocephalosporanic acid acylase, were easily immobilized onto a SpyCatcher-modified resin directly from cell lysates, with activity recoveries in the range of 85-91%. This strategy was further adapted to protein purification, which proceeded through the selective capture of the SpyCatcher-fused target proteins by a SpyTag-modified resin, with the aid of an intein to generate authentic N-termini. For two model proteins, that is, RFP and a variable domain of a heavy chain antibody, the yields were ∼3-7 mg/L culture with >90% purities. This approach could provide a versatile tool for producing high-performance immobilized protein devices and proteins for industrial and therapeutic uses.
Collapse
Affiliation(s)
- Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Qiao Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiahui Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Marco Pistolozzi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Lei Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Ahangarzadeh S, Payandeh Z, Arezumand R, Shahzamani K, Yarian F, Alibakhshi A. An update on antiviral antibody-based biopharmaceuticals. Int Immunopharmacol 2020; 86:106760. [PMID: 32645633 PMCID: PMC7336121 DOI: 10.1016/j.intimp.2020.106760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the vastness of the science virology, it is no longer an offshoot solely of the microbiology. Viruses have become as the causative agents of major epidemics throughout history. Many therapeutic strategies have been used for these microorganisms, and in this way the recognizing of potential targets of viruses is of particular importance for success. For decades, antibodies and antibody fragments have occupied a significant body of the treatment approaches against infectious diseases. Because of their high affinity, they can be designed and engineered against a variety of purposes, mainly since antibody fragments such as scFv, nanobody, diabody, and bispecific antibody have emerged owing to their small size and interesting properties. In this review, we have discussed the antibody discovery and molecular and biological design of antibody fragments as inspiring therapeutic and diagnostic agents against viral targets.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (IGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Alibakhshi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Konwarh R. Nanobodies: Prospects of Expanding the Gamut of Neutralizing Antibodies Against the Novel Coronavirus, SARS-CoV-2. Front Immunol 2020; 11:1531. [PMID: 32655584 PMCID: PMC7324746 DOI: 10.3389/fimmu.2020.01531] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rocktotpal Konwarh
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Centre of Excellence-Nanotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Sroga P, Safronetz D, Stein DR. Nanobodies: a new approach for the diagnosis and treatment of viral infectious diseases. Future Virol 2020. [DOI: 10.2217/fvl-2019-0167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the rise of viral infections and antibiotic resistance, there is a constant need for the development of more sensitive and effective treatment and diagnostic tools. Since their discovery in the early 1990s, Camelidae antibodies have been investigated as potential tools due to their unique structure and favorable characteristics. Members of this family produce conventional IgG antibodies as well as heavy-chain only IgG antibodies that do not possess light chains. The variable domain (VHH), or nanobody, demonstrates unique antigen-binding capabilities, enhanced stability, and its small size allows for delivery into the body using a nebulizer, thereby eliminating the unfavorable use of injections. In addition, the cost-effective and easy in vitro production of these antibodies are an attractive quality in terms of mass production. This review covers the past and current nanobody treatment and diagnostic developments aimed at viral infectious diseases, including a brief overview of protozoal, bacterial, and veterinary viral approaches.
Collapse
Affiliation(s)
- Patrycja Sroga
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
- Zoonotic Diseases & Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | |
Collapse
|
22
|
Shriver-Lake LC, Liu JL, Zabetakis D, Sugiharto VA, Lee CR, Defang GN, Wu SJL, Anderson GP, Goldman ER. Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Sci Rep 2018; 8:18086. [PMID: 30591706 PMCID: PMC6308234 DOI: 10.1038/s41598-018-35923-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 01/13/2023] Open
Abstract
Reliable detection and diagnosis of dengue virus (DENV) is important for both patient care and epidemiological control. Starting with a llama immunized with a mixture of recombinant nonstructural protein 1 (NS1) antigen from the four DENV serotypes, a phage display immune library of single domain antibodies was constructed and binders selected which exhibited specificity and affinity for DENV NS1. Each of these single domain antibodies was evaluated for its binding affinity to NS1 from the four serotypes, and incorporated into a sandwich format for NS1 detection. An optimal pair was chosen that provided the best combination of sensitivity for all four DENV NS1 antigens spiked into 50% human serum while showing no cross reactivity to NS1 from Zika virus, yellow fever virus, tick-borne encephalitis virus, and minimal binding to NS1 from Japanese encephalitis virus and West Nile virus. These rugged and robust recombinant binding molecules offer attractive alternatives to conventional antibodies for implementation into immunoassays destined for resource limited locals.
Collapse
Affiliation(s)
- Lisa C Shriver-Lake
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Jinny L Liu
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Dan Zabetakis
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Victor A Sugiharto
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Cheng-Rei Lee
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gabriel N Defang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Shuenn-Jue L Wu
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - George P Anderson
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Ellen R Goldman
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA.
| |
Collapse
|
23
|
Mohseni A, Molakarimi M, Taghdir M, Sajedi RH, Hasannia S. Exploring single-domain antibody thermostability by molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:3686-3696. [DOI: 10.1080/07391102.2018.1526116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Cheng F, Li M, He W, Sun B, Qin J, Qu J. Activation of resin with controllable ligand density via catalytic oxa-Michael addition and application in antibody purification. J Chromatogr A 2018; 1570:1-9. [DOI: 10.1016/j.chroma.2018.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
25
|
Phages bearing specific peptides with affinity for porcine reproductive and respiratory syndrome virus GP4 protein prevent cell penetration of the virus. Vet Microbiol 2018; 224:43-49. [PMID: 30269789 DOI: 10.1016/j.vetmic.2018.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused significant economic losses to the pig industry worldwide over the last 30 years. GP4 is a minor highly glycosylated structural protein composed of 187 and 183 amino acids in types I and II porcine reproductive and respiratory syndrome virus (PRRSV), respectively. The GP4 protein co-localizes with cluster of differentiation 163 (CD163), the major receptor on the target cell membrane, to mediate PRRSV internalization and disassembly. However, it remains to be established whether blocking interactions between GP4 and host cells can inhibit viral proliferation. In the present study, recombinant GP4 protein prepared and purified using the Escherichia coli system effectively recognized PRRSV-positive serum. Phage display biopanning on GP4 protein showed that the specific phages obtained could distinguish PRRSV from the other viruses. The exogenous peptide WHEYPLVWLSGY displayed on one of the candidate phages showed high affinity for GP4 protein and exerted a significant inhibitory effect on PRRSV penetration in vitro. Moreover, the N-terminus of GP4 was predicted as the critical receptor binding site and the beginning of the fifth scavenger receptor cysteine-rich domain of CD163 as the critical ligand recognition site based on sequence alignment and model prediction analyses. The current study expands our understanding of PRRSV GP4 and its receptor CD163 and provides a fresh perspective for the development of novel peptide-based viral inhibition reagents.
Collapse
|
26
|
Fernandes CFC, Pereira SDS, Luiz MB, Zuliani JP, Furtado GP, Stabeli RG. Camelid Single-Domain Antibodies As an Alternative to Overcome Challenges Related to the Prevention, Detection, and Control of Neglected Tropical Diseases. Front Immunol 2017. [PMID: 28649245 PMCID: PMC5465246 DOI: 10.3389/fimmu.2017.00653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due mainly to properties such as high affinity and antigen specificity, antibodies have become important tools for biomedical research, diagnosis, and treatment of several human diseases. When the objective is to administer them for therapy, strategies are used to reduce the heterologous protein immunogenicity and to improve pharmacokinetic and pharmacodynamic characteristics. Size minimization contributes to ameliorate these characteristics, while preserving the antigen-antibody interaction site. Since the discovery that camelids produce functional antibodies devoid of light chains, studies have proposed the use of single domains for biosensors, monitoring and treatment of tumors, therapies for inflammatory and neurodegenerative diseases, drug delivery, or passive immunotherapy. Despite an expected increase in antibody and related products in the pharmaceutical market over the next years, few research initiatives are related to the development of alternatives for helping to manage neglected tropical diseases (NTDs). In this review, we summarize developments of camelid single-domain antibodies (VHH) in the field of NTDs. Particular attention is given to VHH-derived products, i.e., VHHs fused to nanoparticles, constructed for the development of rapid diagnostic kits; fused to oligomeric matrix proteins for viral neutralization; and conjugated with proteins for the treatment of human parasites. Moreover, paratransgenesis technology using VHHs is an interesting approach to control parasite development in vectors. With enormous biotechnological versatility, facility and low cost for heterologous production, and greater ability to recognize different epitopes, VHHs have appeared as an opportunity to overcome challenges related to the prevention, detection, and control of human diseases, especially NTDs.
Collapse
Affiliation(s)
| | | | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.,Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | | | - Rodrigo G Stabeli
- Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil.,Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Identification of epitopes on nonstructural protein 7 of porcine reproductive and respiratory syndrome virus recognized by monoclonal antibodies using phage-display technology. Virus Genes 2017; 53:623-635. [DOI: 10.1007/s11262-017-1472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
|
28
|
Kathiresan E, Paramasivan R, Thenmozhi V, Das A, Dhananjeyan KJ, Sankar SG, Jerald Leo SV, Rathnapraba S, Vennison SJ. Development and multi-use applications of dengue NS1 monoclonal antibody for early diagnosis. RSC Adv 2017. [DOI: 10.1039/c6ra24763f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Swift and early diagnosis of dengue is important for case management and epidemiological purpose.
Collapse
Affiliation(s)
- E. Kathiresan
- Department of Biotechnology
- Anna University
- Tiruchirappalli 620 024
- India
| | - R. Paramasivan
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - V. Thenmozhi
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - Aparup Das
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - K. J. Dhananjeyan
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Gowri Sankar
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Victor Jerald Leo
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Rathnapraba
- Department of Animal Biotechnology
- Madras Veterinary College
- Tamil Nadu Veterinary and Animal Sciences University
- Chennai
- India
| | - S. John Vennison
- Department of Biotechnology
- Anna University
- Tiruchirappalli 620 024
- India
| |
Collapse
|
29
|
Miller EA, Traxlmayr MW, Shen J, Sikes HD. Activity-based assessment of an engineered hyperthermophilic protein as a capture agent in paper-based diagnostic tests. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2016; 1:377-381. [PMID: 28451464 PMCID: PMC5403157 DOI: 10.1039/c6me00032k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibodies have traditionally served as the affinity reagents of choice in point-of-care diagnostic biosensors. However, this class of proteins is not ideally suited for this use, being poorly characterized and prone to thermal denaturation. Here, we present an activity-based assessment of an alternative engineered binding protein in a cellulose-based assay.
Collapse
Affiliation(s)
- E A Miller
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - M W Traxlmayr
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - J Shen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - H D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Noël F, Malpertuy A, de Brevern AG. Global analysis of VHHs framework regions with a structural alphabet. Biochimie 2016; 131:11-19. [PMID: 27613403 DOI: 10.1016/j.biochi.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 02/08/2023]
Abstract
The VHHs are antigen-binding region/domain of camelid heavy chain antibodies (HCAb). They have many interesting biotechnological and biomedical properties due to their small size, high solubility and stability, and high affinity and specificity for their antigens. HCAb and classical IgGs are evolutionary related and share a common fold. VHHs are composed of regions considered as constant, called the frameworks (FRs) connected by Complementarity Determining Regions (CDRs), a highly variable region that provide interaction with the epitope. Actually, no systematic structural analyses had been performed on VHH structures despite a significant number of structures. This work is the first study to analyse the structural diversity of FRs of VHHs. Using a structural alphabet that allows approximating the local conformation, we show that each of the four FRs do not have a unique structure but exhibit many structural variant patterns. Moreover, no direct simple link between the local conformational change and amino acid composition can be detected. These results indicate that long-range interactions affect the local conformation of FRs and impact the building of structural models.
Collapse
Affiliation(s)
- Floriane Noël
- INSERM, U 1134, DSIMB, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France; Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| | | | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France; Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.
| |
Collapse
|
31
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
32
|
Böldicke T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:55-76. [PMID: 27236552 PMCID: PMC7121732 DOI: 10.1007/978-3-319-32805-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.
Collapse
Affiliation(s)
- Thomas Böldicke
- grid.7490.aRecombinant protein exprsn/Intrabdy unit, Helmholtz-Centre for Infection Rese, Braunschweig, Germany
| | - Sebastian Miethe
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
33
|
Development of Monoclonal Antibodies against HIV-1 p24 Protein and Its Application in Colloidal Gold Immunochromatographic Assay for HIV-1 Detection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6743904. [PMID: 27069923 PMCID: PMC4812187 DOI: 10.1155/2016/6743904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) p24 protein is the most abundant viral protein of HIV-1. This protein is secreted in blood serum at high levels during the early stages of HIV-1 infection, making it a biomarker for early diagnosis. In this study, a colloidal gold immunochromatographic assay (GICA) was established for detecting p24 protein using mouse monoclonal antibodies (mAbs). The HIV-1 p24 protein was expressed in E. coli strain BL21 and the purified protein was used to immunize mice. Stable hybridoma cell lines secreting anti-p24 monoclonal antibodies were obtained after ELISA screening and subcloning by limiting dilution. 34 different capture and labeling mAb pairs were selected by a novel antibody-capture indirect sandwich ELISA and then applied in GICA to detect p24 protein. The GICA method has a limit of detection (LOD) of 25 pg/mL and could detect p24 protein in all 10 positive samples obtained from the National Reference of HIV-1 p24 antigen. Out of 153 negative samples tested, 3 false positives results were obtained. The overall specificity of this test was 98.03%. The good sensitivity and specificity of this method make it a suitable alternative to provide a more convenient and efficient tool for early diagnosis of HIV infection.
Collapse
|
34
|
Miller E, Sikes HD. Addressing Barriers to the Development and Adoption of Rapid Diagnostic Tests in Global Health. Nanobiomedicine (Rij) 2015; 2. [PMID: 26594252 PMCID: PMC4652944 DOI: 10.5772/61114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Immunochromatographic rapid diagnostic tests (RDTs) have demonstrated significant potential for use as point-of-care diagnostic tests in resource-limited settings. Most notably, RDTs for malaria have reached an unparalleled level of technological maturity and market penetration, and are now considered an important complement to standard microscopic methods of malaria diagnosis. However, the technical development of RDTs for other infectious diseases, and their uptake within the global health community as a core diagnostic modality, has been hindered by a number of extant challenges. These range from technical and biological issues, such as the need for better affinity agents and biomarkers of disease, to social, infrastructural, regulatory and economic barriers, which have all served to slow their adoption and diminish their impact. In order for the immunochromatographic RDT format to be successfully adapted to other disease targets, to see widespread distribution, and to improve clinical outcomes for patients on a global scale, these challenges must be identified and addressed, and the global health community must be engaged in championing the broader use of RDTs.
Collapse
Affiliation(s)
- Eric Miller
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
35
|
Fang YS, Huang XJ, Wang LS, Wang JF. An enhanced sensitive electrochemical immunosensor based on efficient encapsulation of enzyme in silica matrix for the detection of human immunodeficiency virus p24. Biosens Bioelectron 2015; 64:324-32. [DOI: 10.1016/j.bios.2014.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
|
36
|
Abstract
UNLABELLED Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ~10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was specific for GII.10, whereas Nano-85 bound several different GII genotypes, including GII.4, GII.10, and GII.12. We showed that Nano-85 was able to detect norovirus virions in clinical stool specimens using a sandwich enzyme-linked immunosorbent assay. Importantly, we found that Nano-85 binding to intact particles caused the particles to disassemble. We believe that with further testing, Nano-85 not only will work as a diagnostic reagent in norovirus detection systems but also could function as a broadly reactive GII norovirus antiviral.
Collapse
|