1
|
Kalisch-Smith JI, Ehtisham-Uddin N, Rodriguez-Caro H. Feto-placental and coronary endothelial genes implicated in miscarriage, congenital heart disease and stillbirth, a systematic review and meta-analysis. Placenta 2024; 156:55-66. [PMID: 39276426 DOI: 10.1016/j.placenta.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The first trimester placenta is very rarely investigated for placental vascular formation in developmental or diseased contexts. Defects in placental formation can cause heart defects in the fetus, and vice versa. Determining the causality is therefore difficult as both organs develop concurrently and express many of the same genes. Here, we performed a systematic review to determine feto-placental and coronary endothelial genes implicated in miscarriages, stillbirth and congenital heart defects (CHD) from human genome wide screening studies. 4 single cell RNAseq datasets from human first/early second trimester cardiac and placental samples were queried to generate a list of 1187 endothelial genes. This broad list was cross-referenced with genes implicated in the pregnancy disorders above. 39 papers reported feto-placental and cardiac coronary endothelial genes, totalling 612 variants. Vascular gene variants were attributed to the incidence of miscarriage (8 %), CHD (4 %) and stillbirth (3 %). The most common genes for CHD (NOTCH, DST, FBN1, JAG1, CHD4), miscarriage (COL1A1, HERC1), and stillbirth (AKAP9, MYLK), were involved in blood vessel and cardiac valve formation, with roles in endothelial differentiation, angiogenesis, extracellular matrix signaling, growth factor binding and cell adhesion. NOTCH1, AKAP12, CHD4, LAMC1 and SOS1 showed greater relative risk ratios with CHD. Many of the vascular genes identified were expressed highly in both placental and heart EC populations. Both feto-placental and cardiac vascular genes are likely to result in poor endothelial cell development and function during human pregnancy that leads to higher risk of miscarriage, congenital heart disease and stillbirth.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK.
| | - Nusaybah Ehtisham-Uddin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK
| | - Helena Rodriguez-Caro
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK; Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
2
|
Feldman ER, Li Y, Cutler DJ, Rosser TC, Wechsler SB, Sanclemente L, Rachubinski AL, Elliott N, Vyas P, Roberts I, Rabin KR, Wagner M, Gelb BD, Espinosa JM, Lupo PJ, de Smith AJ, Sherman SL, Leslie EJ. Genome-wide association studies of Down syndrome associated congenital heart defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313183. [PMID: 39281767 PMCID: PMC11398599 DOI: 10.1101/2024.09.06.24313183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Congenital heart defects (CHDs) are the most common structural birth defect and are present in 40-50% of children born with Down syndrome (DS). To characterize the genetic architecture of DS-associated CHD, we sequenced genomes of a multiethnic group of children with DS and a CHD (n=886: atrioventricular septal defects (AVSD), n=438; atrial septal defects (ASD), n=122; ventricular septal defects (VSD), n=170; other types of CHD, n=156) and DS with a structurally normal heart (DS+NH, n=572). We performed four GWAS for common variants (MAF>0.05) comparing DS with CHD, stratified by CHD-subtype, to DS+NH controls. Although no SNP achieved genome-wide significance, multiple loci in each analysis achieved suggestive significance (p<2×10-6). Of these, the 1p35.1 locus (near RBBP4) was specifically associated with ASD risk and the 5q35.2 locus (near MSX2) was associated with any type of CHD. Each of the suggestive loci contained one or more plausible candidate genes expressed in the developing heart. While no SNP replicated (p<2×10-6) in an independent cohort of DS+CHD (DS+CHD: n=229; DS+NH: n=197), most SNPs that were suggestive in our GWASs remained suggestive when meta-analyzed with the GWASs from the replication cohort. These results build on previous work to identify genetic modifiers of DS-associated CHD.
Collapse
Affiliation(s)
- Elizabeth R Feldman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Yunqi Li
- Center for Genetic Epidemiology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Tracie C Rosser
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Stephanie B Wechsler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | | | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Natalina Elliott
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Paresh Vyas
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Irene Roberts
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | | | - Michael Wagner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Bruce D Gelb
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
3
|
Viswanathan S, Sandeep Oza P, Bellad A, Uttarilli A. Conotruncal Heart Defects: A Narrative Review of Molecular Genetics, Genomics Research and Innovation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:324-346. [PMID: 38986083 DOI: 10.1089/omi.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Congenital heart defects (CHDs) are most prevalent cardiac defects that occur at birth, leading to significant neonatal mortality and morbidity, especially in the developing nations. Among the CHDs, conotruncal heart defects (CTDs) are particularly noteworthy, comprising a significant portion of congenital cardiac anomalies. While advances in imaging and surgical techniques have improved the diagnosis, prognosis, and management of CTDs, their molecular genetics and genomic substrates remain incompletely understood. This expert review covers the recent advances from January 2016 onward and examines the complexities surrounding the genetic etiologies, prevalence, embryology, diagnosis, and clinical management of CTDs. We also emphasize the known copy number variants and single nucleotide variants associated with CTDs, along with the current planetary health research efforts aimed at CTDs in large cohort studies. In all, this comprehensive narrative review of molecular genetics and genomics research and innovation on CTDs draws from and highlights selected works from around the world and offers new ideas for advances in CTD diagnosis, precision medicine interventions, and accurate assessment of prognosis and recurrence risks.
Collapse
Affiliation(s)
- Sruthi Viswanathan
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prachi Sandeep Oza
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anikha Bellad
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anusha Uttarilli
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Loss of GLTSCR1 causes congenital heart defects by regulating NPPA transcription. Angiogenesis 2023; 26:217-232. [PMID: 36745292 PMCID: PMC10119265 DOI: 10.1007/s10456-023-09869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Precise and specific spatiotemporal domains of gene expression regulation are critical for embryonic development. Recent studies have identified GLTSCR1 as a gene transcriptional elongation regulator in cancer research. However, the function of GLTSCR1, especially in embryonic development, remains poorly understood. Here, we found that GLTSCR1 was essential for cardiac development because Gltscr1 knockout (Gltscr1-/-) led to embryonic lethality in mice with severe congenital heart defects (CHDs). Ventricular septal defect and double outflow right ventricular were also observed in neural crest cells with conditional deletion of Gltscr1, which were associated with neonatal lethality in mice. Mechanistically, GLTSCR1 deletion promoted NPPA expression by coordinating the CHD risk G allele of rs56153133 in the NPPA enhancer and releasing the transcription factor ZNF740-binding site on the NPPA promoter. These findings demonstrated that GLTSCR1 acts as a candidate CHD-related gene.
Collapse
|
5
|
Webber DM, Li M, MacLeod SL, Tang X, Levy JW, Karim MA, Erickson SW, Hobbs CA. Gene-Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study. Genes (Basel) 2023; 14:genes14010180. [PMID: 36672920 PMCID: PMC9859210 DOI: 10.3390/genes14010180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Conotruncal heart defects (CTDs) are heart malformations that affect the cardiac outflow tract and typically cause significant morbidity and mortality. Evidence from epidemiological studies suggests that maternal folate intake is associated with a reduced risk of heart defects, including CTD. However, it is unclear if folate-related gene variants and maternal folate intake have an interactive effect on the risk of CTDs. In this study, we performed targeted sequencing of folate-related genes on DNA from 436 case families with CTDs who are enrolled in the National Birth Defects Prevention Study and then tested for common and rare variants associated with CTD. We identified risk alleles in maternal MTHFS (ORmeta = 1.34; 95% CI 1.07 to 1.67), maternal NOS2 (ORmeta = 1.34; 95% CI 1.05 to 1.72), fetal MTHFS (ORmeta = 1.35; 95% CI 1.09 to 1.66), and fetal TCN2 (ORmeta = 1.38; 95% CI 1.12 to 1.70) that are associated with an increased risk of CTD among cases without folic acid supplementation. We detected putative de novo mutations in genes from the folate, homocysteine, and transsulfuration pathways and identified a significant association between rare variants in MGST1 and CTD risk. Results suggest that periconceptional folic acid supplementation is associated with decreased risk of CTD among individuals with susceptible genotypes.
Collapse
Affiliation(s)
- Daniel M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University at Bloomington, Bloomington, IN 47405, USA
| | - Stewart L. MacLeod
- Division of Birth Defects Research, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xinyu Tang
- Biostatistics Program, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Joseph W. Levy
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Mohammad A. Karim
- Department of Child Health, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
- Department of Neurology, Sections on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Stephen W. Erickson
- Center for Genomics in Public Health and Medicine, RTI International, Research Triangle Park, NC 27709, USA
| | - Charlotte A. Hobbs
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123, USA
- Correspondence:
| | | |
Collapse
|
6
|
Richard MA, Patel J, Benjamin RH, Bircan E, Canon SJ, Marengo LK, Canfield MA, Agopian AJ, Lupo PJ, Nembhard WN. Prevalence and Clustering of Congenital Heart Defects Among Boys With Hypospadias. JAMA Netw Open 2022; 5:e2224152. [PMID: 35900762 PMCID: PMC9335139 DOI: 10.1001/jamanetworkopen.2022.24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Hypospadias is a common birth defect of the male urinary tract that may be isolated or may co-occur with other structural malformations, including congenital heart defects (CHDs). The risk for co-occurring CHDs among boys with hypospadias remains unknown, which limits screening and genetic testing strategies. OBJECTIVE To characterize the risk of major CHDs among boys born with hypospadias. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study used data from population-based birth defect surveillance programs on all male infants born in 11 US states from January 1, 1995, to December 31, 2014. Statistical analysis was performed from September 2, 2020, to March 25, 2022. EXPOSURE Hypospadias. MAIN OUTCOMES AND MEASURES Demographic and diagnostic data were obtained from 2 active state-based birth defect surveillance programs for primary analyses, the Texas Birth Defects Registry and the Arkansas Reproductive Health Monitoring System, with validation among 9 additional states in the National Birth Defects Prevention Network (NBDPN). Birth defect diagnoses were identified using the British Pediatric Association coding for hypospadias (exposure) and major CHDs (primary outcomes). Maternal covariates and birth year were also abstracted from the vital records. Poisson regression was used to estimate adjusted prevalence ratios and 95% CIs for major CHDs within Texas and Arkansas and combined using inverse variance-weighted meta-analysis. Findings were validated using the NBDPN. RESULTS Among 3.7 million pregnancies in Texas and Arkansas, 1485 boys had hypospadias and a co-occurring CHD. Boys with hypospadias were 5.8 times (95% CI, 5.5-6.1) more likely to have a co-occurring CHD compared with boys without hypospadias. Associations were observed for every specific CHD analyzed among boys with hypospadias, occurred outside of chromosomal anomalies, and were validated in the NBDPN. An estimated 7.024% (95% CI, 7.020%-7.028%) of boys with hypospadias in Texas and 5.503% (95% CI, 5.495%-5.511%) of boys with hypospadias in Arkansas have a co-occurring CHD. In addition, hypospadias severity and maternal race and ethnicity were independently associated with the likelihood for hypospadias to co-occur with a CHD; boys in Texas with third-degree (ie, more severe) hypospadias were 2.7 times (95% CI, 2.2-3.4) more likely than boys with first-degree hypospadias to have a co-occurring CHD, with consistent estimates in Arkansas (odds ratio, 2.7; 95% CI, 1.4-5.3), and boys with hypospadias born to Hispanic mothers in Texas were 1.5 times (95% CI, 1.3-1.8) more likely to have a co-occurring CHD than boys with hypospadias born to non-Hispanic White mothers. CONCLUSIONS AND RELEVANCE In this cohort study, boys with hypospadias had a higher prevalence of CHDs than boys without hypospadias. These findings support the need for consideration of additional CHD screening programs for boys born with hypospadias.
Collapse
Affiliation(s)
| | - Jenil Patel
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Dallas
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
| | - Renata H. Benjamin
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Emine Bircan
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
| | - Stephen J. Canon
- Arkansas Children’s Hospital, Little Rock
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock
| | - Lisa K. Marengo
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin
| | - Mark A. Canfield
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Philip J. Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Wendy N. Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| |
Collapse
|
7
|
Atasoy Karakas L, Tugrul D, Sahin Uysal N, Esin S, Tokel NK, Terzi YK. Associations between IL-1α, IL-1β, TNFα, and IL-6 variations, and susceptibility to transposition of the great arteries. BMC Cardiovasc Disord 2022; 22:229. [PMID: 35590253 PMCID: PMC9118748 DOI: 10.1186/s12872-022-02670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background To evaluate the relationship between IL-1α -889C/T (rs1800587), IL-1β -511C > T (rs16944), TNFα -308G > A (rs1800629), TNFα -238G > A (rs361525), IL-6 -174G > C (rs1800795), and IL-6 -572G > C (rs1800796) polymorphisms and the susceptibility to transposition of the great arteries (TGA). Methods A prospective analysis was performed on mothers whose newborns were diagnosed as having TGA. For each case of TGA, a mother who gave birth to a healthy neonate in the same period was randomly selected for the control group. The sample size was calculated before planning the study with 80% power and 5% alpha. Results Twenty-seven mothers whose newborn had TGA anomalies (group 1) and 27 mothers whose newborn had no TGA (group 2) were included in the study. There were no significant differences between the groups in terms of maternal age, pregestational body mass index, gestational age at birth and infant sex (p > 0.05). The genotype and allele distributions of IL-1α -889C/T (rs1800587), IL-1β -511C > T (rs16944), TNFα -308G > A (rs1800629), TNFα -238G > A (rs361525), IL-6 -174G > C (rs1800795) and IL-6 -572G > C (rs1800796) gene variants were not different between the two groups (p > 0.05). Conclusions There was no relation between IL-1α, IL-1β, IL-6, and TNFα promoter gene polymorphisms and TGA occurrence in our study group. Trial registration: This present prospective case–control study was conducted in Baskent University Hospital, Ankara, Turkey, between May 2020 and November 2021. Ethical approval was obtained from the university’s Clinical Research Ethics Commitee (No: KA20/211) in accordance with the Declaration of Helsinki.
Collapse
Affiliation(s)
- Latife Atasoy Karakas
- Department of Obstetrics and Gynecology, Baskent University Faculty of Medicine, Baskent University Hospital, Sehit Temel Kugulu sok 34, 06490, Bahcelievler, Cankaya, Ankara, Turkey.
| | - Duygu Tugrul
- Department of Obstetrics and Gynecology, Baskent University Faculty of Medicine, Baskent University Hospital, Sehit Temel Kugulu sok 34, 06490, Bahcelievler, Cankaya, Ankara, Turkey
| | - Nihal Sahin Uysal
- Department of Obstetrics and Gynecology, Baskent University Faculty of Medicine, Baskent University Hospital, Sehit Temel Kugulu sok 34, 06490, Bahcelievler, Cankaya, Ankara, Turkey
| | - Sertac Esin
- Department of Obstetrics and Gynecology, Baskent University Faculty of Medicine, Baskent University Hospital, Sehit Temel Kugulu sok 34, 06490, Bahcelievler, Cankaya, Ankara, Turkey
| | - Niyazi Kursat Tokel
- Department of Pediatric Cardiology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Yunus Kasim Terzi
- Department of Medical Genetics, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Woodward AA, Taylor DM, Goldmuntz E, Mitchell LE, Agopian A, Moore JH, Urbanowicz RJ. Gene-Interaction-Sensitive enrichment analysis in congenital heart disease. BioData Min 2022; 15:4. [PMID: 35151364 PMCID: PMC8841104 DOI: 10.1186/s13040-022-00287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background Gene set enrichment analysis (GSEA) uses gene-level univariate associations to identify gene set-phenotype associations for hypothesis generation and interpretation. We propose that GSEA can be adapted to incorporate SNP and gene-level interactions. To this end, gene scores are derived by Relief-based feature importance algorithms that efficiently detect both univariate and interaction effects (MultiSURF) or exclusively interaction effects (MultiSURF*). We compare these interaction-sensitive GSEA approaches to traditional χ2 rankings in simulated genome-wide array data, and in a target and replication cohort of congenital heart disease patients with conotruncal defects (CTDs). Results In the simulation study and for both CTD datasets, both Relief-based approaches to GSEA captured more relevant and significant gene ontology terms compared to the univariate GSEA. Key terms and themes of interest include cell adhesion, migration, and signaling. A leading edge analysis highlighted semaphorins and their receptors, the Slit-Robo pathway, and other genes with roles in the secondary heart field and outflow tract development. Conclusions Our results indicate that interaction-sensitive approaches to enrichment analysis can improve upon traditional univariate GSEA. This approach replicated univariate findings and identified additional and more robust support for the role of the secondary heart field and cardiac neural crest cell migration in the development of CTDs. Supplementary Information The online version contains supplementary material available at (10.1186/s13040-022-00287-w).
Collapse
|
9
|
Škorić-Milosavljević D, Tadros R, Bosada FM, Tessadori F, van Weerd JH, Woudstra OI, Tjong FV, Lahrouchi N, Bajolle F, Cordell HJ, Agopian A, Blue GM, Barge-Schaapveld DQ, Gewillig M, Preuss C, Lodder EM, Barnett P, Ilgun A, Beekman L, van Duijvenboden K, Bokenkamp R, Müller-Nurasyid M, Vliegen HW, Konings TC, van Melle JP, van Dijk AP, van Kimmenade RR, Roos-Hesselink JW, Sieswerda GT, Meijboom F, Abdul-Khaliq H, Berger F, Dittrich S, Hitz MP, Moosmann J, Riede FT, Schubert S, Galan P, Lathrop M, Munter HM, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Veldink JH, van den Berg LH, Evans S, Nobrega MA, Aneas I, Radivojkov-Blagojević M, Meitinger T, Oechslin E, Mondal T, Bergin L, Smythe JF, Altamirano-Diaz L, Lougheed J, Bouma BJ, Chaix MA, Kline J, Bassett AS, Andelfinger G, van der Palen RL, Bouvagnet P, Clur SAB, Breckpot J, Kerstjens-Frederikse WS, Winlaw DS, Bauer UM, Mital S, Goldmuntz E, Keavney B, Bonnet D, Mulder BJ, Tanck MW, Bakkers J, Christoffels VM, Boogerd CJ, Postma AV, Bezzina CR. Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circ Res 2022; 130:166-180. [PMID: 34886679 PMCID: PMC8768504 DOI: 10.1161/circresaha.120.317107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022]
Abstract
RATIONALE Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.
Collapse
Affiliation(s)
- Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Human Genetics, Amsterdam University Medical Centers, The Netherlands (D.S.-M., E.M.L., A.V.P.)
| | - Rafik Tadros
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada (R.T., M.-A.C.)
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (F.T., J.B., C.J.B.)
| | - Jan Hendrik van Weerd
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Odilia I. Woudstra
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Cardiology, University Medical Center Utrecht, The Netherlands (O.I.W., G.T.S., F.M.)
| | - Fleur V.Y. Tjong
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Fanny Bajolle
- German Heart Center Berlin, Department of Congenital Heart Disease, Pediatric Cardiology, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (F.B., S.S.)
| | - Heather J. Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom (H.J.C.)
| | - A.J. Agopian
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX (A.J.A.)
| | - Gillian M. Blue
- Heart Centre for Children, The Children’s Hospital at Westmead and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia (G.M.B., D.S.W.)
| | | | | | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Québec, Canada (C.P., G.A.)
- The Jackson Laboratory, Bar Harbor, ME (C.P.)
| | - Elisabeth M. Lodder
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
- Department of Human Genetics, Amsterdam University Medical Centers, The Netherlands (D.S.-M., E.M.L., A.V.P.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Aho Ilgun
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Leander Beekman
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Regina Bokenkamp
- Division of Pediatric Cardiology, Department of Pediatrics (R.B., R.L.F.v.d.P.), Leiden University Medical Center, The Netherlands
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany (M.M.-N.)
- IBE, Faculty of Medicine, LMU Munich, Germany (M.M.-N.)
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.M.-N.)
| | - Hubert W. Vliegen
- Department of Cardiology (H.W.V.), Leiden University Medical Center, The Netherlands
| | - Thelma C. Konings
- Department of Cardiology, Amsterdam University Medical Centers, VU Amsterdam, The Netherlands (T.C.K.)
| | - Joost P. van Melle
- Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands (J.P.v.M.)
| | - Arie P.J. van Dijk
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.P.J.v.D., R.R.J.v.K.)
| | - Roland R.J. van Kimmenade
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (A.P.J.v.D., R.R.J.v.K.)
- Department of Cardiology, Maastricht University Medical Center, The Netherlands (R.R.J.v.K.)
| | - Jolien W. Roos-Hesselink
- Department of Cardiology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands (J.W.R.-H.)
| | - Gertjan T. Sieswerda
- Department of Cardiology, University Medical Center Utrecht, The Netherlands (O.I.W., G.T.S., F.M.)
| | - Folkert Meijboom
- Department of Cardiology, University Medical Center Utrecht, The Netherlands (O.I.W., G.T.S., F.M.)
| | - Hashim Abdul-Khaliq
- Saarland University Medical Center, Department of Pediatric Cardiology, Homburg, Germany (H.A.-K.)
| | - Felix Berger
- Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker Enfants Malades, APHP and Université Paris Descartes, Sorbonne Paris Cité, Paris, France (F.B., D.B.)
- Charité, Universitätsmedizin Berlin, Department for Paediatric Cardiology, Germany (F.B.)
| | - Sven Dittrich
- Department of Pediatric Cardiology, Friedrich-Alexander-University of Erlangen-Nuernberg (FAU), Germany (S.D., J.M.)
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein/Campus Kiel, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (M.-P.H.)
- Department of Human Genetics, University Medical Center Schleswig-Holstein, Kiel, Germany (M.-P.H.)
| | - Julia Moosmann
- Department of Pediatric Cardiology, Friedrich-Alexander-University of Erlangen-Nuernberg (FAU), Germany (S.D., J.M.)
| | - Frank-Thomas Riede
- Leipzig Heart Center, Department of Pediatric Cardiology, University of Leipzig, Germany (F.-T.R.)
| | - Stephan Schubert
- German Heart Center Berlin, Department of Congenital Heart Disease, Pediatric Cardiology, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (F.B., S.S.)
- Heart and Diabetes Center NRW, Center of Congenital Heart Disease, Ruhr-University of Bochum, Bad Oeynhausen, Germany (S.S.)
| | - Pilar Galan
- Sorbonne Paris Nord (Paris 13) University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center – University of Paris (CRESS), Bobigny, France (P.G.)
| | - Mark Lathrop
- McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Québec, Canada (M.L., H.M.M.)
| | - Hans M. Munter
- McGill Genome Centre and Department of Human Genetics, McGill University, Montreal, Québec, Canada (M.L., H.M.M.)
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King’s College London, United Kingdom (A.A.-C.)
| | - Christopher E. Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom (C.E.S.)
- Centre for Brain Research, University of Auckland, New Zealand (C.E.S.)
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield and NIHR Sheffield Biomedical Research Centre for Translational Neuroscience, United Kingdom (P.J.S.)
| | - Karen E. Morrison
- Faculty of Medicine Health & Life Sciences, Queens University Belfast, United Kingdom (K.E.M.)
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Sylvia Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (S.E.)
| | | | - Ivy Aneas
- Department of Human Genetics, University of Chicago, IL (M.A.N., I.A.)
| | | | - Thomas Meitinger
- Helmholtz Zentrum Munich, Institut of Human Genetics, Neuherberg, Germany (M.R.-B., T.M.)
- Division of Cardiology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada (T.M.)
| | - Erwin Oechslin
- Peter Munk Cardiac Center, Toronto Congenital Cardiac Centre for Adults and University of Toronto, Canada (E.O.)
| | - Tapas Mondal
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.M.)
| | - Lynn Bergin
- Division of Cardiology, Department of Medicine, London Health Sciences Centre, ON, Canada (L.B.)
| | - John F. Smythe
- Division of Cardiology, Department of Pediatrics, Kingston General Hospital, ON, Canada (J.F.S.)
| | | | - Jane Lougheed
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Canada (J.L.)
| | - Berto J. Bouma
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Marie-A. Chaix
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada (R.T., M.-A.C.)
| | - Jennie Kline
- Department of Epidemiology, Mailman School of Public Health, Columbia University, NY (J.K.)
| | - Anne S. Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health (A.S.B.)
- Department of Psychiatry, University of Toronto, Toronto General Hospital, University Health Network, Ontario, Canada (A.S.B.)
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Québec, Canada (C.P., G.A.)
| | - Roel L.F. van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics (R.B., R.L.F.v.d.P.), Leiden University Medical Center, The Netherlands
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU Martinique, Fort de France, Martinique, France (P.B.)
| | - Sally-Ann B. Clur
- Department of Pediatric Cardiology, Emma Children’s Hospital Amsterdam University Medical Centers (AMC), The Netherlands (S.-A.B.C.)
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL) (S.-A.B.C.)
| | - Jeroen Breckpot
- Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (F.T., J.B., C.J.B.)
- Center for Human Genetics University Hospitals KU Leuven, Belgium (J.B.)
| | | | - David S. Winlaw
- Heart Centre for Children, The Children’s Hospital at Westmead and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia (G.M.B., D.S.W.)
| | - Ulrike M.M. Bauer
- National Register for Congenital Heart Defects, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (U.M.M.B.)
| | - Seema Mital
- Hospital for Sick Children, University of Toronto, Ontario, Canada (S.M.)
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (E.G.)
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, United Kingdom (B.K.)
| | - Damien Bonnet
- Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de référence Malformations Cardiaques Congénitales Complexes - M3C, Hôpital Necker Enfants Malades, APHP and Université Paris Descartes, Sorbonne Paris Cité, Paris, France (F.B., D.B.)
| | - Barbara J. Mulder
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| | - Michael W.T. Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health (APH), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands (M.W.T.T.)
| | - Jeroen Bakkers
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, the Netherlands (J.B.)
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Cornelis J. Boogerd
- Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (F.T., J.B., C.J.B.)
| | - Alex V. Postma
- Department of Human Genetics, Amsterdam University Medical Centers, The Netherlands (D.S.-M., E.M.L., A.V.P.)
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (F.M.B., J.H.v.W., P.B., A.I., K.v.D., V.M.C., A.V.P.)
| | - Connie R. Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, The Netherlands (D.S.-M., R.T., O.I.W., F.V.Y.T., N.L., E.M.L., L.B., B.J.B., B.J.M., C.R.B.)
| |
Collapse
|
10
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
11
|
Li M, Lyu C, Huang M, Do C, Tycko B, Lupo PJ, MacLeod SL, Randolph CE, Liu N, Witte JS, Hobbs CA. Mapping methylation quantitative trait loci in cardiac tissues nominates risk loci and biological pathways in congenital heart disease. BMC Genom Data 2021; 22:20. [PMID: 34112112 PMCID: PMC8194170 DOI: 10.1186/s12863-021-00975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background Most congenital heart defects (CHDs) result from complex interactions among genetic susceptibilities, epigenetic modifications, and maternal environmental exposures. Characterizing the complex relationship between genetic, epigenetic, and transcriptomic variation will enhance our understanding of pathogenesis in this important type of congenital disorder. We investigated cis-acting effects of genetic single nucleotide polymorphisms (SNPs) on local DNA methylation patterns within 83 cardiac tissue samples and prioritized their contributions to CHD risk by leveraging results of CHD genome-wide association studies (GWAS) and their effects on cardiac gene expression. Results We identified 13,901 potential methylation quantitative trait loci (mQTLs) with a false discovery threshold of 5%. Further co-localization analyses and Mendelian randomization indicated that genetic variants near the HLA-DRB6 gene on chromosome 6 may contribute to CHD risk by regulating the methylation status of nearby CpG sites. Additional SNPs in genomic regions on chromosome 10 (TNKS2-AS1 gene) and chromosome 14 (LINC01629 gene) may simultaneously influence epigenetic and transcriptomic variations within cardiac tissues. Conclusions Our results support the hypothesis that genetic variants may influence the risk of CHDs through regulating the changes of DNA methylation and gene expression. Our results can serve as an important source of information that can be integrated with other genetic studies of heart diseases, especially CHDs. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00975-2.
Collapse
Affiliation(s)
- Ming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA.
| | - Chen Lyu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - Manyan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - Catherine Do
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Benjamin Tycko
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | | | | | | | - Nianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - John S Witte
- University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Charlotte A Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| |
Collapse
|
12
|
Lei Y, Ludorf KL, Yu X, Benjamin RH, Gu X, Lin Y, Finnell RH, Mitchell LE, Musfee FI, Malik S, Canfield MA, Morrison AC, Hobbs CA, Van Zutphen AR, Fisher S, Agopian AJ. Maternal Hypertension-Related Genotypes and Congenital Heart Defects. Am J Hypertens 2021; 34:82-91. [PMID: 32710738 PMCID: PMC7891240 DOI: 10.1093/ajh/hpaa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/05/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Maternal hypertension has been associated with congenital heart defect occurrence in several studies. We assessed whether maternal genotypes associated with this condition were also associated with congenital heart defect occurrence. METHODS We used data from the National Birth Defects Prevention Study to identify non-Hispanic white (NHW) and Hispanic women with (cases) and without (controls) a pregnancy in which a select simple, isolated heart defect was present between 1999 and 2011. We genotyped 29 hypertension-related single nucleotide polymorphisms (SNPs). We conducted logistic regression analyses separately by race/ethnicity to assess the relationship between the presence of any congenital heart defect and each SNP and an overall blood pressure genetic risk score (GRS). All analyses were then repeated to assess 4 separate congenital heart defect subtypes. RESULTS Four hypertension-related variants were associated with congenital heart defects among NHW women (N = 1,568 with affected pregnancies). For example, 1 intronic variant in ARHGAP2, rs633185, was associated with conotruncal defects (odds ratio [OR]: 1.3, 95% confidence interval [CI]: 1.1-1.6). Additionally, 2 variants were associated with congenital heart defects among Hispanic women (N = 489 with affected pregnancies). The GRS had a significant association with septal defects (OR: 2.1, 95% CI: 1.2-3.5) among NHW women. CONCLUSIONS We replicated a previously reported association between rs633185 and conotruncal defects. Although additional hypertension-related SNPs were also associated with congenital heart defects, more work is needed to better understand the relationship between genetic risk for maternal hypertension and congenital heart defects occurrence.
Collapse
Affiliation(s)
- Yunping Lei
- Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Katherine L Ludorf
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Xiao Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Renata H Benjamin
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Xue Gu
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Lin
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Laura E Mitchell
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Fadi I Musfee
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Sadia Malik
- Pediatric Cardiology, Department of Pediatrics, UT Southwestern Children’s Medical Center, Dallas, Texas, USA
| | - Mark A Canfield
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, Texas, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Charlotte A Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Alissa R Van Zutphen
- New York State Department of Health, Bureau of Environmental and Occupational Epidemiology, Albany, New York, USA
| | - Sarah Fisher
- New York State Department of Health, Bureau of Environmental and Occupational Epidemiology, Albany, New York, USA
| | - A J Agopian
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| |
Collapse
|
13
|
Sewda A, Agopian AJ, Goldmuntz E, Hakonarson H, Morrow BE, Musfee F, Taylor D, Mitchell LE. Gene-based analyses of the maternal genome implicate maternal effect genes as risk factors for conotruncal heart defects. PLoS One 2020; 15:e0234357. [PMID: 32516339 PMCID: PMC7282656 DOI: 10.1371/journal.pone.0234357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects (CHDs) affect approximately 1% of newborns. Epidemiological studies have identified several genetically-mediated maternal phenotypes (e.g., pregestational diabetes, chronic hypertension) that are associated with the risk of CHDs in offspring. However, the role of the maternal genome in determining CHD risk has not been defined. We present findings from gene-level, genome-wide studies that link CHDs to maternal effect genes as well as to maternal genes related to hypertension and proteostasis. Maternal effect genes, which provide the mRNAs and proteins in the oocyte that guide early embryonic development before zygotic gene activation, have not previously been implicated in CHD risk. Our findings support a role for and suggest new pathways by which the maternal genome may contribute to the development of CHDs in offspring.
Collapse
Affiliation(s)
- Anshuman Sewda
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - Elizabeth Goldmuntz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hakon Hakonarson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fadi Musfee
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - Deanne Taylor
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
- * E-mail:
| | | |
Collapse
|
14
|
Lupo PJ, Mitchell LE, Jenkins MM. Genome-wide association studies of structural birth defects: A review and commentary. Birth Defects Res 2019; 111:1329-1342. [PMID: 31654503 DOI: 10.1002/bdr2.1606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND While there is strong evidence that genetic risk factors play an important role in the etiologies of structural birth defects, compared to other diseases, there have been relatively few genome-wide association studies (GWAS) of these conditions. We reviewed the current landscape of GWAS conducted for birth defects, noting novel insights, and future directions. METHODS This article reviews the literature with regard to GWAS of structural birth defects. Key defects included in this review include oral clefts, congenital heart defects (CHDs), biliary atresia, pyloric stenosis, hypospadias, craniosynostosis, and clubfoot. Additionally, other issues related to GWAS are considered, including the assessment of polygenic risk scores and issues related to genetic ancestry, as well as utilizing genome-wide single nucleotide polymorphism array data to evaluate gene-environment interactions and Mendelian randomization. RESULTS For some birth defects, including oral clefts and CHDs, several novel susceptibility loci have been identified and replicated through GWAS, including 8q24 for oral clefts, DGKK for hypospadias, and 4p16 for CHDs. Relatively common birth defects for which there are currently no published GWAS include neural tube defects, anotia/microtia, anophthalmia/microphthalmia, gastroschisis, and omphalocele. CONCLUSIONS Overall, GWAS have been successful in identifying several novel susceptibility genes and genomic regions for structural birth defects. These findings have provided new insights into the etiologies of these phenotypes. However, GWAS have been underutilized for understanding the genetic etiologies of several birth defects.
Collapse
Affiliation(s)
- Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
15
|
Yee SW, Stecula A, Chien HC, Zou L, Feofanova EV, van Borselen M, Cheung KWK, Yousri NA, Suhre K, Kinchen JM, Boerwinkle E, Irannejad R, Yu B, Giacomini KM. Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies. PLoS Genet 2019; 15:e1008208. [PMID: 31553721 PMCID: PMC6760779 DOI: 10.1371/journal.pgen.1008208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Elena V. Feofanova
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Marjolein van Borselen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Kit Wun Kathy Cheung
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
| | - Noha A. Yousri
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Karsten Suhre
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roshanak Irannejad
- The Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, California, United States of America
| |
Collapse
|
16
|
Hoang TT, Manso PH, Edman S, Mercer-Rosa L, Mitchell LE, Sewda A, Swartz MD, Fogel MA, Agopian AJ, Goldmuntz E. Genetic variants of HIF1α are associated with right ventricular fibrotic load in repaired tetralogy of Fallot patients: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2019; 21:51. [PMID: 31422771 PMCID: PMC6699069 DOI: 10.1186/s12968-019-0555-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/14/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Studies suggest that right ventricular (RV) fibrosis is associated with RV remodeling and long-term outcomes in patients with tetralogy of Fallot (TOF). Pre-operative hypoxia may increase expression of hypoxia inducible factor-1-alpha (HIF1α) and promote transforming growth factor β1 (TGFβ1)-mediated fibrosis. We hypothesized that there would be associations between: (1) RV fibrosis and RV function, (2) HIF1α variants and RV fibrosis, and (3) HIF1α variants and RV function among post-surgical TOF cases. METHODS We retrospectively measured post-surgical fibrotic load (indexed volume and fibrotic score) from 237 TOF cases who had existing cardiovascular magnetic resonance imaging using late gadolinium enhancement (LGE), and indicators of RV remodeling (i.e., ejection fraction [RVEF] and end-diastolic volume indexed [RVEDVI]). Genetic data were available in 125 cases. Analyses were conducted using multivariable linear mixed-effects regression with a random intercept and multivariable generalized Poisson regression with a random intercept. RESULTS Indexed fibrotic volume and fibrotic score significantly decreased RVEF by 1.6% (p = 0.04) and 0.9% (p = 0.03), respectively. Indexed fibrotic volume and score were not associated with RVEDVI. After adjusting for multiple comparisons, 6 of the 48 HIF1α polymorphisms (representing two unique signals) were associated with fibrotic score. None of the HIF1α polymorphisms were associated with indexed fibrotic volume, RVEDVI, or RVEF. CONCLUSION The association of some HIF1α polymorphisms and fibrotic score suggests that HIF1α may modulate the fibrotic response in TOF.
Collapse
Affiliation(s)
- Thanh T. Hoang
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX USA
| | - Paulo Henrique Manso
- Department of Pediatrics, Ribeiro Preto Medical School USP, Ribeirao Preto, Brazil
| | - Sharon Edman
- Division of Cardiology, Children’s Hospital of Philadelphia, Abramson Research Center 702A, 3615 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Laura Mercer-Rosa
- Division of Cardiology, Children’s Hospital of Philadelphia, Abramson Research Center 702A, 3615 Civic Center Boulevard, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX USA
| | - Anshuman Sewda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Michael D. Swartz
- Department of Biostatistics and Data Science, UTHealth School of Public Health, Houston, TX USA
| | - Mark A. Fogel
- Division of Cardiology, Children’s Hospital of Philadelphia, Abramson Research Center 702A, 3615 Civic Center Boulevard, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Abramson Research Center 702A, 3615 Civic Center Boulevard, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| |
Collapse
|
17
|
Gene-based genome-wide association studies and meta-analyses of conotruncal heart defects. PLoS One 2019; 14:e0219926. [PMID: 31314787 PMCID: PMC6636758 DOI: 10.1371/journal.pone.0219926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
Conotruncal heart defects (CTDs) are among the most common and severe groups of congenital heart defects. Despite evidence of an inherited genetic contribution to CTDs, little is known about the specific genes that contribute to the development of CTDs. We performed gene-based genome-wide analyses using microarray-genotyped and imputed common and rare variants data from two large studies of CTDs in the United States. We performed two case-parent trio analyses (N = 640 and 317 trios), using an extension of the family-based multi-marker association test, and two case-control analyses (N = 482 and 406 patients and comparable numbers of controls), using a sequence kernel association test. We also undertook two meta-analyses to combine the results from the analyses that used the same approach (i.e. family-based or case-control). To our knowledge, these analyses are the first reported gene-based, genome-wide association studies of CTDs. Based on our findings, we propose eight CTD candidate genes (ARF5, EIF4E, KPNA1, MAP4K3, MBNL1, NCAPG, NDFUS1 and PSMG3). Four of these genes (ARF5, KPNA1, NDUFS1 and PSMG3) have not been previously associated with normal or abnormal heart development. In addition, our analyses provide additional evidence that genes involved in chromatin-modification and in ribonucleic acid splicing are associated with congenital heart defects.
Collapse
|
18
|
Kaplinski M, Taylor D, Mitchell LE, Hammond DA, Goldmuntz E, Agopian AJ. The association of elevated maternal genetic risk scores for hypertension, type 2 diabetes and obesity and having a child with a congenital heart defect. PLoS One 2019; 14:e0216477. [PMID: 31141530 PMCID: PMC6541344 DOI: 10.1371/journal.pone.0216477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background Maternal hypertension, type 2 diabetes (T2D) and obesity are associated with an increased risk of having offspring with conotruncal heart defects (CTDs). Prior studies have identified sets of single nucleotide polymorphisms (SNPs) that are associated with risk for each of these three adult phenotypes. We hypothesized that these same SNPs are associated with maternal risk of CTDs in offspring. Methods and results We evaluated the parents of children with a CTD ascertained from the Children’s Hospital of Philadelphia (n = 466) and by the Pediatric Cardiac Genomic Consortium (n = 255). We used a family-based design to assess the association between CTDs and the maternal genotype for individual hypertension, T2D, and obesity-related SNPs and found no association between CTDs and the maternal genotype for any individual SNP. In addition, we calculated genetic risk scores (GRS) for hypertension, T2D, and obesity using previously published GRS formulas. When comparing the GRS of mothers to fathers, there were no statistically significant differences in the mean for the combined GRS or the GRS for each individual condition. However, when we categorized the mothers and fathers of cases with CTDs as having high (>95th percentile) or low (≤95th percentile) scores, compared to fathers, mothers had almost two times the odds of having a high GRS for hypertension (OR 1.7, 95% CI 1.0, 2.8) and T2D (OR 1.8, 95% CI 1.1, 3.1). Conclusions Our results support a link between maternal genetic risk for hypertension/T2D and CTDs in their offspring. These associations might be independent of maternal phenotype at conception.
Collapse
MESH Headings
- Adult
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Female
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Humans
- Hypertension/genetics
- Hypertension/pathology
- Hypertension/physiopathology
- Male
- Obesity, Maternal/genetics
- Obesity, Maternal/pathology
- Obesity, Maternal/physiopathology
- Polymorphism, Single Nucleotide
- Pregnancy
- Pregnancy Complications, Cardiovascular/genetics
- Pregnancy Complications, Cardiovascular/pathology
- Pregnancy Complications, Cardiovascular/physiopathology
- Pregnancy in Diabetics/genetics
- Pregnancy in Diabetics/pathology
- Pregnancy in Diabetics/physiopathology
- Risk Factors
Collapse
Affiliation(s)
- Michelle Kaplinski
- Department of Pediatrics, Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
| | - Dorothy A. Hammond
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, United States of America
- * E-mail:
| | | |
Collapse
|
19
|
Agopian AJ, Goldmuntz E, Hakonarson H, Sewda A, Taylor D, Mitchell LE. Genome-Wide Association Studies and Meta-Analyses for Congenital Heart Defects. ACTA ACUST UNITED AC 2018; 10:e001449. [PMID: 28468790 DOI: 10.1161/circgenetics.116.001449] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/01/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Maternal and inherited (ie, case) genetic factors likely contribute to the pathogenesis of congenital heart defects, but it is unclear whether individual common variants confer a large risk. METHODS AND RESULTS To evaluate the relationship between individual common maternal/inherited genotypes and risk for heart defects, we conducted genome-wide association studies in 5 cohorts. Three cohorts were recruited at the Children's Hospital of Philadelphia: 670 conotruncal heart defect (CTD) case-parent trios, 317 left ventricular obstructive tract defect (LVOTD) case-parent trios, and 406 CTD cases (n=406) and 2976 pediatric controls. Two cohorts were recruited through the Pediatric Cardiac Genomics Consortium: 355 CTD trios and 192 LVOTD trios. We also conducted meta-analyses using the genome-wide association study results from the CTD cohorts, the LVOTD cohorts, and from the combined CTD and LVOTD cohorts. In the individual genome-wide association studies, several genome-wide significant associations (P≤5×10-8) were observed. In our meta-analyses, 1 genome-wide significant association was detected: the case genotype for rs72820264, an intragenetic single-nucleotide polymorphism associated with LVOTDs (P=2.1×10-8). CONCLUSIONS We identified 1 novel candidate region associated with LVOTDs and report on several additional regions with suggestive evidence for association with CTD and LVOTD. These studies were constrained by the relatively small samples sizes and thus have limited power to detect small to moderate associations. Approaches that minimize the multiple testing burden (eg, gene or pathway based) may, therefore, be required to uncover common variants contributing to the risk of these relatively rare conditions.
Collapse
Affiliation(s)
- A J Agopian
- From the Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston (A.J.A., A.S., L.E.M.); Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.); and Division of Cardiology (E.G., H.H.), Center for Applied Genomics (H.H.), and Department of Biomedical and Health Informatics (D.T.), The Children's Hospital of Philadelphia, PA
| | - Elizabeth Goldmuntz
- From the Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston (A.J.A., A.S., L.E.M.); Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.); and Division of Cardiology (E.G., H.H.), Center for Applied Genomics (H.H.), and Department of Biomedical and Health Informatics (D.T.), The Children's Hospital of Philadelphia, PA
| | - Hakon Hakonarson
- From the Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston (A.J.A., A.S., L.E.M.); Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.); and Division of Cardiology (E.G., H.H.), Center for Applied Genomics (H.H.), and Department of Biomedical and Health Informatics (D.T.), The Children's Hospital of Philadelphia, PA
| | - Anshuman Sewda
- From the Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston (A.J.A., A.S., L.E.M.); Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.); and Division of Cardiology (E.G., H.H.), Center for Applied Genomics (H.H.), and Department of Biomedical and Health Informatics (D.T.), The Children's Hospital of Philadelphia, PA
| | - Deanne Taylor
- From the Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston (A.J.A., A.S., L.E.M.); Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.); and Division of Cardiology (E.G., H.H.), Center for Applied Genomics (H.H.), and Department of Biomedical and Health Informatics (D.T.), The Children's Hospital of Philadelphia, PA
| | - Laura E Mitchell
- From the Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston (A.J.A., A.S., L.E.M.); Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.G.); and Division of Cardiology (E.G., H.H.), Center for Applied Genomics (H.H.), and Department of Biomedical and Health Informatics (D.T.), The Children's Hospital of Philadelphia, PA.
| | | |
Collapse
|
20
|
Lupo PJ, Agopian AJ, Castillo H, Castillo J, Clayton GH, Dosa NP, Hopson B, Joseph DB, Rocque BG, Walker WO, Wiener JS, Mitchell LE. Genetic epidemiology of neural tube defects. J Pediatr Rehabil Med 2017; 10:189-194. [PMID: 29125517 PMCID: PMC8085973 DOI: 10.3233/prm-170456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been estimated that 60-70% of neural tube defects (NTDs) have a genetic component, but few causative genes have been identified. The lack of information on genes associated with non-syndromic NTDs in humans is especially notable as the "genomic revolution" has led to new tools (e.g., genome-wide genotyping arrays, next-generation sequencing) that are helping to elucidate the full spectrum of genetic variation (from common to rare) contributing to complex traits, including structural birth defects. However, the application of modern genomic approaches to the study of NTDs has lagged behind that of some other common structural birth defects. This may be due to the difficulty of assembling large study cohorts for anencephaly or spina bifida. The purpose of this review is to outline the evolution of genetic studies of NTDs, from studies of familial aggregation to candidate gene and genome-wide association studies, through whole-exome and whole-genome sequencing. Strategies for addressing gaps in NTD genetic research are also explored.
Collapse
Affiliation(s)
- Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - A J Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| | - Heidi Castillo
- Section of Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Castillo
- Section of Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gerald H Clayton
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado, Aurora, CO, USA
| | - Nienke P Dosa
- Department of Pediatrics, Center for Development Behavior and Genetics, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Betsy Hopson
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B Joseph
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon G Rocque
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William O Walker
- Division of Developmental Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - John S Wiener
- Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| |
Collapse
|
21
|
Zhang M, Li FX, Liu XY, Hou JY, Ni SH, Wang J, Zhao CM, Zhang W, Kong Y, Huang RT, Xue S, Yang YQ. TBX1 loss-of-function mutation contributes to congenital conotruncal defects. Exp Ther Med 2017; 15:447-453. [PMID: 29250159 DOI: 10.3892/etm.2017.5362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Conotruncal defects (CTDs) account for ~30% of all types of congenital heart disease and contribute to increased morbidity and mortality rates. Increasing evidence suggests that genetic risk factors are involved in the pathogenesis of CTDs. Mutations in a number of genes, including the TBX1 gene that codes for a T-box transcription factor essential for normal cardiovascular development, may contribute to the development of CTD. CTDs are genetically heterogeneous and the genetic defects responsible for CTDs in the majority of patients remain unknown. The present study sequenced the coding regions and splicing junction boundaries of TBX1 in 136 patients with CTDs and 300 matched healthy individuals. The disease-causing potential of the identified TBX1 sequence variation was evaluated using MutationTaster, PolyPhen-2, SIFT and PROVEN software. The functional characteristics of the mutant TBX1 gene were defined using a dual-luciferase reporter assay system. A novel heterozygous TBX1 mutation, p.S233Y, was identified in a patient with transposition of the great arteries (TGA) and a ventricular septal defect. This mutation was absent in the 300 controls and altered the amino acid produced, serine, which is evolutionarily conserved across several species, and was predicted to be pathogenic in silico. Luciferase assays conducted in COS-7 cells demonstrated that the newly identified TBX1 mutation was associated with significantly diminished transcriptional activation of the ANF promoter compared with the wild-type TBX1. To the best of our knowledge, the present study is the first to associate a TBX1 loss-of-function mutation with enhanced susceptibility to TGA, which adds significant insight to the molecular mechanism of TGA.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fu-Xing Li
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jing-Yi Hou
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Shi-Hong Ni
- Department of Pediatrics, Baoshan Branch of Huashan Hospital, Fudan University, Shanghai 200431, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wei Zhang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ye Kong
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Qing Yang
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
22
|
Family-based exome-wide association study of childhood acute lymphoblastic leukemia among Hispanics confirms role of ARID5B in susceptibility. PLoS One 2017; 12:e0180488. [PMID: 28817678 PMCID: PMC5560704 DOI: 10.1371/journal.pone.0180488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
We conducted an exome-wide association study of childhood acute lymphoblastic leukemia (ALL) among Hispanics to confirm and identify novel variants associated with disease risk in this population. We used a case-parent trio study design; unlike more commonly used case-control studies, this study design is ideal for avoiding issues with population stratification bias among this at-risk ethnic group. Using 710 individuals from 323 Guatemalan and US Hispanic families, two inherited SNPs in ARID5B reached genome-wide level significance: rs10821936, RR = 2.31, 95% CI = 1.70–3.14, p = 1.7×10−8 and rs7089424, RR = 2.22, 95% CI = 1.64–3.01, p = 5.2×10−8. Similar results were observed when restricting our analyses to those with the B-ALL subtype: ARID5B rs10821936 RR = 2.22, 95% CI = 1.63–3.02, p = 9.63×10−8 and ARID5B rs7089424 RR = 2.13, 95% CI = 1.57–2.88, p = 2.81×10−7. Notably, effect sizes observed for rs7089424 and rs10821936 in our study were >20% higher than those reported among non-Hispanic white populations in previous genetic association studies. Our results confirmed the role of ARID5B in childhood ALL susceptibility among Hispanics; however, our assessment did not reveal any strong novel inherited genetic risks for acute lymphoblastic leukemia among this ethnic group.
Collapse
|
23
|
Abstract
Congenital heart diseases are common congenital anomalies with 1% prevalence worldwide and are associated with significant childhood morbidity and mortality. Among a wide range of aetiologically heterogeneous conditions, conotruncal anomalies account for approximately one-third of all congenital heart defects. The aetiology of conotruncal heart diseases is complex, with both environmental and genetic causes. Hyperhomocysteinaemia, which is often accompanied by the defects of folic acid metabolism, is known to cause conotruncal heart anomalies. In this study, we have evaluated three polymorphisms in the following two hyperhomocysteinaemia-related genes: methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and nicotinamide N-methyl transferase (NNMT rs694539) in 79 children with conotruncal heart disease and 99 children without conotruncal heart disease. Genotype distribution of the MTHFR A1298C polymorphism showed a statistically significant difference between the two groups. In the case group, AC and CC genotypes were higher than the control group (p<0.05). We have found that MTHFR A1298C polymorphism is associated with conotruncal heart disease; C allele (p=0.028), AC (OR[95% CI]=2.48[1.24-4.95], p=0.010), CC (OR[95% CI]=3.01[1.16-7.83], p=0.023), and AC+CC (OR[95% CI]=2.60[1.36-4.99], p=0.004) genotypes are more frequent in the patient group. Genotype distributions of the MTHFR C677T and NNMT rs694539 polymorphisms were similar in the two groups when evaluated separately and also according to the dominant genetic model (p>0.05). Our results suggest that MTHFR 1298C allele is a risk factor for conotruncal heart disease.
Collapse
|
24
|
Genome-Wide Association Study of Down Syndrome-Associated Atrioventricular Septal Defects. G3-GENES GENOMES GENETICS 2015; 5:1961-71. [PMID: 26194203 PMCID: PMC4592978 DOI: 10.1534/g3.115.019943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The goal of this study was to identify the contribution of common genetic variants to Down syndrome−associated atrioventricular septal defect, a severe heart abnormality. Compared with the euploid population, infants with Down syndrome, or trisomy 21, have a 2000-fold increased risk of presenting with atrioventricular septal defects. The cause of this increased risk remains elusive. Here we present data from the largest heart study conducted to date on a trisomic background by using a carefully characterized collection of individuals from extreme ends of the phenotypic spectrum. We performed a genome-wide association study using logistic regression analysis on 452 individuals with Down syndrome, consisting of 210 cases with complete atrioventricular septal defects and 242 controls with structurally normal hearts. No individual variant achieved genome-wide significance. We identified four disomic regions (1p36.3, 5p15.31, 8q22.3, and 17q22) and two trisomic regions on chromosome 21 (around PDXK and KCNJ6 genes) that merit further investigation in large replication studies. Our data show that a few common genetic variants of large effect size (odds ratio >2.0) do not account for the elevated risk of Down syndrome−associated atrioventricular septal defects. Instead, multiple variants of low-to-moderate effect sizes may contribute to this elevated risk, highlighting the complex genetic architecture of atrioventricular septal defects even in the highly susceptible Down syndrome population.
Collapse
|
25
|
Mlynarski E, Sheridan M, Xie M, Guo T, Racedo S, McDonald-McGinn D, Gai X, Chow E, Vorstman J, Swillen A, Devriendt K, Breckpot J, Digilio M, Marino B, Dallapiccola B, Philip N, Simon T, Roberts A, Piotrowicz M, Bearden C, Eliez S, Gothelf D, Coleman K, Kates W, Devoto M, Zackai E, Heine-Suñer D, Shaikh T, Bassett A, Goldmuntz E, Morrow B, Emanuel B. Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome. Am J Hum Genet 2015; 96:753-64. [PMID: 25892112 DOI: 10.1016/j.ajhg.2015.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.
Collapse
|