1
|
Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol 2024; 12:1500394. [PMID: 39744011 PMCID: PMC11688314 DOI: 10.3389/fcell.2024.1500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Wu Z, Liu W, Si X, Liang J. Screening of key genes related to M6A methylation in patients with heart failure. BMC Cardiovasc Disord 2024; 24:565. [PMID: 39415091 PMCID: PMC11481427 DOI: 10.1186/s12872-024-04228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE This study aims to identify m6A methylation-related and immune cell-related key genes with diagnostic potential for heart failure (HF) by leveraging various bioinformatics techniques. METHODS The GSE116250 and GSE141910 datasets were sourced from the Gene Expression Omnibus (GEO) database. Correlation analysis was conducted between differentially expressed genes (DEGs) in HF and control groups, alongside differential m6A regulatory factors, to identify m6A-related DEGs (m6A-DEGs). Subsequently, candidate genes were narrowed down by intersecting key module genes derived from weighted gene co-expression network analysis (WGCNA) with m6A-DEGs. Key genes were then identified through the Least Absolute Shrinkage and Selection Operator (LASSO) analysis. Correlation analyses between key genes and differentially expressed immune cells were performed, followed by the validation of key gene expression levels in public datasets. To ensure clinical applicability, five pairs of blood samples were collected for quantitative real-time fluorescence PCR (qRT-PCR) validation. RESULTS A total of 93 m6A-DEGs were identified (|COR| > 0.6, P < 0.05), and five key genes (LACTB2, NAMPT, SCAMP5, HBA1, and PRKAR2A) were selected for further analysis. Correlation analysis revealed that differential immune cells were negatively associated with the expression of LACTB2, NAMPT, and PRKAR2A (P < 0.05), while positively correlated with SCAMP5 and HBA1 (P < 0.05). Subsequent expression validation confirmed significant differences in key gene expression between the HF and control groups, with consistent expression trends observed across both training and validation sets. The expression trends of LACTB2, PRKAR2A, and HBA1 in blood samples from the qRT-PCR assay aligned with the results derived from public databases. CONCLUSION This study successfully identified five m6A methylation-related key genes with diagnostic significance, providing a theoretical foundation for further exploration of m6A methylation's molecular mechanisms in HF.
Collapse
Affiliation(s)
- Zelan Wu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wupeng Liu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jinfeng Liang
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
4
|
Ingelson-Filpula WA, Kadamani KL, Ojaghi M, Pamenter ME, Storey KB. Hypoxia-induced downregulation of RNA m 6A protein machinery in the naked mole-rat heart. Biochimie 2024; 225:125-132. [PMID: 38788827 DOI: 10.1016/j.biochi.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Naked mole-rats, Heterocephalus glaber, are champion hypoxia-tolerant rodents that live under low oxygen conditions in their subterranean burrows. Detrimental effects of low oxygen can be mitigated through metabolic rate depression (MRD), metabolic reorganization, and global downregulation of nonessential cellular processes. Recent research has progressively implicated epigenetic modifications - rapid, reversible changes to gene expression that do not alter the DNA sequence itself - as major players in implementing and maintaining MRD. N6-adenosine (m6A) methylation is the most prevalent mammalian RNA modification and is responsible for pre-mRNA processing and mRNA export from the nucleus. Hence, m6A -mediated conformational changes alter the cellular fate of transcripts. The present study investigated the role of m6A RNA methylation responses to 24 h of hypoxia exposure in H. glaber cardiac tissue. Total protein levels of m6A writers/readers/erasers, m6A demethylase activity, and total m6A quantification were measured under normoxic vs. hypoxic conditions in H. glaber heart. While there was no change in either demethylase activity or total m6A content, many proteins of the m6A pathway were downregulated during hypoxia. Overall, m6A may not be a signature hypoxia-responsive characteristic in H. glaber heart, but downregulation of the protein machinery involved in m6A cycling points to an alternate biological involvement. Further research will explore other forms of RNA modifications and other epigenetic mechanisms to determine the controls on hypoxia endurance in this subterranean mammal.
Collapse
Affiliation(s)
- W Aline Ingelson-Filpula
- Affiliation: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6.
| | - Karen L Kadamani
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada
| | - Mohammad Ojaghi
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Affiliation: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| |
Collapse
|
5
|
Liu L, Yu L, Wang Y, Zhou L, Liu Y, Pan X, Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol Res 2024; 207:107305. [PMID: 39002868 DOI: 10.1016/j.phrs.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China; Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Liufang Zhou
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yan Liu
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
6
|
Rafaqat S, Sharif S, Naz S, Patoulias D, Klisic A. Contributing role of metabolic genes APOE, FTO, and LPL in the development of atrial fibrillation: insights from a case-control study. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240263. [PMID: 39166676 PMCID: PMC11329263 DOI: 10.1590/1806-9282.20240263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE The aim of the study was to examine the expression profile of genes (APOE, FTO, and LPL) associated with metabolic syndrome (MetS) in subjects with concomitant atrial fibrillation (AF). METHODS A total of 690 subjects were categorized into control, AF without MetS, and AF with MetS. RESULTS The expression profiles of the APOE, FTO, and LPL genes were decreased in AF subjects and AF subjects with MetS as compared to the controls. In AF without the MetS group, an inverse relationship was found between the expression of the LPL gene with body mass index (BMI) and a positive relationship with creatine kinase-MB, whereas expression of the FTO gene was inversely associated with fasting blood glucose and positively with cardiac troponin I in AF suffering from MetS. Expression of the LPL gene was directly linked with systolic blood pressure (SBP) and high-density lipoprotein-cholesterol (HDL-C), whereas an inverse correlation with heart rate and expression of the FTO gene in AF with MetS were shown. The expression of the LPL gene was inversely related to BMI in subjects with AF. The expression of the LPL gene was positively correlated with SBP and HDL-C and negatively correlated with heart rate, while the expression of the FTO gene was an important predictor of AF with MetS. CONCLUSION The decreased expression of APOE, FTO, and LPL genes in AF with and without MetS indicates their potential contributing role in the pathogenesis of AF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Lahore College for Women University, Department of Zoology - Lahore, Pakistan
| | - Saima Sharif
- Lahore College for Women University, Department of Zoology - Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Department of Zoology - Lahore, Pakistan
| | - Dimitrios Patoulias
- Aristotle University of Thessaloniki, General Hospital "Hippokration", Second Department of Cardiology, Outpatient Department of Cardiometabolic Medicine - Thessaloniki, Greece
| | - Aleksandra Klisic
- University of Montenegro, Faculty of Medicine - Podgorica, Montenegro
- Primary Health Care Center, Center for Laboratory Diagnostics - Podgorica, Montenegro
| |
Collapse
|
7
|
Lian Z, Chen R, Xian M, Huang P, Xu J, Xiao X, Ning X, Zhao J, Xie J, Duan J, Li B, Wang W, Shi X, Wang X, Jia N, Chen X, Li J, Yang Z. Targeted inhibition of m6A demethylase FTO by FB23 attenuates allergic inflammation in the airway epithelium. FASEB J 2024; 38:e23846. [PMID: 39093041 DOI: 10.1096/fj.202400545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Epithelial cells play a crucial role in asthma, contributing to chronic inflammation and airway hyperresponsiveness. m6A modification, which involves key proteins such as the demethylase fat mass and obesity-associated protein (FTO), is crucial in the regulation of various diseases, including asthma. However, the role of FTO in epithelial cells and the development of asthma remains unclear. In this study, we investigated the demethylase activity of FTO using a small-molecule inhibitor FB23 in epithelial cells and allergic inflammation in vivo and in vitro. We examined the FTO-regulated transcriptome-wide m6A profiling by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq under FB23 treatment and allergic inflammation conditions. Immunofluorescence staining was performed to assess the tissue-specific expression of FTO in asthmatic bronchial mucosa. We demonstrated that FB23 alleviated allergic inflammation in IL-4/IL-13-treated epithelial cells and house dust mite (HDM)-induced allergic airway inflammation mouse model. The demethylase activity of FTO contributed to the regulation of TNF-α signaling via NF-κB and epithelial-mesenchymal transition-related pathways under allergic inflammation conditions in epithelial cells. FTO was expressed in epithelial, submucosal gland, and smooth muscle cells in human bronchial mucosa. In conclusion, FB23-induced inhibition of FTO alleviates allergic inflammation in epithelial cells and HDM-induced mice, potentially through diverse cellular processes and epithelial-mesenchymal transition signaling pathways, suggesting that FTO is a potential therapeutic target in asthma management.
Collapse
Affiliation(s)
- Zexuan Lian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Mo Xian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Peiying Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jiahan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiaojun Xiao
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Xiaoping Ning
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jianlei Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jielin Duan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Bizhou Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wanjun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xu Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xinru Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Nan Jia
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xuepeng Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, P.R. China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhaowei Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
8
|
Yang H, Xuan L, Wang S, Luo H, Duan X, Guo J, Cui S, Xin J, Hao J, Li X, Chen J, Sun F, Hu X, Li S, Zhang Y, Jiao L, Yang B, Sun L. LncRNA CCRR maintains Ca 2+ homeostasis against myocardial infarction through the FTO-SERCA2a pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1601-1619. [PMID: 38761356 DOI: 10.1007/s11427-023-2527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024]
Abstract
Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lina Xuan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huishan Luo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaomeng Duan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianjun Guo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shijia Cui
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jieru Xin
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Junwei Hao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiufang Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun Chen
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feihan Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaolin Hu
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Siyun Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
9
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
10
|
Croft AJ, Kelly C, Chen D, Haw TJ, Balachandran L, Murtha LA, Boyle AJ, Sverdlov AL, Ngo DTM. Sex-based differences in short- and longer-term diet-induced metabolic heart disease. Am J Physiol Heart Circ Physiol 2024; 326:H1219-H1251. [PMID: 38363215 PMCID: PMC11381029 DOI: 10.1152/ajpheart.00467.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Sex-based differences in the development of obesity-induced cardiometabolic dysfunction are well documented, however, the specific mechanisms are not completely understood. Obesity has been linked to dysregulation of the epitranscriptome, but the role of N6-methyladenosine (m6A) RNA methylation has not been investigated in relation to the sex differences during obesity-induced cardiac dysfunction. In the current study, male and female C57BL/6J mice were subjected to short- and long-term high-fat/high-sucrose (HFHS) diet to induce obesogenic stress. Cardiac echocardiography showed males developed systolic and diastolic dysfunction after 4 mo of diet, but females maintained normal cardiac function despite both sexes being metabolically dysfunctional. Cardiac m6A machinery gene expression was differentially regulated by duration of HFHS diet in male, but not female mice, and left ventricular ejection fraction correlated with RNA machinery gene levels in a sex- and age-dependent manner. RNA-sequencing of cardiac transcriptome revealed that females, but not males may undergo protective cardiac remodeling early in the course of obesogenic stress. Taken together, our study demonstrates for the first time that cardiac RNA methylation machinery genes are regulated early during obesogenic stress in a sex-dependent manner and may play a role in the sex differences observed in cardiometabolic dysfunction.NEW & NOTEWORTHY Sex differences in obesity-associated cardiomyopathy are well documented but incompletely understood. We show for the first time that RNA methylation machinery genes may be regulated in response to obesogenic diet in a sex- and age-dependent manner and levels may correspond to cardiac systolic function. Our cardiac RNA-seq analysis suggests female, but not male mice may be protected from cardiac dysfunction by a protective cardiac remodeling response early during obesogenic stress.
Collapse
Affiliation(s)
- Amanda J Croft
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Conagh Kelly
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Dongqing Chen
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt Jhong Haw
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lohis Balachandran
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A Murtha
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew J Boyle
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Aaron L Sverdlov
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Doan T M Ngo
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
11
|
Benak D, Kolar F, Hlavackova M. Epitranscriptomic Regulations in the Heart. Physiol Res 2024; 73:S185-S198. [PMID: 38634649 PMCID: PMC11412340 DOI: 10.33549/physiolres.935265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA modifications affect key stages of the RNA life cycle, including splicing, export, decay, and translation. Epitranscriptomic regulations therefore significantly influence cellular physiology and pathophysiology. Here, we selected some of the most abundant modifications and reviewed their roles in the heart and in cardiovascular diseases: N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), pseudouridine (?), 5 methylcytidine (m5C), and inosine (I). Dysregulation of epitranscriptomic machinery affecting these modifications vastly changes the cardiac phenotype and is linked with many cardiovascular diseases such as myocardial infarction, cardiomyopathies, or heart failure. Thus, a deeper understanding of these epitranscriptomic changes and their regulatory mechanisms can enhance our knowledge of the molecular underpinnings of prevalent cardiac diseases, potentially paving the way for novel therapeutic strategies. Keywords: Epitranscriptomics, RNA modifications, Epigenetics, m6A, RNA, Heart.
Collapse
Affiliation(s)
- D Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
12
|
Kang J, Rhee J, Wang C, Yang Y, Li G, Li H. Unlocking the dark matter: noncoding RNAs and RNA modifications in cardiac aging. Am J Physiol Heart Circ Physiol 2024; 326:H832-H844. [PMID: 38305752 PMCID: PMC11221808 DOI: 10.1152/ajpheart.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.
Collapse
Affiliation(s)
- Jiayi Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - James Rhee
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| | - Chunyan Wang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Yolander Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guoping Li
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
13
|
Benak D, Kolar F, Zhang L, Devaux Y, Hlavackova M. RNA modification m 6Am: the role in cardiac biology. Epigenetics 2023; 18:2218771. [PMID: 37331009 DOI: 10.1080/15592294.2023.2218771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Epitranscriptomic modifications have recently emerged into the spotlight of researchers due to their vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6,2'-O-dimethyladenosine (m6Am) is one of the most prevalent chemical marks on RNA and is dynamically regulated by writers (PCIF1, METTL4) and erasers (FTO). The presence or absence of m6Am in RNA affects mRNA stability, regulates transcription, and modulates pre-mRNA splicing. Nevertheless, its functions in the heart are poorly known. This review summarizes the current knowledge and gaps about m6Am modification and its regulators in cardiac biology. It also points out technical challenges and lists the currently available techniques to measure m6Am. A better understanding of epitranscriptomic modifications is needed to improve our knowledge of the molecular regulations in the heart which may lead to novel cardioprotective strategies.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lu Zhang
- Bioinformatics Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10:2351-2365. [PMID: 37554175 PMCID: PMC10404889 DOI: 10.1016/j.gendis.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Obesity has become a major health crisis in the past ∼50 years. The fat mass and obesity-associated (FTO) gene, identified by genome-wide association studies (GWAS), was first reported to be positively associated with obesity in humans. Mice with more copies of the FTO gene were observed to be obese, while loss of the gene in mice was found to protect from obesity. Later, FTO was found to encode an m6A RNA demethylase and has a profound effect on many biological and metabolic processes. In this review, we first summarize recent studies that demonstrate the critical roles and regulatory mechanisms of FTO in obesity and metabolic disease. Second, we discuss the ongoing debates concerning the association between FTO polymorphisms and obesity. Third, since several small molecule drugs and micronutrients have been found to regulate metabolic homeostasis through controlling the expression or activity of FTO, we highlight the broad potential of targeting FTO for obesity treatment. Improving our understanding of FTO and the underlying mechanisms may provide new approaches for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Cui Y, Wang P, Li M, Wang Y, Tang X, Cui J, Chen Y, Zhang T. Cinnamic acid mitigates left ventricular hypertrophy and heart failure in part through modulating FTO-dependent N 6-methyladenosine RNA modification in cardiomyocytes. Biomed Pharmacother 2023; 165:115168. [PMID: 37453198 DOI: 10.1016/j.biopha.2023.115168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Left ventricular hypertrophy leads to heart failure, a serious medical condition associated with high rates of hospitalization and mortality. Limited success with the existing pharmacological treatments necessitates the development of mechanisms-based new therapies to better control the progression from left ventricular hypertrophy to heart failure. The current work investigated the pharmacological potentials and mechanisms of naturally occurring cinnamic acid in the treatment of left ventricular hypertrophy and heart failure. The in vitro findings reveal that cinnamic acid attenuates the hypertrophic responses and mitochondrial dysfunction in the phenylephrine (PE)-stimulated cardiomyocytes. Furthermore, cinnamic acid offsets PE-induced increases in N6-methyladenosine (m6A) RNA modification and reductions in the expression of the key m6A demethylase FTO in cardiomyocytes. Most importantly, FTO knockdown abrogates anti-hypertrophic and mitochondrial protective effects of cinnamic acid in the PE-stimulated cardiomyocytes. The in vivo results further demonstrate that cinnamic acid mitigates left ventricular hypertrophy, left ventricular systolic dysfunction and ultrastructural impairment of cardiomyocyte mitochondria and myofibrils in the mice subjected to transverse aortic constriction (TAC)-induced pressure overload. Moreover, FTO knockdown abolishes these beneficial effects of cinnamic acid in the TAC mice. In conclusion, the work here demonstrates for the first time that cinnamic acid is effective at mitigating pressure overload-induced left ventricular hypertrophy and heart failure in part by modulating the expression of FTO and the level of FTO-dependent m6A RNA modification in cardiomyocytes. These novel findings warrant further evaluation of cinnamic acid as a pharmacological agent/component to complement the existing treatment of pressure overload-mediated left ventricular hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yimeng Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Peiwei Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mengli Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yujue Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xinmiao Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, China; Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
16
|
Xu ZY, Jing X, Xiong XD. Emerging Role and Mechanism of the FTO Gene in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050850. [PMID: 37238719 DOI: 10.3390/biom13050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The fat mass and obesity-associated (FTO) gene was the first obesity-susceptibility gene identified through a genome-wide association study (GWAS). A growing number of studies have suggested that genetic variants of FTO are strongly associated with the risk of cardiovascular diseases, including hypertension and acute coronary syndrome. In addition, FTO was also the first N6-methyladenosine (m6A) demethylase, suggesting the reversible nature of m6A modification. m6A is dynamically deposited, removed, and recognized by m6A methylases, demethylases, and m6A binding proteins, respectively. By catalyzing m6A demethylation on mRNA, FTO may participate in various biological processes by modulating RNA function. Recent studies demonstrated that FTO plays a pivotal role in the initiation and progression of cardiovascular diseases such as myocardial fibrosis, heart failure, and atherosclerosis and may hold promise as a potential therapeutic target for treating or preventing a variety of cardiovascular diseases. Here, we review the association between FTO genetic variants and cardiovascular disease risk, summarize the role of FTO as an m6A demethylase in cardiovascular disorders, and discuss future research directions and possible clinical implications.
Collapse
Affiliation(s)
- Zi-Yang Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xia Jing
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
17
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
18
|
Liu S, Wang T, Cheng Z, Liu J. N6-methyladenosine (m6A) RNA modification in the pathophysiology of heart failure: a narrative review. Cardiovasc Diagn Ther 2022; 12:908-925. [PMID: 36605077 PMCID: PMC9808110 DOI: 10.21037/cdt-22-277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective Heart failure is the end-stage of various cardiovascular diseases. Recent progress in molecular biology has facilitated the understanding of the mechanisms of heart failure development at the molecular level. N6-adenosine methylation (m6A) is a post-transcriptional modification of RNA. Recent research work reported that m6A regulates gene expression and subsequently affects the activation of cell signaling pathways related to heart failure. Moreover, m6A regulators like methyltransferase-like 3 (METTL3) were reported to participate in myocardium hypertrophy. However, the current research work related to the role of m6A participating in the occurrence of heart failure is rare in some aspects like immune cell infiltration and diabetic heart diseases. Thus, it is reasonable to review the current achievements and provide further study orientation. Methods We searched related literature using the keywords: m6A AND heart failure in PubMed, Web of Science and Medline. The language was confined to English. The published year of searched literature ranged from 2012 to 2022. The searched results were put into Endnote software for management. Two authors investigated the searching terms and reviewed the full text of selected terms. Key Content and Findings m6A and its regulators are involved in the metabolism of various types of RNAs. m6A modification can regulate various types of cell signaling pathways related to the heart failure via interaction with m6A regulators. m6A and its regulators broadly participate in the myocardium fibrosis, myocardium hypertrophy, myocardial cell apoptosis, and ischemic reperfusion injury. Specifically, m6A participates in the cell apoptosis via regulation of autophagy flux. However, the current research work does not have enough evidence to prove that m6A regulator played its specific effect on the target transcript via regulating the m6A level. Conclusions m6A and its regulators participates in the progression of heart failure via modifying the RNA level. Future investigation of m6A should focus on the interaction between the m6A regulators and targeted transcript. Besides, the regulation role of m6A in immune cell infiltration and diabetic heart diseases should also be focused.
Collapse
Affiliation(s)
- Sihan Liu
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongyu Wang
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zeyi Cheng
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Liu
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Luse MA, Krüger N, Good ME, Biwer LA, Serbulea V, Salamon A, Deaton RA, Leitinger N, Gödecke A, Isakson BE. Smooth muscle cell FTO regulates contractile function. Am J Physiol Heart Circ Physiol 2022; 323:H1212-H1220. [PMID: 36306211 PMCID: PMC9678421 DOI: 10.1152/ajpheart.00427.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
The fat mass and obesity gene (FTO) is a N6-methyladenosine RNA demethylase that was initially linked by Genome-wide association studies to increased rates of obesity. Subsequent studies have revealed multiple mass-independent effects of the gene, including cardiac myocyte contractility. We created a mouse with a conditional and inducible smooth muscle cell deletion of Fto (Myh11 Cre+ Ftofl/fl) and did not observe any changes in mouse body mass or mitochondrial metabolism. However, the mice had significantly decreased blood pressure (hypotensive), despite increased heart rate and sodium, and significantly increased plasma renin. Remarkably, the third-order mesenteric arteries from these mice had almost no myogenic tone or capacity to constrict to smooth muscle depolarization or phenylephrine. Microarray analysis from Fto-/--isolated smooth muscle cells demonstrated a significant decrease in serum response factor (Srf) and the downstream effectors Acta2, Myocd, and Tagln; this was confirmed in cultured human coronary arteries with FTO siRNA. We conclude Fto is an important component to the contractility of smooth muscle cells.NEW & NOTEWORTHY We show a key role for the fat mass obesity (FTO) gene in regulating smooth muscle contractility, possibly by methylation of serum response factor (Srf).
Collapse
Affiliation(s)
- Melissa A Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nenja Krüger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anita Salamon
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rebecca A Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Axel Gödecke
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
20
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
21
|
Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022; 9:952949. [PMID: 36093141 PMCID: PMC9458904 DOI: 10.3389/fcvm.2022.952949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Kai Wang
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Zhang
| |
Collapse
|
22
|
Woudenberg T, Kruyt ND, Quax PHA, Nossent AY. Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure. Curr Heart Fail Rep 2022; 19:255-266. [PMID: 35876969 PMCID: PMC9534797 DOI: 10.1007/s11897-022-00561-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Purpose of Review Small non-coding RNAs regulate gene expression and are highly implicated in heart failure. Recently, an additional level of post-transcriptional regulation has been identified, referred to as the epitranscriptome, which encompasses the body of post-transcriptional modifications that are placed on RNA molecules. In this review, we summarize the current knowledge on the small non-coding RNA epitranscriptome in heart failure. Recent Findings With the rise of new methods to study RNA modifications, epitranscriptome research has begun to take flight. Over the past 3 years, the number of publications on the epitranscriptome in heart failure has significantly increased, and we expect many more highly relevant publications to come out over the next few years. Summary Currently, at least six modifications on small non-coding RNAs have been investigated in heart failure-relevant studies, namely N6-adenosine, N5-cytosine and N7-guanosine methylation, 2’-O-ribose-methylation, adenosine-to-inosine editing, and isomiRs. Their potential role in heart failure is discussed.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
23
|
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J. m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Front Genet 2022; 13:908976. [PMID: 35836571 PMCID: PMC9274458 DOI: 10.3389/fgene.2022.908976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Fan S, Hu Y. Role of m6A Methylation in the Occurrence and Development of Heart Failure. Front Cardiovasc Med 2022; 9:892113. [PMID: 35811741 PMCID: PMC9263194 DOI: 10.3389/fcvm.2022.892113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is one of the most common epigenetic modifications in RNA nucleotides. It is known that m6A methylation is involved in regulation, including gene expression, homeostasis, mRNA stability and other biological processes, affecting metabolism and a variety of biochemical regulation processes, and affecting the occurrence and development of a variety of diseases. Cardiovascular disease has high morbidity, disability rate and mortality in the world, of which heart failure is the final stage. Deeper understanding of the potential molecular mechanism of heart failure and exploring more effective treatment strategies will bring good news to the sick population. At present, m6A methylation is the latest research direction, which reveals some potential links between epigenetics and pathogenesis of heart failure. And m6A methylation will bring new directions and ideas for the prevention, diagnosis and treatment of heart failure. The purpose of this paper is to review the physiological and pathological mechanisms of m6A methylation that may be involved in cardiac remodeling in heart failure, so as to explain the possible role of m6A methylation in the occurrence and development of heart failure. And we hope to help m6A methylation obtain more in-depth research in the occurrence and development of heart failure.
Collapse
|
25
|
Wang K, Zhou L, Liu F, Lin L, Ju J, Tian P, Liu C, Li X, Chen X, Wang T, Wang F, Wang S, Zhang J, Zhang Y, Tian J, Wang K. PIWI-Interacting RNA HAAPIR Regulates Cardiomyocyte Death After Myocardial Infarction by Promoting NAT10-Mediated ac 4 C Acetylation of Tfec mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106058. [PMID: 35138696 PMCID: PMC8922123 DOI: 10.1002/advs.202106058] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Indexed: 05/08/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are abundantly expressed in heart. However, their functions and molecular mechanisms during myocardial infarction remain unknown. Here, a heart-apoptosis-associated piRNA (HAAPIR), which regulates cardiomyocyte apoptosis by targeting N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4 C) acetylation of transcription factor EC (Tfec) mRNA transcript, is identified. HAAPIR deletion attenuates ischemia/reperfusion induced myocardial infarction and ameliorate cardiac function compared to WT mice. Mechanistically, HAAPIR directly interacts with NAT10 and enhances ac4 C acetylation of Tfec mRNA transcript, which increases Tfec expression. TFEC can further upregulate the transcription of BCL2-interacting killer (Bik), a pro-apoptotic factor, which results in the accumulation of Bik and progression of cardiomyocyte apoptosis. The findings reveal that piRNA-mediated ac4 C acetylation mechanism is involved in the regulation of cardiomyocyte apoptosis. HAAPIR-NAT10-TFEC-BIK signaling axis can be potential target for the reduction of myocardial injury caused by cardiomyocyte apoptosis in ischemia heart diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Lu‐Yu Zhou
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Fang Liu
- Center of Diabetic Systems MedicineGuangxi Key Laboratory of Excellenceand Department of AnatomyGuilin Medical UniversityGuilin541004China
| | - Liang Lin
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Jie Ju
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Peng‐Chao Tian
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Cui‐Yun Liu
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Min Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Zhe Chen
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Tao Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Fei Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Shao‐Cong Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Jian Zhang
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Yu‐Hui Zhang
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Jin‐Wei Tian
- Department of CardiologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Kun Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| |
Collapse
|
26
|
Peng L, Long T, Li F, Xie Q. Emerging role of m 6 A modification in cardiovascular diseases. Cell Biol Int 2022; 46:711-722. [PMID: 35114043 DOI: 10.1002/cbin.11773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/19/2021] [Accepted: 01/30/2022] [Indexed: 11/07/2022]
Abstract
Cardiovascular diseases (CVDs) contribute to the leading cause of death worldwide. Despite significantly improvements in CVDs diagnosis and treatment, a continued effort to explore novel therapeutic strategies is urgently need. N6-methyladenosine (m6 A) RNA methylation, well known as the most prevalent type of RNA modifications, involved in RNA stability, nuclear exports, translation and decoy, plays a crucial role in the pathogenesis of a variety of diseases, including CVDs, cancer and drug resistance. Here, our article summarizes cellular functions of m6 A modulators and recent research progress concerning the functions and mechanisms of m6 A methylation in CVDs, in hope of providing references for exploring novel therapeutic approaches and potential biomarkers in the treatment of CVDs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liming Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmaco Genetics, Central South University, Changsha, China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyi Long
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Xie
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol 2021; 106:2423-2433. [PMID: 34713923 DOI: 10.1113/ep089901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of fat mass and obesity-associated protein (FTO) on energy metabolism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes? What is the main finding and its importance? FTO modification of N6 -methyladenosine (m6 A) is associated with myocardial cell energy metabolism disorder. FTO reduced the m6 A level of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) mRNA through demethylation, thus promoting SERCA2a expression, maintaining calcium homeostasis, and improving energy metabolism of H/R cardiomyocytes. ABSTRACT Energy metabolism disorder is the initial physiological link of myocardial ischaemia-reperfusion injury. Fat mass and obesity-associated protein (FTO) is an N6 -methyladenosine (m6 A) demethylase implicated in several cardiac defects. This study sought to investigate the effect of FTO on energy metabolism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. FTO and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) expression in H/R-induced cardiomyocytes were determined. Cardiomyocyte viability, cytotoxicity and apoptosis were measured. The total RNA and polyA+ RNA contents were isolated from cells. The m6 A level of RNA and the enrichment of m6 A of SERCA2a mRNA were calculated. Several indices such as the glycolytic potential, reactive oxygen species (ROS), mitochondrial activity and ATP content were evaluated. The concentration of calcium in cardiomyocytes was determined. FTO and SERCA2a were poorly expressed in H/R-induced cardiomyocytes. There was an elevated m6 A level in total RNA and enrichment of m6 A in SERCA2a mRNA. H/R treatment reduced the cell viability, mitochondrial membrane potential and ATP content in cardiomyocytes, but increased the cytotoxicity, apoptosis, ROS content and calcium concentration. Upregulation of FTO reversed the preceding findings with downregulation of the m6 A level of SERCA2a mRNA. Downregulation of SERCA2a annulled the promoting effect of FTO on calcium homeostasis and energy metabolism in H/R-induced cardiomyocytes. Collectively, the current study demonstrated that FTO reduced the m6 A level on SERCA2a mRNA through demethylation, thus promoting SERCA2a expression, maintaining calcium homeostasis and improving the energy metabolism of H/R cardiomyocytes.
Collapse
Affiliation(s)
- Wenzheng Deng
- Department of Cardiology, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Qiao Jin
- Department of Cardiovascular Medicine, Nanhua University affiliated Changsha Central Hospital, Changsha, Hunan, China
| | - Liang Li
- Department of Cardiovascular Medicine, Nanhua University affiliated Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
28
|
Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1700. [PMID: 34664402 DOI: 10.1002/wrna.1700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Naturally occurring post-transcriptional chemical modifications serve critical roles in impacting RNA structure and function. More directly, modifications may affect RNA stability, intracellular transport, translational efficiency, and fidelity. The combination of effects caused by modifications are ultimately linked to gene expression regulation at a genome-wide scale. The latter is especially true in systems that undergo rapid metabolic and or translational remodeling in response to external stimuli, such as the presence of stressors, but beyond that, modifications may also affect cell homeostasis. Although examples of the importance of RNA modifications in translation are accumulating rapidly, still what these contribute to the function of complex physiological systems such as muscle is only recently emerging. In the present review, we will introduce key information on various modifications and highlight connections between those and cellular malfunctions. In passing, we will describe well-documented roles for modifications in the nervous system and use this information as a stepping stone to emphasize a glaring paucity of knowledge on the role of RNA modifications in heart and skeletal muscle, with particular emphasis on mitochondrial function in those systems. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Zeng Y, Huang T, Zuo W, Wang D, Xie Y, Wang X, Xiao Z, Chen Z, Liu Q, Liu N, Xiao Y. Integrated analysis of m 6A mRNA methylation in rats with monocrotaline-induced pulmonary arterial hypertension. Aging (Albany NY) 2021; 13:18238-18256. [PMID: 34310344 PMCID: PMC8351682 DOI: 10.18632/aging.203230] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/04/2021] [Indexed: 01/22/2023]
Abstract
Background: N6-methyladenosine (m6A) modification is one of the most common chemical modifications of eukaryotic mRNAs, which play an important role in tumors and cardiovascular disease through regulating mRNA stability, splicing and translation. However, the changes of m6A mRNA and m6A-related enzymes in pulmonary arterial hypertension (PAH) remain largely unexplored. Methods: MeRIP-seq was used to identify m6A methylation in lung tissues from control and MCT-PAH rats. Western blot and immunofluorescence were used to evaluate expression of m6A-related enzymes. Results: Compared with control group, m6A methylation was mainly increased in lung tissues from MCT-PAH rats. The up-methylated coding genes in MCT-PAH rats were primarily enriched in processes associated with inflammation, glycolysis, ECM-receptor interaction and PDGF signal pathway, while genes with down-methylation were enriched in processes associated with TGF-β family receptor members. The expression of FTO and ALKBH5 downregulated, METTL3 and YTHDF1 increased and other methylation modification-related proteins was not significantly changed in MCT-PAH rats lung tissues. Immunofluorescence indicated that expression of FTO decreased and YTHDF1 increased in small pulmonary arteries of MCT-PAH rats. Conclusion: m6A levels and the expression of methylation-related enzymes were altered in PAH rats, in which FTO and YTHDF1 may play a crucial role in m6A modification.
Collapse
Affiliation(s)
- Yunhong Zeng
- Academy of Pediatrics, University of South China, Changsha 410007, China.,Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Ting Huang
- Academy of Pediatrics, University of South China, Changsha 410007, China.,Department of Utrasound, Hunan Children's Hospital, Changsha 410007, China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dan Wang
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Yonghui Xie
- Academy of Pediatrics, University of South China, Changsha 410007, China.,Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Xun Wang
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Zhenghui Xiao
- Department of Intensive Care Unit, Hunan Children's Hospital, Changsha 410007, China
| | - Zhi Chen
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Na Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, Changsha 410007, China
| |
Collapse
|
30
|
Zhao K, Yang CX, Li P, Sun W, Kong XQ. Epigenetic role of N6-methyladenosine (m6A) RNA methylation in the cardiovascular system. J Zhejiang Univ Sci B 2021; 21:509-523. [PMID: 32633106 DOI: 10.1631/jzus.b1900680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As the most prevalent and abundant transcriptional modification in the eukaryotic genome, the continuous and dynamic regulation of N6-methyladenosine (m6A) has been shown to play a vital role in physiological and pathological processes of cardiovascular diseases (CVDs), such as ischemic heart failure (HF), myocardial hypertrophy, myocardial infarction (MI), and cardiomyogenesis. Regulation is achieved by modulating the expression of m6A enzymes and their downstream cardiac genes. In addition, this process has a major impact on different aspects of internal biological metabolism and several other external environmental effects associated with the development of CVDs. However, the exact molecular mechanism of m6A epigenetic regulation has not been fully elucidated. In this review, we outline recent advances and discuss potential therapeutic strategies for managing m6A in relation to several common CVD-related metabolic disorders and external environmental factors. Note that an appropriate understanding of the biological function of m6A in the cardiovascular system will pave the way towards exploring the mechanisms responsible for the development of other CVDs and their associated symptoms. Finally, it can provide new insights for the development of novel therapeutic agents for use in clinical practice.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chuan-Xi Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang-Qing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
31
|
Longenecker JZ, Gilbert CJ, Golubeva VA, Martens CR, Accornero F. Epitranscriptomics in the Heart: a Focus on m 6A. Curr Heart Fail Rep 2021; 17:205-212. [PMID: 32813261 DOI: 10.1007/s11897-020-00473-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Post-transcriptional modifications are key regulators of gene expression that allow the cell to respond to environmental stimuli. The most abundant internal mRNA modification is N6-methyladenosine (m6A), which has been shown to be involved in the regulation of RNA splicing, localization, translation, and decay. It has also been implicated in a wide range of diseases, and here, we review recent evidence of m6A's involvement in cardiac pathologies and processes. RECENT FINDINGS Studies have primarily relied on gain and loss of function models for the enzymes responsible for adding and removing the m6A modification. Results have revealed a multifaceted role for m6A in the heart's response to myocardial infarction, pressure overload, and ischemia/reperfusion injuries. Genome-wide analyses of mRNAs that are differentially methylated during cardiac stress have highlighted the importance of m6A in regulating the translation of specific categories of transcripts implicated in pathways such as calcium handling, cell growth, autophagy, and adrenergic signaling in cardiomyocytes. Regulation of gene expression by m6A is critical for cardiomyocyte homeostasis and stress responses, suggesting a key role for this modification in cardiac pathophysiology.
Collapse
Affiliation(s)
- Jacob Z Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Christopher J Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Volha A Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Colton R Martens
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Yang C, Zhao K, Zhang J, Wu X, Sun W, Kong X, Shi J. Comprehensive Analysis of the Transcriptome-Wide m6A Methylome of Heart via MeRIP After Birth: Day 0 vs. Day 7. Front Cardiovasc Med 2021; 8:633631. [PMID: 33829047 PMCID: PMC8019948 DOI: 10.3389/fcvm.2021.633631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aim: To systematically classify the profile of the RNA m6A modification landscape of neonatal heart regeneration. Materials and Methods: Cardiomyocyte proliferation markers were detected via immunostaining. The expression of m6A modification regulators was detected using quantitative real-time PCR (qPCR) and Western blotting. Genome-wide profiling of methylation-modified transcripts was conducted with methylation-modified RNA immunoprecipitation sequencing (m6A-RIP-seq) and RNA sequencing (RNA-seq). The Gene Expression Omnibus database (GEO) dataset was used to verify the hub genes. Results: METTL3 and the level of m6A modification in total RNA was lower in P7 rat hearts than in P0 ones. In all, 1,637 methylation peaks were differentially expressed using m6A-RIP-seq, with 84 upregulated and 1,553 downregulated. Furthermore, conjoint analyses of m6A-RIP-seq, RNA-seq, and GEO data generated eight potential hub genes with differentially expressed hypermethylated or hypomethylated m6A levels. Conclusion: Our data provided novel information on m6A modification changes between Day 0 and Day 7 cardiomyocytes, which identified that increased METTL3 expression may enhance the proliferative capacity of neonatal cardiomyocytes, providing a theoretical basis for future clinical studies on the direct regulation of m6A in the proliferative capacity of cardiomyocytes.
Collapse
Affiliation(s)
- Chuanxi Yang
- Department of Cardiology, Medical School of Southeast University, Nanjing, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoguang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, Medical School of Southeast University, Nanjing, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother 2021; 137:111376. [PMID: 33588266 DOI: 10.1016/j.biopha.2021.111376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, especially in developing countries. To date, several approaches have been proposed for the prevention and treatment of CVDs. However, the increased risk of developing cardiovascular events that result in hospitalization has become a growing public health concern. The pathogenesis of CVDs has been analyzed from various perspectives. Recent data suggest that regulatory RNAs play a multidimensional role in the development of CVDs. Studies have identified several mRNA modifications that have contributed to the functional characterization of various cardiac diseases. RNA methylation, such as N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, N7-methylguanosine, N4-acetylcytidine, and 2'-O-methylation are novel epigenetic modifications that affect the regulation of cell growth, immunity, DNA damage, calcium signaling, apoptosis, and aging in cardiomyocytes. In this review, we summarize the role of RNA methylation in the pathophysiology of CVDs and the potential of using epigenetics to treat such disorders.
Collapse
|
34
|
RNA Modification by m 6A Methylation in Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8813909. [PMID: 34221238 PMCID: PMC8183103 DOI: 10.1155/2021/8813909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is currently the leading cause of death worldwide, and its underlying regulatory mechanisms remain largely unknown. N6-Methyladenosine (m6A) RNA methylation is an epigenetic modification involved in the splicing, nuclear export, translational regulation, and degradation of RNA. After the initial identification of m6A RNA methylation in 1974, the rise of next-generation sequencing technology to detect m6A throughout the transcriptome led to its renewed recognition in 2012. Since that time, m6A methylation has been extensively studied, and its functions, mechanisms, and effectors (e.g., METTL3, FTO, METTL14, WTAP, ALKBH5, and YTHDFs) in various diseases, including cardiovascular diseases, have rapidly been investigated. In this review, we first examine and summarize the molecular and cellular functions of m6A methylation and its readers, writers, and erasers in the cardiovascular system. Finally, we discuss future directions for m6A methylation research and the potential for therapeutic targeting of m6A modification in cardiovascular disease.
Collapse
|
35
|
The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N 6-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 2020; 22:1319-1331. [PMID: 33020597 DOI: 10.1038/s41556-020-0576-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are abundantly expressed during cardiac hypertrophy. However, their functions and molecular mechanisms remain unknown. Here, we identified a cardiac-hypertrophy-associated piRNA (CHAPIR) that promotes pathological hypertrophy and cardiac remodelling by targeting METTL3-mediated N6-methyladenosine (m6A) methylation of Parp10 mRNA transcripts. CHAPIR deletion markedly attenuates cardiac hypertrophy and restores heart function, while administration of a CHAPIR mimic enhances the pathological hypertrophic response in pressure-overloaded mice. Mechanistically, CHAPIR-PIWIL4 complexes directly interact with METTL3 and block the m6A methylation of Parp10 mRNA transcripts, which upregulates PARP10 expression. The CHAPIR-dependent increase in PARP10 promotes the mono-ADP-ribosylation of GSK3β and inhibits its kinase activity, which results in the accumulation of nuclear NFATC4 and the progression of pathological hypertrophy. Hence, our findings reveal that a piRNA-mediated RNA epigenetic mechanism is involved in the regulation of cardiac hypertrophy and that the CHAPIR-METTL3-PARP10-NFATC4 signalling axis could be therapeutically targeted for treating pathological hypertrophy and maladaptive cardiac remodelling.
Collapse
|
36
|
Vyas V, Hunter RJ, Longhi MP, Finlay MC. Inflammation and adiposity: new frontiers in atrial fibrillation. Europace 2020; 22:1609-1618. [PMID: 33006596 DOI: 10.1093/europace/euaa214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Abstract
The aetiology of atrial fibrillation (AF) remains poorly understood, despite its growing prevalence and associated morbidity, mortality, and healthcare costs. Obesity is implicated in myriad different disease processes and is now recognized a major risk factor in the pathogenesis of AF. Moreover, the role of distinct adipose tissue depots is a matter of intense scientific interest with the depot directly surrounding the heart—epicardial adipose tissue (EAT) appearing to have the greatest correlation with AF presence and severity. Similarly, inflammation is implicated in the pathophysiology of AF with EAT thought to act as a local depot of inflammatory mediators. These can easily diffuse into atrial tissue with the potential to alter its structural and electrical properties. Various meta-analyses have indicated that EAT size is an independent risk factor for AF with adipose tissue expansion being inevitably associated with a local inflammatory process. Here, we first briefly review adipose tissue anatomy and physiology then move on to the epidemiological data correlating EAT, inflammation, and AF. We focus particularly on discussing the mechanistic basis of how EAT inflammation may precipitate and maintain AF. Finally, we review how EAT can be utilized to help in the clinical management of AF patients and discuss future avenues for research.
Collapse
Affiliation(s)
- Vishal Vyas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiac Electrophysiology, Barts Heart Centre, St. Bartholomew’s Hospital, West Smithfield, London, UK
| | - Ross J Hunter
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiac Electrophysiology, Barts Heart Centre, St. Bartholomew’s Hospital, West Smithfield, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Malcolm C Finlay
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiac Electrophysiology, Barts Heart Centre, St. Bartholomew’s Hospital, West Smithfield, London, UK
| |
Collapse
|
37
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
38
|
Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2020; 35:1025-1044. [PMID: 32748033 PMCID: PMC8452583 DOI: 10.1007/s10557-020-07019-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological remodelling of the myocardium, including inflammation, fibrosis and hypertrophy, in response to acute or chronic injury is central in the development and progression of heart failure (HF). While both resident and infiltrating cardiac cells are implicated in these pathophysiological processes, recent evidence has suggested that endothelial cells (ECs) may be the principal cell type responsible for orchestrating pathological changes in the failing heart. Epigenetic modification of nucleic acids, including DNA, and more recently RNA, by methylation is essential for physiological development due to their critical regulation of cellular gene expression. As accumulating evidence has highlighted altered patterns of DNA and RNA methylation in HF at both the global and individual gene levels, much effort has been directed towards defining the precise role of such cell-specific epigenetic changes in the context of HF. Considering the increasingly apparent crucial role that ECs play in cardiac homeostasis and disease, this article will specifically focus on nucleic acid methylation (both DNA and RNA) in the failing heart, emphasising the key influence of these epigenetic mechanisms in governing EC function. This review summarises current understanding of DNA and RNA methylation alterations in HF, along with their specific role in regulating EC function in response to stress (e.g. hyperglycaemia, hypoxia). Improved appreciation of this important research area will aid in further implicating dysfunctional ECs in HF pathogenesis, whilst informing development of EC-targeted strategies and advancing potential translation of epigenetic-based therapies for specific targeting of pathological cardiac remodelling in HF.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Denis O'Dwyer
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
39
|
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S. FTO-Dependent N 6-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation 2019; 139:518-532. [PMID: 29997116 DOI: 10.1161/circulationaha.118.033794] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite its functional importance in various fundamental bioprocesses, studies of N6-methyladenosine (m6A) in the heart are lacking. Here, we show that the FTO (fat mass and obesity-associated protein), an m6A demethylase, plays a critical role in cardiac contractile function during homeostasis, remodeling, and regeneration. METHODS We used clinical human samples, preclinical pig and mouse models, and primary cardiomyocyte cell cultures to study the functional role of m6A and FTO in the heart and in cardiomyocytes. We modulated expression of FTO by using adeno-associated virus serotype 9 (in vivo), adenovirus (both in vivo and in vitro), and small interfering RNAs (in vitro) to study its function in regulating cardiomyocyte m6A, calcium dynamics and contractility, and cardiac function postischemia. We performed methylated (m6A) RNA immunoprecipitation sequencing to map transcriptome-wide m6A, and methylated (m6A) RNA immunoprecipitation quantitative polymerase chain reaction assays to map and validate m6A in individual transcripts, in healthy and failing hearts, and in myocytes. RESULTS We discovered that FTO has decreased expression in failing mammalian hearts and hypoxic cardiomyocytes, thereby increasing m6A in RNA and decreasing cardiomyocyte contractile function. Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is performed by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts, thus preventing their degradation and improving their protein expression under ischemia. In addition, we demonstrate that FTO overexpression in mouse models of myocardial infarction decreased fibrosis and enhanced angiogenesis. CONCLUSIONS Collectively, our study demonstrates the functional importance of the FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.
Collapse
Affiliation(s)
| | - Marta Adamiak
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Yaxuan Liang
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Neha Agarwal
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Divya Jha
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Shihong Zhang
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Elena Chepurko
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Jiqiu Chen
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Maria G Trivieri
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Rajvir Singh
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Rihab Bouchareb
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Kenneth Fish
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Djamel Lebeche
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine, Mount Sinai, NY
| |
Collapse
|
40
|
Carvalho E, Lopaschuk GD, Børsheim E, Burgeiro A. Reply to Katlandur, Ozbek, and Keser. Am J Physiol Endocrinol Metab 2016; 310:E863. [PMID: 27182058 PMCID: PMC5005270 DOI: 10.1152/ajpendo.00113.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas;
| | - Gary D Lopaschuk
- Heritage Medical Research Building, University of Alberta, Edmonton, Alberta, Canada; and
| | - Elisabet Børsheim
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Nutrition Center, Arkansas Children's Hospital Research Institute, and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ana Burgeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
41
|
Katlandur H, Ozbek K, Keser A. Letter to the Editor: The effect of autonomic nervous system on the impairment of glucose uptake and lipid metabolism in epicardial adipose tissue. Am J Physiol Endocrinol Metab 2016; 310:E862. [PMID: 27182057 DOI: 10.1152/ajpendo.00047.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Huseyin Katlandur
- Department of Cardiology, Mevlana University, Faculty of Medicine, Konya, Turkey
| | - Kerem Ozbek
- Department of Cardiology, Mevlana University, Faculty of Medicine, Konya, Turkey
| | - Ahmet Keser
- Department of Cardiology, Mevlana University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
42
|
Doğanay F, Katlandur H, Özdil H. Letter by Doğanay et al Regarding Article, “Preexisting Heart Disease Underlies Newly Diagnosed Atrial Fibrillation After Acute Ischemic Stroke”. Stroke 2016; 47:e88. [DOI: 10.1161/strokeaha.116.013058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fatma Doğanay
- Department of Neurology, Faculty of Medicine, Mevlana University, Konya, Turkey
| | - Hüseyin Katlandur
- Department of Cardiology, Faculty of Medicine, Mevlana University, Konya, Turkey
| | - Hüseyin Özdil
- Department of Cardiology, Faculty of Medicine, Mevlana University, Konya, Turkey
| |
Collapse
|
43
|
Ulucan S, Katlandur H, Kaya Z. Epicardial fat and liver disease; the contribution of cardio autonomic nervous system function. J Hepatol 2015; 62:1214. [PMID: 25620397 DOI: 10.1016/j.jhep.2015.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/04/2022]
Affiliation(s)
- Seref Ulucan
- Department of Cardiology, Mevlana University, Faculty of Medicine, Konya, Turkey.
| | - Huseyin Katlandur
- Department of Cardiology, Mevlana University, Faculty of Medicine, Konya, Turkey
| | - Zeynettin Kaya
- Department of Cardiology, Mevlana University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
44
|
Ulucan S, Katlandur H, Keser A, Kaya Z. Epicardial fat in atrial fibrillation: the effect of cardioautonomic nervous system function. Am J Cardiol 2015; 115:1002-3. [PMID: 25681133 DOI: 10.1016/j.amjcard.2015.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
|
45
|
Ulucan S, Kaya Z, Keser A, Katlandur H. Letter to the editor: The effect of autonomic nervous system on the association between epicardial adipose tissue and cognitive function. Am J Physiol Heart Circ Physiol 2015; 308:H778. [DOI: 10.1152/ajpheart.00018.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seref Ulucan
- Department of Cardiology, Faculty of Medicine, Mevlana University, Konya, Turkey
| | - Zeynettin Kaya
- Department of Cardiology, Faculty of Medicine, Mevlana University, Konya, Turkey
| | - Ahmet Keser
- Department of Cardiology, Faculty of Medicine, Mevlana University, Konya, Turkey
| | - Huseyin Katlandur
- Department of Cardiology, Faculty of Medicine, Mevlana University, Konya, Turkey
| |
Collapse
|
46
|
Abstract
Depression occurs in people of all ages across all world regions; it is the second leading cause of disability and its global burden increased by 37.5% between 1990 and 2010. Autonomic changes are often found in altered mood states and appear to be a central biological substrate linking depression to a number of physical dysfunctions. Alterations of autonomic nervous system functioning that promotes vagal withdrawal are reflected in reductions of heart rate variability (HRV) indexes. Reduced HRV characterizes emotional dysregulation, decreased psychological flexibility and defective social engagement, which in turn are linked to prefrontal cortex hypoactivity. Altogether, these pieces of evidence support the idea that HRV might represent a useful endophenotype for psychological/physical comorbidities, and its routine application should be advised to assess the efficacy of prevention/intervention therapies in a number of psychosomatic and psychiatric dysfunctions. Further research, also making use of appropriate animal models, could provide a significant support to this point of view and possibly help to identify appropriate antidepressant therapies that do not interefere with physical health.
Collapse
Affiliation(s)
- Andrea Sgoifo
- a Stress Physiology Laboratory, Department of Neuroscience , University of Parma , Parma , Italy and
| | - Luca Carnevali
- a Stress Physiology Laboratory, Department of Neuroscience , University of Parma , Parma , Italy and
| | | | - Mario Amore
- b Department of Neuroscience , Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genova , Genova , Italy
| |
Collapse
|