1
|
Gazal S, Gazal S, Kaur P, Bhan A, Olagnier D. Breaking Barriers: Animal viruses as oncolytic and immunotherapeutic agents for human cancers. Virology 2024; 600:110238. [PMID: 39293238 DOI: 10.1016/j.virol.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Oncolytic viruses, defined as viruses capable of lysing cancer cells, emerged as a groundbreaking class of therapeutic entities poised to revolutionize cancer treatment. Their mode of action encompasses both direct tumor cell lysis and the indirect enhancement of anti-tumor immune responses. Notably, four leading contenders in this domain, Rigvir® in Latvia, T-VEC in the United States, H101 in China and Teserpaturev (DELYTACT®) in Japan, have earned approval for treating metastatic melanoma (Rigvir and T-VEC), nasopharyngeal carcinoma and malignant glioma, respectively. Despite these notable advancements, the integration of oncolytic viruses into cancer therapy encounters several challenges. Foremost among these hurdles is the considerable variability observed in clinical responses to oncolytic virus interventions. Moreover, the adaptive immune system may inadvertently target the oncolytic viruses themselves, diverting immune resources away from tumor antigens and undermining therapeutic efficacy. Another significant limitation arises from the presence of preexisting immunity against oncolytic viruses in certain patient populations, hampering treatment outcomes. To circumvent this obstacle, researchers are investigating the utilization of animal viruses, for which humans lack preexisting immunity, as a compelling alternative to human-derived counterparts. In our comprehensive review, we delve into the intricate nuances of oncolytic virotherapy, elucidating the multifaceted mechanisms through which these viruses exert their anti-cancer effects. Furthermore, we provide a thorough examination of animal-derived oncolytic viruses, highlighting their respective strengths and limitations. Lastly, we explore the promising potential of leveraging animal viruses as potent oncolytic agents, offering new avenues for enhancing the efficacy and reach of human cancer therapeutics.
Collapse
Affiliation(s)
- Sabahat Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu, Jammu & Kashmir, India; Department of Biomedicine, Aarhus University, Denmark
| | - Sundus Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu, Jammu & Kashmir, India.
| | - Paviter Kaur
- Division of Veterinary Microbiology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, India
| | - Anvesha Bhan
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu, Jammu & Kashmir, India
| | | |
Collapse
|
2
|
Gaur SK, Jain J, Chaudhary Y, Kaul R. Insights into the mechanism of Morbillivirus induced immune suppression. Virology 2024; 600:110212. [PMID: 39232265 DOI: 10.1016/j.virol.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Viruses enter the host cell, and various strategies are employed to evade the host immune system. These include overcoming the various components of the immune system, including modulation of the physical and chemical barriers, non-specific innate response and specific adaptive immune response. Morbilliviruses impose immune modulation by utilizing various approaches including hindering antigen presentation to T-Helper (TH) cells, hematopoiesis and suppression of effector molecule activities. These viruses can also impede the early stages of T cell activation. Despite the availability of effective vaccines, morbilliviruses are still a significant threat to mankind. After infection, they also induce a state of immune suppression in the host. The molecular mechanisms employed by morbilliviruses to induce the state of immune suppression in the infected host are still being investigated. This review is an attempt to summarize insights into some of the strategies adopted by morbilliviruses to mediate immune modulation in the host.
Collapse
Affiliation(s)
- Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Juhi Jain
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
3
|
Stokol T, Thomas SI, Hoffman M, Zhao S. Flow cytometric-based detection of CD80 is a useful diagnostic marker of acute myeloid leukemia in dogs. Front Vet Sci 2024; 11:1405297. [PMID: 39224452 PMCID: PMC11366633 DOI: 10.3389/fvets.2024.1405297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction CD80, a co-stimulatory molecule required for optimal T cell activation, is expressed on antigen-presenting cells, including monocytes and dendritic cells, in dogs and humans. We hypothesized that CD80 would be expressed on tumor cells in dogs from acute myeloid leukemia (AML) but not dogs with lymphoid neoplasms. Methods and results We first evaluated the cellular staining pattern of a hamster anti-murine CD80 antibody (clone 16-10A1, ThermoFisher Scientific Cat# 17-0801-82, RRID: AB_469417) in blood and bone marrow aspirates from healthy dogs. Using flow cytometric analysis and examination of modified Wright's-stained cytologic smears of unsorted and flow cytometric or immunomagnetic bead-sorted leukocytes, we show that the antibody binds to mature and immature neutrophils and monocytes, but not lymphocytes or eosinophils, in blood and bone marrow. We then added the antibody to routine flow cytometric panels for immunophenotyping hematopoietic neoplasms in dogs. We found that the antibody labeled tumor cells in 72% of 39 dogs with AML and 36% of 11 dogs with acute leukemia expressing lymphoid and myeloid markers ("mixed lineage") but none of the dogs with B (n = 37) or T (n = 35) lymphoid neoplasms. A higher proportion of tumor cells in dogs with AML were labeled with the anti-CD80 antibody vs antibodies against other myeloid-associated antigens, including CD4 (36%, p = 0.003), CD11b (44%), CD11c (46%), CD14 (38%, p = 0.006) and CD18 (59%, clone YFC118). In contrast, antibodies against CD11b and CD11c bound to tumor cells in 8-32% of the lymphoid neoplasms. Discussion We show that CD80, as detected by antibody clone 16-10A1, is a sensitive and specific marker for AML and would be useful to include in flow cytometric immunophenotyping panels in dogs.
Collapse
Affiliation(s)
- Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | | | | | |
Collapse
|
4
|
Chludzinski E, Ciurkiewicz M, Stoff M, Klemens J, Krüger J, Shin DL, Herrler G, Beineke A. Canine Distemper Virus Alters Defense Responses in an Ex Vivo Model of Pulmonary Infection. Viruses 2023; 15:v15040834. [PMID: 37112814 PMCID: PMC10144441 DOI: 10.3390/v15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Canine distemper virus (CDV), belonging to the genus Morbillivirus, is a highly contagious pathogen. It is infectious in a wide range of host species, including domestic and wildlife carnivores, and causes severe systemic disease with involvement of the respiratory tract. In the present study, canine precision-cut lung slices (PCLSs) were infected with CDV (strain R252) to investigate temporospatial viral loads, cell tropism, ciliary activity, and local immune responses during early infection ex vivo. Progressive viral replication was observed during the infection period in histiocytic and, to a lesser extent, epithelial cells. CDV-infected cells were predominantly located within the bronchial subepithelial tissue. Ciliary activity was reduced in CDV-infected PCLSs, while viability remained unchanged when compared to controls. MHC-II expression was increased in the bronchial epithelium on day three postinfection. Elevated levels of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-β) were observed in CDV-infected PCLSs on day one postinfection. In conclusion, the present study demonstrates that PCLSs are permissive for CDV. The model reveals an impaired ciliary function and an anti-inflammatory cytokine response, potentially fostering viral replication in the lung during the early phase of canine distemper.
Collapse
Affiliation(s)
- Elisa Chludzinski
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Małgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Johanna Klemens
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Johannes Krüger
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dai-Lun Shin
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
5
|
A Morbillivirus Infection Shifts DC Maturation Toward a Tolerogenic Phenotype to Suppress T Cell Activation. J Virol 2022; 96:e0124022. [PMID: 36094317 PMCID: PMC9517701 DOI: 10.1128/jvi.01240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses have evolved numerous strategies to impair immunity so that they can replicate more efficiently. Among those, the immunosuppressive effects of morbillivirus infection can be particularly problematic, as they allow secondary infections to take hold in the host, worsening disease prognosis. In the present work, we hypothesized that the highly contagious morbillivirus peste des petits ruminants virus (PPRV) could target monocytes and dendritic cells (DC) to contribute to the immunosuppressive effects produced by the infection. Monocytes isolated from healthy sheep, a natural host of the disease, were able be infected by PPRV and this impaired the differentiation and phagocytic ability of immature monocyte-derived DC (MoDC). We also assessed PPRV capacity to infect differentiated MoDC. Ovine MoDC could be productively infected by PPRV, and this drastically reduced MoDC capacity to activate allogeneic T cell responses. Transcriptomic analysis of infected MoDC indicated that several tolerogenic DC signature genes were upregulated upon PPRV infection. Furthermore, PPRV-infected MoDC could impair the proliferative response of autologous CD4+ and CD8+ T cell to the mitogen concanavalin A (ConA), which indicated that DC targeting by the virus could promote immunosuppression. These results shed new light on the mechanisms employed by morbillivirus to suppress the host immune responses. IMPORTANCE Morbilliviruses pose a threat to global health given their high infectivity. The morbillivirus peste des petits ruminants virus (PPRV) severely affects small-ruminant-productivity and leads to important economic losses in communities that rely on these animals for subsistence. PPRV produces in the infected host a period of severe immunosuppression that opportunistic pathogens exploit, which worsens the course of the infection. The mechanisms of PPRV immunosuppression are not fully understood. In the present work, we demonstrate that PPRV can infect professional antigen-presenting cells called dendritic cells (DC) and disrupt their capacity to elicit an immune response. PPRV infection promoted a DC activation profile that favored the induction of tolerance instead of the activation of an antiviral immune response. These results shed new light on the mechanisms employed by morbilliviruses to suppress the immune responses.
Collapse
|
6
|
George AM, Wille M, Wang J, Anderson K, Cohen S, Moselen J, Yang Lee LY, Suen WW, Bingham J, Dalziel AE, Whitney P, Stannard H, Hurt AC, Williams DT, Deng YM, Barr IG. A novel and highly divergent Canine Distemper Virus lineage causing distemper in ferrets in Australia. Virology 2022; 576:117-126. [DOI: 10.1016/j.virol.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
|
7
|
Harkin KR, Karote AG. Evaluation of Intrathecal Injection of Modified Live Newcastle Disease Virus Vaccine in Dogs with Canine Distemper Encephalitis. J Am Anim Hosp Assoc 2022; 58:105-112. [PMID: 35576400 DOI: 10.5326/jaaha-ms-7077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
The neurological form of canine distemper virus (CDV) infection can occur concurrently with systemic signs or develop following apparent recovery. There are no specific antiviral or immunomodulatory therapies recognized for treatment of CDV infections, and the neurological form typically carries with it a high mortality rate. The intrathecal injection of a modified live Newcastle disease virus vaccine (NDV-MLV) has been proposed for the treatment of the neurological forms of CDV infections. Thirteen dogs confirmed to have canine distemper infections by polymerase chain reaction testing and with neurological signs consistent with CDV infection were treated with an intrathecal injection of NDV-MLV and were scheduled for re-evaluation 3-4 mo later. Six dogs survived to follow-up and four dogs survived long term (>3 yr). Cerebrospinal fluid cytokines were measured and reported. Changes in cerebrospinal fluid cytokines and long-term survival could not be attributed to the intrathecal injection of NDV-MLV, and this therapy cannot be recommended for treatment of dogs with neurological forms of CDV infection.
Collapse
Affiliation(s)
- Kenneth R Harkin
- From the Department of Clinical Sciences (K.R.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Anushka George Karote
- Kansas State Veterinary Diagnostic Laboratory (A.G.K.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
8
|
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen and is known to enter the host via the respiratory tract and disseminate to various organs. Current hypotheses speculate that CDV uses the homologous cellular receptors of measles virus (MeV), SLAM and nectin-4, to initiate the infection process. For validation, here, we established the well-differentiated air-liquid interface (ALI) culture model from primary canine tracheal airway epithelial cells. By applying the green fluorescent protein (GFP)-expressing CDV vaccine strain and recombinant wild-type viruses, we show that cell-free virus infects the airway epithelium mainly via the paracellular route and only after prior disruption of tight junctions by pretreatment with EGTA; this infection was related to nectin-4 but not to SLAM. Remarkably, when CDV-preinfected DH82 cells were cocultured on the basolateral side of canine ALI cultures grown on filter supports with a 1.0-μm pore size, cell-associated CDV could be transmitted via cell-to-cell contact from immunocytes to airway epithelial cultures. Finally, we observed that canine ALI cultures formed syncytia and started to release cell-free infectious viral particles from the apical surface following treatment with an inhibitor of the JAK/STAT signaling pathway (ruxolitinib). Our findings show that CDV can overcome the epithelial barrier through different strategies, including infection via immunocyte-mediated transmission and direct infection via the paracellular route when tight junctions are disrupted. Our established model can be adapted to other animals for studying the transmission routes and the pathogenicity of other morbilliviruses. IMPORTANCE Canine distemper virus (CDV) is not only an important pathogen of carnivores, but it also serves as a model virus for analyzing measles virus pathogenesis. To get a better picture of the different stages of infection, we used air-liquid interface cultures to analyze the infection of well-differentiated airway epithelial cells by CDV. Applying a coculture approach with DH82 cells, we demonstrated that cell-mediated infection from the basolateral side of well-differentiated epithelial cells is more efficient than infection via cell-free virus. In fact, free virus was unable to infect intact polarized cells. When tight junctions were interrupted by treatment with EGTA, cells became susceptible to infection, with nectin-4 serving as a receptor. Another interesting feature of CDV infection is that infection of well-differentiated airway epithelial cells does not result in virus egress. Cell-free virions are released from the cells only in the presence of an inhibitor of the JAK/STAT signaling pathway. Our results provide new insights into how CDV can overcome the barrier of the airway epithelium and reveal similarities and some dissimilarities compared to measles virus.
Collapse
|
9
|
Molini U, Hassel R, Ortmann S, Vos A, Loschke M, Shilongo A, Freuling CM, Müller T. Immunogenicity of the Oral Rabies Vaccine Strain SPBN GASGAS in Dogs Under Field Settings in Namibia. Front Vet Sci 2021; 8:737250. [PMID: 34760958 PMCID: PMC8573107 DOI: 10.3389/fvets.2021.737250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Dog-mediated rabies is endemic throughout Africa. While free-roaming dogs that play a crucial role in rabies transmission are often inaccessible for parenteral vaccination during mass dog vaccination campaigns, oral rabies vaccination (ORV) is considered to be a promising alternative to increase vaccination coverage in these hard-to-reach dogs. The acceptance of ORV as an efficient supplementary tool is still low, not least because of limited immunogenicity and field trial data in local dogs. In this study, the immunogenicity of the highly attenuated 3rd-generation oral rabies vaccine strain SPBN GASGAS in local free-roaming dogs from Namibia was assessed by determining the immune response in terms of seroconversion for up to 56 days post-vaccination. At two study sites, free-roaming dogs were vaccinated by administering the vaccine either by direct oral administration or via a vaccine-loaded egg bait. Pre- and post-vaccination blood samples were tested for rabies virus neutralizing as well as binding antibodies using standard serological assays. A multiple logistic regression (MLR) analysis was performed to determine a possible influence of study area, vaccination method, and vaccine dose on the seroconversion rate obtained. About 78% of the dogs vaccinated by the oral route seroconverted (enzyme-linked immunosorbent assay, ELISA), though the seroconversion as determined by a rapid fluorescence focus inhibition test (RFFIT) was much lower. None of the factors examined had a significant effect on the seroconversion rate. This study confirms the immunogenicity of the vaccine strain SPBN GASGAS and the potential utility of ORV for the control of dog-mediated rabies in African dogs.
Collapse
Affiliation(s)
- Umberto Molini
- School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Rainer Hassel
- School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Steffen Ortmann
- Ceva Innovation Center, Ceva Santé Animale, Dessau-Roßlau, Germany
| | - Ad Vos
- Ceva Innovation Center, Ceva Santé Animale, Dessau-Roßlau, Germany
| | - Malaika Loschke
- School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Albertina Shilongo
- Directorate of Veterinary Services, Ministry of Agriculture, Water and Land Reform, Windhoek, Namibia
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Riems, Germany
| |
Collapse
|
10
|
Nan FL, Zheng W, Nan WL, Yu T, Xie CZ, Zhang H, Xu XH, Li CH, Ha Z, Zhang JY, Zhuang XY, Han JC, Wang W, Qian J, Zhao GY, Li ZX, Ge JY, Bu ZG, Zhang Y, Lu HJ, Jin NY. Newcastle Disease Virus Inhibits the Proliferation of T Cells Induced by Dendritic Cells In Vitro and In Vivo. Front Immunol 2021; 11:619829. [PMID: 33708193 PMCID: PMC7942023 DOI: 10.3389/fimmu.2020.619829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/03/2022] Open
Abstract
Newcastle disease virus (NDV) infects poultry and antagonizes host immunity via several mechanisms. Dendritic cells (DCs) are characterized as specialized antigen presenting cells, bridging innate and adaptive immunity and regulating host resistance to viral invasion. However, there is little specific knowledge of the role of DCs in NDV infection. In this study, the representative NDV lentogenic strain LaSota was used to explore whether murine bone marrow derived DCs mature following infection. We examined surface molecule expression and cytokine release from DCs as well as proliferation and activation of T cells in vivo and in vitro in the context of NDV. The results demonstrated that infection with lentogenic strain LaSota induced a phenotypic maturation of immature DCs (imDCs), which actually led to curtailed T cell responses. Upon infection, the phenotypic maturation of DCs was reflected by markedly enhanced MHC and costimulatory molecule expression and secretion of proinflammatory cytokines. Nevertheless, NDV-infected DCs produced the anti-inflammatory cytokine IL-10 and attenuated T cell proliferation, inducing Th2-biased responses. Therefore, our study reveals a novel understanding that DCs are phenotypically mature but dysfunctional in priming T cell responses during NDV infection.
Collapse
Affiliation(s)
- Fu Long Nan
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Wei Zheng
- The 964Hospital of the PLA Joint Logistics, Changchun, China
| | - Wen Long Nan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Tong Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.,Agricultural College, Yanbian University, Yanji, China
| | - Chang Zhan Xie
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Xiao Hong Xu
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Cheng Hui Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jin Yong Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Xin Yu Zhuang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ji Cheng Han
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guan Yu Zhao
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Zhuo Xin Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jin Ying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Hui Jun Lu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ning Yi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
11
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
12
|
Junginger J, Raue K, Wolf K, Janecek E, Stein VM, Tipold A, Günzel-Apel AR, Strube C, Hewicker-Trautwein M. Zoonotic intestinal helminths interact with the canine immune system by modulating T cell responses and preventing dendritic cell maturation. Sci Rep 2017; 7:10310. [PMID: 28871165 PMCID: PMC5583179 DOI: 10.1038/s41598-017-10677-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Parasite co-evolution alongside the mammalian immune system gave rise to several modulatory strategies by which they prevent exaggerated pathology and facilitate a longer worm survival. As little is known about the immunoregulatory potential of the zoonotic canine parasites Ancylostoma caninum and Toxocara canis in the natural host, the present study aimed to investigate whether their larval excretory-secretory (ES) products can modulate the canine immune system. We demonstrated TcES to increase the frequency of CD4+ Foxp3high T cells, while both AcES and TcES were associated with elevated Helios expression in Foxp3high lymphocytes. ES products were further capable of inducing IL-10 production by lymphocytes, which was mainly attributed to CD8+ T cells. ES treatment of PBMCs prior to mitogen stimulation inhibited polyclonal proliferation of CD4+ and CD8+ T cells. Moreover, monocyte-derived ES-pulsed dendritic cells reduced upregulation of MHC-II and CD80 in response to lipopolysaccharide. The data showed that regulation of the canine immune system by A. caninum and T. canis larvae comprises the modification of antigen-specific and polyclonal T cell responses and dendritic cell maturation.
Collapse
Affiliation(s)
- Johannes Junginger
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559, Hannover, Germany
| | - Katharina Raue
- Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine, Bünteweg 17, D-30559, Hannover, Germany
| | - Karola Wolf
- Unit of Reproductive Medicine of Clinics, University of Veterinary Medicine, Bünteweg 15, D-30559, Hannover, Germany.,Small Animal Clinic, University of Veterinary Medicine, Bünteweg 9, D-30559, Hannover, Germany
| | - Elisabeth Janecek
- Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine, Bünteweg 17, D-30559, Hannover, Germany
| | - Veronika M Stein
- Small Animal Clinic, University of Veterinary Medicine, Bünteweg 9, D-30559, Hannover, Germany.,Vetsuisse Faculty, University of Bern, Länggassstrasse 128, CH-3012, Bern, Switzerland
| | - Andrea Tipold
- Small Animal Clinic, University of Veterinary Medicine, Bünteweg 9, D-30559, Hannover, Germany
| | - Anne-Rose Günzel-Apel
- Unit of Reproductive Medicine of Clinics, University of Veterinary Medicine, Bünteweg 15, D-30559, Hannover, Germany.,Small Animal Clinic, University of Veterinary Medicine, Bünteweg 9, D-30559, Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine, Bünteweg 17, D-30559, Hannover, Germany
| | - Marion Hewicker-Trautwein
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559, Hannover, Germany.
| |
Collapse
|
13
|
Persistent Morbillivirus Infection Leads to Altered Cortactin Distribution in Histiocytic Sarcoma Cells with Decreased Cellular Migration Capacity. PLoS One 2016; 11:e0167517. [PMID: 27911942 PMCID: PMC5135102 DOI: 10.1371/journal.pone.0167517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/15/2016] [Indexed: 12/04/2022] Open
Abstract
Histiocytic sarcomas represent rare but fatal neoplasms in humans. Based on the absence of a commercially available human histiocytic sarcoma cell line the frequently affected dog displays a suitable translational model. Canine distemper virus, closely related to measles virus, is a highly promising candidate for oncolytic virotherapy. Therapeutic failures in patients are mostly associated with tumour invasion and metastasis often induced by misdirected cytoskeletal protein activities. Thus, the impact of persistent canine distemper virus infection on the cytoskeletal protein cortactin, which is frequently overexpressed in human cancers with poor prognosis, was investigated in vitro in a canine histiocytic sarcoma cell line (DH82). Though phagocytic activity, proliferation and apoptotic rate were unaltered, a significantly reduced migration activity compared to controls (6 hours and 1 day after seeding) accompanied by a decreased number of cortactin mRNA transcripts (1 day) was detected. Furthermore, persistently canine distemper virus infected DH82 cells showed a predominant diffuse intracytoplasmic cortactin distribution at 6 hours and 1 day compared to controls with a prominent membranous expression pattern (p ≤ 0.05). Summarized, persistent canine distemper virus infection induces reduced tumour cell migration associated with an altered intracellular cortactin distribution, indicating cytoskeletal changes as one of the major pathways of virus-associated inhibition of tumour spread.
Collapse
|
14
|
Pfankuche VM, Spitzbarth I, Lapp S, Ulrich R, Deschl U, Kalkuhl A, Baumgärtner W, Puff C. Reduced angiogenic gene expression in morbillivirus-triggered oncolysis in a translational model for histiocytic sarcoma. J Cell Mol Med 2016; 21:816-830. [PMID: 27860224 PMCID: PMC5345635 DOI: 10.1111/jcmm.13023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022] Open
Abstract
Histiocytic sarcoma represents a rare malignant tumour with a short survival time, indicating the need of novel treatment strategies including oncolytic virotherapy. The underlying molecular mechanisms of viral oncolysis are largely unknown. As cancer in companion animals shares striking similarities with human counterparts, we chose a permanent canine histiocytic sarcoma cell line (DH82 cells) to identify global transcriptome changes following infection with canine distemper virus (CDV), a paramyxovirus closely related to human measles virus. Microarray analysis identified 3054 differentially expressed probe sets (DEPs), encoding for 892 up‐ and 869 down‐regulated unique canine genes, respectively, in DH82 cells persistently infected with the vaccine strain Onderstepoort of CDV (DH82‐Ond‐pi), compared to non‐infected DH82 cells. Up‐regulated genes were predominantly related to immune processes, as demonstrated by functional enrichment analysis. Moreover, there was substantial enrichment of genes characteristic for classically activated M1 and alternatively activated M2 macrophages in DH82‐Ond‐pi; however, significant polarization into either of both categories was lacking. ‘Angiogenesis’ was the dominant enriched functional term for the down‐regulated genes, highlighting decreased blood vessel generation as a potential mechanism of paramyxovirus‐induced oncolysis in DH82 cells. The anti‐angiogenic effect of infection was verified by immunohistochemistry, which revealed a lower blood vessel density in an in vivo mouse model, xenotransplanted with DH82‐Ond‐pi, compared to mice transplanted with non‐infected DH82 cells. Reduction in angiogenesis appears to be an important oncolytic mechanism of CDV in DH82 cells, suggesting that similar mechanisms might account for human histiocytic sarcoma and maybe other tumours in conjunction with measles virus.
Collapse
Affiliation(s)
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Stefanie Lapp
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
| | | | - Christina Puff
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
15
|
MYD88 and functionally related genes are associated with multiple infections in a model population of Kenyan village dogs. Mol Biol Rep 2016; 43:1451-1463. [PMID: 27655108 DOI: 10.1007/s11033-016-4078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to seek associations between immunity-related molecular markers and endemic infections in a model population of African village dogs from Northern Kenya with no veterinary care and no selective breeding. A population of village dogs from Northern Kenya composed of three sub-populations from three different areas (84, 50 and 55 dogs) was studied. Canine distemper virus (CDV), Hepatozoon canis, Microfilariae (Acantocheilonema dracunculoides, Acantocheilonema reconditum) and Neospora caninum were the pathogens studied. The presence of antibodies (CDV, Neospora), light microscopy (Hepatozoon) and diagnostic PCR (Microfilariae) were the methods used for diagnosing infection. Genes involved in innate immune mechanisms, NOS3, IL6, TLR1, TLR2, TLR4, TLR7, TLR9, LY96, MYD88, and three major histocompatibility genes class II genes were selected as candidates. Single nucleotide polymorphism (SNP) markers were detected by Sanger sequencing, next generation sequencing and PCR-RFLP. The Fisher´s exact test for additive and non-additive models was used for association analyses. Three SNPs within the MYD88 gene and one TLR4 SNP marker were associated with more than one infection. Combined genotypes and further markers identified by next generation sequencing confirmed associations observed for individual genes. The genes associated with infection and their combinations in specific genotypes match well our knowledge on their biological role and on the role of the relevant biological pathways, respectively. Associations with multiple infections observed between the MYD88 and TLR4 genes suggest their involvement in the mechanisms of anti-infectious defenses in dogs.
Collapse
|
16
|
Beineke A, Baumgärtner W, Wohlsein P. Cross-species transmission of canine distemper virus-an update. One Health 2015; 1:49-59. [PMID: 28616465 PMCID: PMC5462633 DOI: 10.1016/j.onehlt.2015.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) is a pantropic morbillivirus with a worldwide distribution, which causes fatal disease in dogs. Affected animals develop dyspnea, diarrhea, neurological signs and profound immunosuppression. Systemic CDV infection, resembling distemper in domestic dogs, can be found also in wild canids (e.g. wolves, foxes), procyonids (e.g. raccoons, kinkajous), ailurids (e.g. red pandas), ursids (e.g. black bears, giant pandas), mustelids (e.g. ferrets, minks), viverrids (e.g. civets, genets), hyaenids (e.g. spotted hyenas), and large felids (e.g. lions, tigers). Furthermore, besides infection with the closely related phocine distemper virus, seals can become infected by CDV. In some CDV outbreaks including the mass mortalities among Baikal and Caspian seals and large felids in the Serengeti Park, terrestrial carnivores including dogs and wolves have been suspected as vectors for the infectious agent. In addition, lethal infections have been described in non-carnivore species such as peccaries and non-human primates demonstrating the remarkable ability of the pathogen to cross species barriers. Mutations affecting the CDV H protein required for virus attachment to host-cell receptors are associated with virulence and disease emergence in novel host species. The broad and expanding host range of CDV and its maintenance within wildlife reservoir hosts considerably hampers disease eradication.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
17
|
Romanets-Korbut O, Kovalevska LM, Seya T, Sidorenko SP, Horvat B. Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response. Cell Mol Immunol 2015; 13:828-838. [PMID: 26073466 DOI: 10.1038/cmi.2015.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 01/22/2023] Open
Abstract
Measles virus (MV) is highly contagious pathogen, which causes a profound immunosuppression, resulting in high infant mortality. This virus infects dendritic cells (DCs) following the binding of MV hemagglutinin (MV-H) to CD150 receptor and alters DC functions by a mechanism that is not completely understood. We have analyzed the effect of MV-H interaction with CD150-expressing DCs on the DC signaling pathways and consequent phenotypic and functional changes in the absence of infectious context. We demonstrated that contact between CD150 on human DCs and MV-H expressed on membrane of transfected CHO cells was sufficient to modulate the activity of two major regulatory pathways of DC differentiation and function: to stimulate Akt and inhibit p38 MAPK phosphorylation, without concomitant ERK1/2 activation. Furthermore, interaction with MV-H decreased the expression level of DC activation markers CD80, CD83, CD86, and HLA-DR and strongly downregulated IL-12 production but did not modulate IL-10 secretion. Moreover, contact with MV-H suppressed DC-mediated T-cell alloproliferation, demonstrating profound alteration of DC maturation and functions. Finally, engagement of CD150 by MV-H in mice transgenic for human CD150 decreased inflammatory responses, showing the immunosuppressive effect of CD150-MV-H interaction in vivo. Altogether, these results uncover novel mechanism of MV-induced immunosuppression, implicating modulation of cell signaling pathways following MV-H interaction with CD150-expressing DCs and reveal anti-inflammatory effects of CD150 stimulation.
Collapse
Affiliation(s)
- Olga Romanets-Korbut
- CIRI, International Center for Infectiology Research, IbIV team, Université de Lyon, Lyon, France.,R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
| | - Larysa M Kovalevska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Svetlana P Sidorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, IbIV team, Université de Lyon, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|