1
|
Afful P, Abotsi GK, Adu-Gyamfi CO, Benyem G, Katawa G, Kyei S, Arndts K, Ritter M, Asare KK. Schistosomiasis-Microbiota Interactions: A Systematic Review and Meta-Analysis. Pathogens 2024; 13:906. [PMID: 39452777 PMCID: PMC11510367 DOI: 10.3390/pathogens13100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Schistosomiasis, a tropical disease affecting humans and animals, affected 251.4 million people in 2021. Schistosoma mansoni, S. haematobium, S. intercalatum, and S. japonicum are primary human schistosomes, causing tissue damage, granulomas, ulceration, hemorrhage, and opportunistic pathogen entry. The gut and urinary tract microbiota significantly impact a host's susceptibility to schistosomiasis, disrupting microbial balance; however, this relationship is not well understood. This systematic review and meta-analysis explores the intricate relationship between schistosomiasis and the host's microbiota, providing crucial insights into disease pathogenesis and management. METHODS This systematic review used PRISMA guidelines to identify peer-reviewed articles on schistosomiasis and its interactions with the host microbiome, using multiple databases and Google Scholar, providing a robust dataset for analysis. The study utilized Meta-Mar v3.5.1; descriptive tests, random-effects models, and subgroups were analyzed for the interaction between Schistosomiasis and the microbiome. Forest plots, Cochran's Q test, and Higgins' inconsistency statistic (I2) were used to assess heterogeneity. RESULTS The human Schistosoma species were observed to be associated with various bacterial species isolated from blood, stool, urine, sputum, skin, and vaginal or cervical samples. A meta-analysis of the interaction between schistosomiasis and the host microbiome, based on 31 studies, showed 29,784 observations and 5871 events. The pooled estimates indicated a significant association between schistosomiasis and changes in the microbiome of infected individuals. There was considerable heterogeneity with variance effect sizes (p < 0.0001). Subgroup analysis of Schistosoma species demonstrated that S. haematobium was the most significant contributor to the overall heterogeneity, accounting for 62.1% (p < 0.01). S. mansoni contributed 13.0% (p = 0.02), and the coinfection of S. haematobium and S. mansoni accounted for 16.8% of the heterogeneity (p < 0.01), contributing to the variability seen in the pooled analysis. Similarly, praziquantel treatment (RR = 1.68, 95% CI: 1.07-2.64) showed high heterogeneity (Chi2 = 71.42, df = 11, p < 0.01) and also indicated that Schistosoma infections in males (RR = 1.46, 95% CI: 0.00 to 551.30) and females (RR = 2.09, 95% CI: 0.24 to 18.31) have a higher risk of altering the host microbiome. CONCLUSIONS Schistosomiasis significantly disrupts the host microbiota across various bodily sites, leading to increased susceptibility to different bacterial taxa such as E. coli, Klebsiella, Proteus, Pseudomonas, Salmonella, Staphylococcus, Streptococcus, and Mycobacterium species (M. tuberculosis and M. leprae). This disruption enables these bacteria to produce toxic metabolites, which in turn cause inflammation and facilitate the progression of disease. The impact of schistosomiasis on the vaginal microbiome underscores the necessity for gender-specific approaches to treatment and prevention. Effective management of female genital schistosomiasis (FGS) requires addressing both the parasitic infection and the resulting microbiome imbalances. Additionally, praziquantel-treated individuals have different microbiome compositions compared to individuals with no praziquantel treatment. This suggests that combining praziquantel treatment with probiotics could potentially decrease the disease severity caused by an altered microbiome.
Collapse
Affiliation(s)
- Philip Afful
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Godwin Kwami Abotsi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Czarina Owusua Adu-Gyamfi
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - George Benyem
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo;
| | - Samuel Kyei
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology, and Parasitology (IMMIP), University Hospital Bonn (UKB), 53127 Bonn, Germany;
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, 53127 Bonn, Germany
| | - Kwame Kumi Asare
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; (P.A.); (G.K.A.); (C.O.A.-G.); (G.B.); (S.K.)
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
3
|
Haddadi MH, Khoshnood S, Koupaei M, Heidary M, Moradi M, Jamshidi A, Behrouj H, Movahedpour A, Maleki MH, Ghanavati R. Evaluating the incidence of ampC-β-lactamase genes, biofilm formation, and antibiotic resistance among hypervirulent and classical Klebsiella pneumoniae strains. J Appl Microbiol 2023; 134:lxad241. [PMID: 37881066 DOI: 10.1093/jambio/lxad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
AIM Both immunocompetent and healthy individuals can become life-threateningly ill when exposed to the hypervirulent (hvKp) strains of Klebsiella pneumoniae (Kp). The main objectives of this study were to evaluate the presence of ampC-lactamase genes, biofilm formation, and antibiotic resistance in clinical strains of hvKp and cKp (classical K. pneumoniae). MATERIALS AND METHODS Kp strains were collected from patients referred to Shahidzadeh Hospital in Behbahan City, Khuzestan Province, Iran. Several techniques were used to identify hvKp. The hypermucoviscosity phenotype was determined using the string test. Isolates that developed dark colonies on tellurite agar were assumed to be hvKp strains. If any of the iucA, iutA, or peg-344 genes were detected, the isolates were classified as hvKp. Phenotypic and genotypic detection of AmpC β-lactamases of hvKp strains was performed by the combined disk method and polymerase chain reaction, respectively. In addition, crystal violet staining was used to determine the biofilm formation of these isolates. RESULTS For this study, 76 non-duplicative isolates of Kp were collected. Overall, 22 (28.94%) strains had positive string test results, and 31 (40.78%) isolates were grown in tellurite-containing medium. The genes iucA and iutA or peg-344 were found in 23.68% of all Kp strains and in 50% of tellurite-resistant isolates, respectively. The most effective antibiotics against hvKp isolates were tetracycline (85.52%) and chloramphenicol (63.15%). Using the cefoxitin disc diffusion method, we observed that 56.57% (43/76) of the strains were AmpC producer. A total of 30.26% (n = 23/76) of the isolates tested positive for at least one ampC gene, including blaDHA (52.63%, n = 40), blaCIT (40.78%, n = 31), blaACC (19.76%, n = 15), blaMOX (25%, n = 19), and blaFOX (43.42%, n = 33). Biofilm formation analysis revealed that most hvKp isolates were weak (n = 6, 40%) and moderate (n = 5, 33.33%) biofilm producers. CONCLUSION Healthcare practitioners should consider the possibility of the existence and acquisition of hvKp everywhere. The exact mechanisms of bacterial acquisition are also unknown, and it is unclear whether the occurrence of infections is related to healthcare or not. Thus, there are still many questions about hvKp that need to be investigated.
Collapse
Affiliation(s)
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam 69316, Iran
| | - Maryam Koupaei
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan 8759187131, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar 6971938668 , Iran
| | - Melika Moradi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6136763316, Iran
| | - Ali Jamshidi
- Behbahan Faculty of Medical Sciences, Behbahan 6361796819, Iran
| | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan 6361796819, Iran
| | | | - Mohammad Hassan Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam 69316, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan 63617, Iran
| |
Collapse
|
4
|
Luo C, Chen Y, Hu X, Chen S, Lin Y, Liu X, Yang B. Genetic and Functional Analysis of the pks Gene in Clinical Klebsiella pneumoniae Isolates. Microbiol Spectr 2023; 11:e0017423. [PMID: 37341601 PMCID: PMC10433862 DOI: 10.1128/spectrum.00174-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023] Open
Abstract
The pks gene cluster encodes colibactin, which can cause DNA damage and enhance the virulence in Escherichia coli. However, the role of the pks gene in Klebsiella pneumoniae has not been fully discussed. The aim of this study was to analyze the relationship between the pks gene cluster and virulence factors, as well as to assess antibiotic resistance and biofilm formation capacity in clinical isolates of Klebsiella pneumoniae. Thirty-eight of 95 clinical K. pneumoniae strains were pks positive. pks-positive strains usually infected emergency department patients, and pks-negative strains often infected hospitalized patients. The positive rates of K1 capsular serotype and hypervirulence genes (peg-344, rmpA, rmpA2, iucA, and iroB) were significantly higher in the pks-positive isolates than the pks-negative isolates (P < 0.05). The biofilm formation ability of pks-positive isolates was stronger than that of pks-negative isolates. Antibacterial drug susceptibility test showed the resistance of pks-positive isolates was weaker than that of pks-negative isolates. In conclusion, patients with pks-positive K. pneumoniae infection might have worse treatment outcomes and prognosis. pks-positive K. pneumoniae might have stronger virulence and pathogenicity. Clinical infection with pks-positive K. pneumoniae needs further attention. IMPORTANCE The infection rate with pks-positive K. pneumoniae has been increasing in recent years. Two previous surveys in Taiwan reported 25.6% pks gene islands and 16.7% pks-positive K. pneumoniae strains in bloodstream infections, and Chinese scholars also did a survey of K. pneumoniae bloodstream infections in Changsha, China, and found 26.8% pks-positive K. pneumoniae. In addition, it was found that the pks gene cluster might encode colibactin, which could be related to the virulence of K. pneumoniae. Studies confirmed that the prevalence of colibactin-producing K. pneumoniae was increasing. It is necessary to consider the clear relationship between the pks gene cluster and high pathogenicity in K. pneumoniae.
Collapse
Affiliation(s)
- Chenshuo Luo
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yanshu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xueni Hu
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shanjian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yulan Lin
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiaoqian Liu
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bin Yang
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
5
|
Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health 2023; 117:328-341. [PMID: 36089853 PMCID: PMC10177687 DOI: 10.1080/20477724.2022.2121362] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
For people living in developed countries life span is growing at a faster pace than ever. One of the main reasons for such success is attributable to the introduction and extensive use in the clinical practice of antibiotics over the course of the last seven decades. In hospital settings, Klebsiella pneumoniae represents a well-known and commonly described opportunistic pathogen, typically characterized by resistance to several antibiotic classes. On the other hand, the broad wedge of population living in Low and/or Middle Income Countries is increasing rapidly, allowing the spread of several commensal bacteria which are transmitted via human contact. Community transmission has been the original milieu of K. pneumoniae isolates characterized by an outstanding virulence (hypervirulent). These two characteristics, also defined as "pathotypes", originally emerged as different pathways in the evolutionary history of K. pneumoniae. For a long time, the Sequence Type (ST), which is defined by the combination of alleles of the 7 housekeeping genes of the Multi-Locus Sequence Typing, has been a reliable marker of the pathotype: multidrug-resistant clones (e.g. ST258, ST147, ST101) in the Western world and hypervirulent clones (e.g. ST23, ST65, ST86) in the Eastern. Currently, the boundaries separating the two pathotypes are fading away due to several factors, and we are witnessing a worrisome convergence in certain high-risk clones. Here we review the evidence available on confluence of multidrug-resistance and hypervirulence in specific K. pneumoniae clones.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
6
|
Kot B, Piechota M, Szweda P, Mitrus J, Wicha J, Grużewska A, Witeska M. Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Sci Rep 2023; 13:4448. [PMID: 36932105 PMCID: PMC10023695 DOI: 10.1038/s41598-023-31086-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Klebsiella pneumoniae (KP) is a nosocomial pathogen causing difficult-to-treat infections. The presence of virulence genes and antibiotic resistance of 109 KP isolates from hospitalized patients were investigated. Among them, 68.8% were multi-drug resistant (MDR) and 59.6% produced extended-spectrum beta-lactamases (ESBLs). Metallo-β-lactamases (MBLs) were produced by 22% of isolates (mainly from anus), including 16.5% of isolates producing New Delhi metallo-β-lactamase (NDM-1). The genes encoding adhesins (fimH-91.7%, mrkD-96.3%), enterobactin (entB-100%) and yersiniabactin (irp-1-88%) were frequently identified. The genes encoding salmochelin (iroD-9.2%, iroN-7.3%) and colibactin (clbA, clbB-0.9%) were identified rarely. Iron acquisition system-related kfu gene and wcaG gene involved in capsule production were identified in 6.4% and 11% of isolates, respectively. The rmpA gene associated with hypermucoviscosity was present in 6.4% of isolates. In 19.2% of isolates magA gene was detected, specific for K1 capsule serotype, while 22.9% of isolates showed K2 capsule serotype. The rmpA, iroD or iroN genes being diagnostic biomarkers for hypervirulent KP (hvKP) were detected in 16.5% of isolates. We found that 55.5% of hvKP were MDR and produced ESBLs, thus hospital KP isolates pose a serious threat to the healthcare system.
Collapse
Affiliation(s)
- Barbara Kot
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Bolesława Prusa Str., 08-110, Siedlce, Poland.
| | - Małgorzata Piechota
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Bolesława Prusa Str., 08-110, Siedlce, Poland
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233, Gdańsk, Poland
| | - Joanna Mitrus
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Bolesława Prusa Str., 08-110, Siedlce, Poland
| | - Jolanta Wicha
- Medical Microbiological Laboratory, Our Lady of Perpetual Help Hospital, 1/3 Gdyńska Str., 05-200, Wołomin, Poland
| | - Agata Grużewska
- Institute of Agriculture and Horticulture, Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, 12 Bolesława Prusa Str., 08-110, Siedlce, Poland
| | - Małgorzata Witeska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| |
Collapse
|
7
|
Tang L, Wang H, Cao K, Li Y, Li T, Huang Y, Xu Y. Epidemiological Features and Impact of High Glucose Level on Virulence Gene Expression and Serum Resistance of Klebsiella pneumoniae Causing Liver Abscess in Diabetic Patients. Infect Drug Resist 2023; 16:1221-1230. [PMID: 36879852 PMCID: PMC9985391 DOI: 10.2147/idr.s391349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Purpose Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative bacterium that is predominantly associated with liver abscesses in global diabetic patients. High levels of glucose in the surrounding of K. pneumonia increase its pathogenicity including capsular polysaccharide (CPS) and fimbriae. Other important virulent factors include outer membrane protein A (ompA) and regulator mucoid phenotype A (rmpA). The objective of this investigation was to elucidate the effects of high glucose on rmpA and ompA gene expression and serum resistance of K. pneumoniae causing liver abscess. Patients and Methods The clinical history of 57 patients suffering from K. pneumoniae-caused liver abscesses (KLA) was acquired and their clinical and laboratory manifestations in the presence or absence of diabetes were analyzed. The antimicrobial susceptibility, serotypes, and virulence genes were tested. Clinical isolates of 3 serotype-K1 hypervirulent K. pneumoniae (hvKP) were used to detect the effect of exogenous high glucose on rmpA, ompA, and clbB genes expression, and bacterial serum resistance. Results KLA patients with diabetes showed higher C-reactive protein (CRP) compared to non-diabetic KLA patients. Furthermore, the diabetic group showed increased incidences of sepsis and invasive infections, and their length of hospital stay was also prolonged. Pre-incubation of K. pneumoniae in high glucose (0.5%) concentration up-regulated rmpA, ompA, and clbB genes expression. However, cAMP supplementation, which was inhibited by environmental glucose, reversed the increase of rmpA and ompA in a cAMP-dependent manner. Moreover, hvKP strains incubated in high glucose also exhibited enhanced protection from serum killing. Conclusion High glucose levels reflected by poor glycemic control has increased gene expression of rmpA and ompA in hvKP by the cAMP signaling pathway and enhanced its resistance to serum killing, thus providing a new and reasonable explanation for the high incidences of sepsis and invasive infections in KLA patients with diabetes.
Collapse
Affiliation(s)
- Ling Tang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Kangli Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yajuan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Tingting Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ying Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
8
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
9
|
Wang YC, Lu MC, Li YT, Tang HL, Hsiao PY, Chen BH, Teng RH, Chiou CS, Lai YC. Microevolution of CG23-I Hypervirulent Klebsiella pneumoniae during Recurrent Infections in a Single Patient. Microbiol Spectr 2022; 10:e0207722. [PMID: 36129301 PMCID: PMC9602619 DOI: 10.1128/spectrum.02077-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
CG23-I lineage constitutes the majority of hypervirulent Klebsiella pneumoniae. A diabetic patient suffered six episodes of infections caused by CG23-I K. pneumoniae. A total of nine isolates were collected in 2020. We performed whole-genome sequencing to elucidate the within-patient evolution of CG23-I K. pneumoniae. The maximum pairwise difference among the nine longitudinally collected isolates was five single nucleotide polymorphisms. One of the mutations was at the Asp87 position of GyrA. Four indels were identified, including an initiator tRNAfMet duplication, a tRNAArg deletion, a 7-bp insertion, and a 22-bp deletion. All 9 isolates had the genomic features of CG23-I K. pneumoniae, a chromosome-borne ICEKp10, and a large virulence plasmid. The carriage of a complete set of genes for the biosynthesis of colibactin by ICEKp10 gave the nine isolates an ability to cause DNA damage to RAW264.7 cells. Compared with the initial isolate, the last isolate with an additional copy of initiator tRNAfMet grew faster in a nutrient-limiting condition and exhibited enhanced virulence in BALB/c mice. Collectively, we characterized the within-patient microevolution of CG23-I K. pneumoniae through an in-depth comparison of genome sequences. Using the in vitro experiments and mouse models, we also demonstrated that these genomic alterations endowed the isolates with advantages to pass through in vivo selection. IMPORTANCE CG23-I is a significant lineage of hypervirulent Klebsiella pneumoniae. This study characterizes the within-patient microevolution of CG23-I K. pneumoniae. Selective pressures from continuous use of antibiotics favored point mutations contributing to bacterial resistance to antibiotics. The duplication of an initiator tRNAfMet gene helped CG23-I K. pneumoniae proliferate to reach a maximal population size during infections. For longer persistence inside a human host, the large virulence plasmid evolved with more flexible control of replication through duplication of the iteron-1 region. With the genomic alterations, the last isolate had a growth advantage over the initial isolate and exhibited enhanced virulence in BALB/c mice. This study gives us a deeper understanding of the genome evolution during the within-patient pathoadaptation of CG23-I K. pneumoniae.
Collapse
Affiliation(s)
- Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yia-Ting Li
- Division of Respiratory Therapy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Tang
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Yi Hsiao
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Bo-Han Chen
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chien-Shun Chiou
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Chyi Lai
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Chen YC, Chuang CH, Miao ZF, Yip KL, Liu CJ, Li LH, Wu DC, Cheng T, Lin CY, Wang JY. Gut microbiota composition in chemotherapy and targeted therapy of patients with metastatic colorectal cancer. Front Oncol 2022; 12:955313. [PMID: 36212420 PMCID: PMC9539537 DOI: 10.3389/fonc.2022.955313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Studies have reported the effects of the gut microbiota on colorectal cancer (CRC) chemotherapy, but few studies have investigated the association between gut microbiota and targeted therapy. This study investigated the role of the gut microbiota in the treatment outcomes of patients with metastatic CRC (mCRC). We enrolled 110 patients with mCRC and treated them with standard cancer therapy. Stool samples were collected before administering a combination of chemotherapy and targeted therapy. Patients who had a progressive disease (PD) or partial response (PR) for at least 12 cycles of therapy were included in the study. We further divided these patients into anti-epidermal growth factor receptor (cetuximab) and anti-vascular endothelial growth factor (bevacizumab) subgroups. The gut microbiota of the PR group and bevacizumab-PR subgroup exhibited significantly higher α-diversity. The β-diversity of bacterial species significantly differed between the bevacizumab-PR and bevacizumab-PD groups (P = 0.029). Klebsiella quasipneumoniae exhibited the greatest fold change in abundance in the PD group than in the PR group. Lactobacillus and Bifidobacterium species exhibited higher abundance in the PD group. The abundance of Fusobacterium nucleatum was approximately 32 times higher in the PD group than in the PR group. A higher gut microbiota diversity was associated with more favorable treatment outcomes in the patients with mCRC. Bacterial species analysis of stool samples yielded heterogenous results. K. quasipneumoniae exhibited the greatest fold change in abundance among all bacterial species in the PD group. This result warrants further investigation especially in a Taiwanese population.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwan-Ling Yip
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Deng-Chyang Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian−Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
- *Correspondence: Jaw-Yuan Wang, ; ; Chung-Yen Lin,
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
- *Correspondence: Jaw-Yuan Wang, ; ; Chung-Yen Lin,
| |
Collapse
|
11
|
Zhao L, Xia X, Yuan T, Zhu J, Shen Z, Li M. Molecular Epidemiology of Antimicrobial Resistance, Virulence and Capsular Serotypes of Carbapenemase-Carrying Klebsiella pneumoniae in China. Antibiotics (Basel) 2022; 11:antibiotics11081100. [PMID: 36009969 PMCID: PMC9405458 DOI: 10.3390/antibiotics11081100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study analyzed genomic data of 4643 strains of carbapenemase-carrying Klebsiella pneumoniae (KPN) in China by using the Kleborate software package. The data showed rich diversity in carbapenemase-carrying KPN genomes, which contain not only 152 sequence types but also 90 capsular serotypes. In 2013, the transfer of carbapenemase to hypervirulent Klebsiella pneumoniae (HvKP) of KL1 and KL2 occurred, and since 2014, the propagation of carbapenemase into mammals, poultry, and insects has been detected. The ST11 capsular serotype had a reversal of the prevalence of KL47 and KL64 in 2016, with KL64 replacing KL47 as the dominant serotype. Colibactin is a very suitable indicator to differentiate KL1-type HvKP and classic Klebsiella pneumoniae. The most prevalent yersiniabactin of KL1 is ybt1 ICEKp10, and that of ST11 carbapenem-resistant KPN(ST11-CRKP) is ybt9 ICEKp3. The virulence genes of KL1 carbapenem-resistant hypervirulent KPN (KL1-CRHvKP), as well as ST65- and ST86-type KL2-CRHvKP, were not lost after carbapenemase was obtained.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xinxin Xia
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ting Yuan
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Junying Zhu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhen Shen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
12
|
Tutelyan AV, Shlykova DS, Voskanyan SL, Gaponov AM, Pisarev VM. Molecular Epidemiology of Hypervirulent K. pneumoniae and Problems of Health-Care Associated Infections. Bull Exp Biol Med 2022; 172:507-522. [PMID: 35352244 PMCID: PMC8964242 DOI: 10.1007/s10517-022-05424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/25/2022]
Abstract
The review describes virulence factors of hypervirulent K. pneumoniae (hvKp) including genes determining its virulence and discusses their role in the development of health-care associated infections. The contribution of individual virulence factors and their combination to the development of the hypervirulence and the prospects of using these factors as biomarkers and therapeutic targets are described. Virulence factors of hvKp and "classical" K. pneumoniae strains (cKp) with no hypervirulence genes were compared. The mechanisms of biofilm formation by hvKp and high incidence of its antibiotic resistance are of particular importance for in health care institutions. Therefore, the development of methods for hvKp identification allowing early prevention of severe hvKp infection and novel approaches to abrogate its spreading are new challenges for epidemiology, infection diseases, and critical care medicine. New technologies including bacteriological and molecular studies make it possible to develop innovative strategies to diagnose and treat infection caused by hvKp. These include monitoring of both genetic biomarkers of hvKp and resistance plasmid that carry of virulence genes and antibiotic resistance genes, creation of immunological agents for the prevention and therapy of hvKp (vaccines, monoclonal antibodies) as well as personalized hvKp-specific phage therapies and pharmaceuticals enhancing the effect of antibiotics. A variety of approaches can reliably prepare our medicine for a new challenge: spreading of life-threatening health-care associated infections caused by antibiotic-resistant hvKp strains.
Collapse
Affiliation(s)
- A V Tutelyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - D S Shlykova
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Sh L Voskanyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - A M Gaponov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - V M Pisarev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia.
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.
| |
Collapse
|
13
|
Canizalez-Roman A, Reina-Reyes JE, Angulo-Zamudio UA, Geminiano-Martínez EE, Flores-Carrillo AF, García-Matus RR, Valencia-Mijares NM, Leon-Sicairos N, Velazquez-Roman J, Martínez-Villa FA, Tapia-Pastrana G. Prevalence of Cyclomodulin-Positive E. coli and Klebsiella spp. Strains in Mexican Patients with Colon Diseases and Antimicrobial Resistance. Pathogens 2021; 11:pathogens11010014. [PMID: 35055962 PMCID: PMC8779131 DOI: 10.3390/pathogens11010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Colon diseases, such as colorectal cancer (CRC), are multifactor diseases that affect more than one million people per year; recently, the microbiota has been associated with an etiologic factor, specifically bacterial cyclomodulin positivity (CM+). Unfortunately, there are no studies from Mexico that detail the presence of bacterial CM+ in patients with colon diseases. We therefore performed a comprehensive study to investigate the associations and prevalence of cyclomodulin-positive Diarrheagenic E. coli (DEC), non-DEC, and Klebsiella spp. strains isolated from Mexican subjects with colon diseases. In this work, we analyzed 43 biopsies, 87 different bacteria were isolated, and E. coli was the most frequently noted, followed by Klebsiella spp., and Enterococcus spp. E. coli, non-DEC, and EPEC belonging to phylogroup B2 were the most prevalent. More than 80% of E. coli and Klebsiella were CM+. pks, cdt, cnf, and cif were identified. cdt was associated with non-DEC, cif and its combinations with EPEC, as well as cdt and psk with Klebsiella. Lastly, all the CM+ bacteria were resistant to at least one antibiotic (34% were MDR, and 48% XDR). In conclusion, the high prevalence of bacterial CM+ in colon disease patients suggests that these bacteria play an important role in the genesis of these diseases.
Collapse
Affiliation(s)
- Adrian Canizalez-Roman
- Centro de Investigación Aplicada a la Salud Pública (CIASaP), School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80246, Mexico; (A.C.-R.); (U.A.A.-Z.); (N.L.-S.); (J.V.-R.)
- The Women’s Hospital, Secretariat of Health, Culiacan Sinaloa 80127, Mexico
| | - Juan E. Reina-Reyes
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca City 71256, Mexico; (J.E.R.-R.); (E.E.G.-M.); (A.F.F.-C.); (R.R.G.-M.); (N.M.V.-M.)
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca City 68120, Mexico
| | - Uriel A. Angulo-Zamudio
- Centro de Investigación Aplicada a la Salud Pública (CIASaP), School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80246, Mexico; (A.C.-R.); (U.A.A.-Z.); (N.L.-S.); (J.V.-R.)
| | - Eloy E. Geminiano-Martínez
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca City 71256, Mexico; (J.E.R.-R.); (E.E.G.-M.); (A.F.F.-C.); (R.R.G.-M.); (N.M.V.-M.)
| | - Antonio F. Flores-Carrillo
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca City 71256, Mexico; (J.E.R.-R.); (E.E.G.-M.); (A.F.F.-C.); (R.R.G.-M.); (N.M.V.-M.)
| | - Rolando R. García-Matus
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca City 71256, Mexico; (J.E.R.-R.); (E.E.G.-M.); (A.F.F.-C.); (R.R.G.-M.); (N.M.V.-M.)
| | - Norma M. Valencia-Mijares
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca City 71256, Mexico; (J.E.R.-R.); (E.E.G.-M.); (A.F.F.-C.); (R.R.G.-M.); (N.M.V.-M.)
| | - Nidia Leon-Sicairos
- Centro de Investigación Aplicada a la Salud Pública (CIASaP), School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80246, Mexico; (A.C.-R.); (U.A.A.-Z.); (N.L.-S.); (J.V.-R.)
- Pediatric Hospital of Sinaloa, Constitución 530, Jorge Almada, Culiacan Sinaloa 80200, Mexico
| | - Jorge Velazquez-Roman
- Centro de Investigación Aplicada a la Salud Pública (CIASaP), School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80246, Mexico; (A.C.-R.); (U.A.A.-Z.); (N.L.-S.); (J.V.-R.)
| | - Francisco A. Martínez-Villa
- Programa de Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, UAS, Culiacan Sinaloa 80246, Mexico;
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca City 71256, Mexico; (J.E.R.-R.); (E.E.G.-M.); (A.F.F.-C.); (R.R.G.-M.); (N.M.V.-M.)
- Correspondence: ; Tel.: +52-0195150180 (ext. 1230); Fax: +52-0195150152
| |
Collapse
|
14
|
Wami H, Wallenstein A, Sauer D, Stoll M, von Bünau R, Oswald E, Müller R, Dobrindt U. Insights into evolution and coexistence of the colibactin- and yersiniabactin secondary metabolite determinants in enterobacterial populations. Microb Genom 2021; 7. [PMID: 34128785 PMCID: PMC8461471 DOI: 10.1099/mgen.0.000577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial genotoxin colibactin interferes with the eukaryotic cell cycle by causing dsDNA breaks. It has been linked to bacterially induced colorectal cancer in humans. Colibactin is encoded by a 54 kb genomic region in Enterobacteriaceae. The colibactin genes commonly co-occur with the yersiniabactin biosynthetic determinant. Investigating the prevalence and sequence diversity of the colibactin determinant and its linkage to the yersiniabactin operon in prokaryotic genomes, we discovered mainly species-specific lineages of the colibactin determinant and classified three main structural settings of the colibactin–yersiniabactin genomic region in Enterobacteriaceae. The colibactin gene cluster has a similar but not identical evolutionary track to that of the yersiniabactin operon. Both determinants could have been acquired on several occasions and/or exchanged independently between enterobacteria by horizontal gene transfer. Integrative and conjugative elements play(ed) a central role in the evolution and structural diversity of the colibactin–yersiniabactin genomic region. Addition of an activating and regulating module (clbAR) to the biosynthesis and transport module (clbB-S) represents the most recent step in the evolution of the colibactin determinant. In a first attempt to correlate colibactin expression with individual lineages of colibactin determinants and different bacterial genetic backgrounds, we compared colibactin expression of selected enterobacterial isolates in vitro. Colibactin production in the tested Klebsiella species and Citrobacter koseri strains was more homogeneous and generally higher than that in most of the Escherichia coli isolates studied. Our results improve the understanding of the diversity of colibactin determinants and its expression level, and may contribute to risk assessment of colibactin-producing enterobacteria.
Collapse
Affiliation(s)
- Haleluya Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Daniel Sauer
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, Saarbrücken, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, Saarbrücken, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives. J Intern Med 2020; 287:283-300. [PMID: 31677303 PMCID: PMC7057273 DOI: 10.1111/joim.13007] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) has emerged as a concerning global pathogen. hvKp is more virulent than classical K. pneumoniae (cKp) and capable of causing community-acquired infections, often in healthy individuals. hvKp is carried in the gastrointestinal tract, which contributes to its spread in the community and healthcare settings. First recognized in Asia, hvKp arose as a leading cause of pyogenic liver abscesses. In the decades since, hvKp has spread globally and causes a variety of infections. In addition to liver abscesses, hvKp is distinct from cKp in its ability to metastasize to distant sites, including most commonly the eye, lung and central nervous system (CNS). hvKp has also been implicated in primary extrahepatic infections including bacteremia, pneumonia and soft tissue infections. The genetic determinants of hypervirulence are often found on large virulence plasmids as well as chromosomal mobile genetic elements which can be used as biomarkers to distinguish hvKp from cKp clinical isolates. These distinct virulence determinants of hvKp include up to four siderophore systems for iron acquisition, increased capsule production, K1 and K2 capsule types, and the colibactin toxin. Additionally, hvKp strains demonstrate hypermucoviscosity, a phenotypic description of hvKp in laboratory conditions that has become a distinguishing feature of many hypervirulent isolates. Alarmingly, multidrug-resistant hypervirulent strains have emerged, creating a new challenge in combating this already dangerous pathogen.
Collapse
Affiliation(s)
- J E Choby
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - J Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - D S Weiss
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Research Service, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
16
|
Abstract
Klebsiella pneumoniae is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. The species is naturally resistant to penicillins, and members of the population often carry acquired resistance to multiple antimicrobials. However, knowledge of K. pneumoniae ecology, population structure or pathogenicity is relatively limited. Over the past decade, K. pneumoniae has emerged as a major clinical and public health threat owing to increasing prevalence of healthcare-associated infections caused by multidrug-resistant strains producing extended-spectrum β-lactamases and/or carbapenemases. A parallel phenomenon of severe community-acquired infections caused by 'hypervirulent' K. pneumoniae has also emerged, associated with strains expressing acquired virulence factors. These distinct clinical concerns have stimulated renewed interest in K. pneumoniae research and particularly the application of genomics. In this Review, we discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance. A deeper understanding of K. pneumoniae population structure and diversity will be important for the proper design and interpretation of experimental studies, for interpreting clinical and public health surveillance data and for the design and implementation of novel control strategies against this important pathogen.
Collapse
|
17
|
Wyres KL, Nguyen TNT, Lam MMC, Judd LM, van Vinh Chau N, Dance DAB, Ip M, Karkey A, Ling CL, Miliya T, Newton PN, Lan NPH, Sengduangphachanh A, Turner P, Veeraraghavan B, Vinh PV, Vongsouvath M, Thomson NR, Baker S, Holt KE. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med 2020; 12:11. [PMID: 31948471 DOI: 10.1101/557785v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a leading cause of bloodstream infection (BSI). Strains producing extended-spectrum beta-lactamases (ESBLs) or carbapenemases are considered global priority pathogens for which new treatment and prevention strategies are urgently required, due to severely limited therapeutic options. South and Southeast Asia are major hubs for antimicrobial-resistant (AMR) K. pneumoniae and also for the characteristically antimicrobial-sensitive, community-acquired "hypervirulent" strains. The emergence of hypervirulent AMR strains and lack of data on exopolysaccharide diversity pose a challenge for K. pneumoniae BSI control strategies worldwide. METHODS We conducted a retrospective genomic epidemiology study of 365 BSI K. pneumoniae from seven major healthcare facilities across South and Southeast Asia, extracting clinically relevant information (AMR, virulence, K and O antigen loci) using Kleborate, a K. pneumoniae-specific genomic typing tool. RESULTS K. pneumoniae BSI isolates were highly diverse, comprising 120 multi-locus sequence types (STs) and 63 K-loci. ESBL and carbapenemase gene frequencies were 47% and 17%, respectively. The aerobactin synthesis locus (iuc), associated with hypervirulence, was detected in 28% of isolates. Importantly, 7% of isolates harboured iuc plus ESBL and/or carbapenemase genes. The latter represent genotypic AMR-virulence convergence, which is generally considered a rare phenomenon but was particularly common among South Asian BSI (17%). Of greatest concern, we identified seven novel plasmids carrying both iuc and AMR genes, raising the prospect of co-transfer of these phenotypes among K. pneumoniae. CONCLUSIONS K. pneumoniae BSI in South and Southeast Asia are caused by different STs from those predominating in other regions, and with higher frequency of acquired virulence determinants. K. pneumoniae carrying both iuc and AMR genes were also detected at higher rates than have been reported elsewhere. The study demonstrates how genomics-based surveillance-reporting full molecular profiles including STs, AMR, virulence and serotype locus information-can help standardise comparisons between sites and identify regional differences in pathogen populations.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - To N T Nguyen
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | | | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Abhilasha Karkey
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Patan Academy of Health Sciences, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Clare L Ling
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Amphone Sengduangphachanh
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Phat Voong Vinh
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
18
|
Wyres KL, Nguyen TNT, Lam MMC, Judd LM, van Vinh Chau N, Dance DAB, Ip M, Karkey A, Ling CL, Miliya T, Newton PN, Lan NPH, Sengduangphachanh A, Turner P, Veeraraghavan B, Vinh PV, Vongsouvath M, Thomson NR, Baker S, Holt KE. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med 2020; 12:11. [PMID: 31948471 PMCID: PMC6966826 DOI: 10.1186/s13073-019-0706-y] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a leading cause of bloodstream infection (BSI). Strains producing extended-spectrum beta-lactamases (ESBLs) or carbapenemases are considered global priority pathogens for which new treatment and prevention strategies are urgently required, due to severely limited therapeutic options. South and Southeast Asia are major hubs for antimicrobial-resistant (AMR) K. pneumoniae and also for the characteristically antimicrobial-sensitive, community-acquired "hypervirulent" strains. The emergence of hypervirulent AMR strains and lack of data on exopolysaccharide diversity pose a challenge for K. pneumoniae BSI control strategies worldwide. METHODS We conducted a retrospective genomic epidemiology study of 365 BSI K. pneumoniae from seven major healthcare facilities across South and Southeast Asia, extracting clinically relevant information (AMR, virulence, K and O antigen loci) using Kleborate, a K. pneumoniae-specific genomic typing tool. RESULTS K. pneumoniae BSI isolates were highly diverse, comprising 120 multi-locus sequence types (STs) and 63 K-loci. ESBL and carbapenemase gene frequencies were 47% and 17%, respectively. The aerobactin synthesis locus (iuc), associated with hypervirulence, was detected in 28% of isolates. Importantly, 7% of isolates harboured iuc plus ESBL and/or carbapenemase genes. The latter represent genotypic AMR-virulence convergence, which is generally considered a rare phenomenon but was particularly common among South Asian BSI (17%). Of greatest concern, we identified seven novel plasmids carrying both iuc and AMR genes, raising the prospect of co-transfer of these phenotypes among K. pneumoniae. CONCLUSIONS K. pneumoniae BSI in South and Southeast Asia are caused by different STs from those predominating in other regions, and with higher frequency of acquired virulence determinants. K. pneumoniae carrying both iuc and AMR genes were also detected at higher rates than have been reported elsewhere. The study demonstrates how genomics-based surveillance-reporting full molecular profiles including STs, AMR, virulence and serotype locus information-can help standardise comparisons between sites and identify regional differences in pathogen populations.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - To N T Nguyen
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | | | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Abhilasha Karkey
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Patan Academy of Health Sciences, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Clare L Ling
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Amphone Sengduangphachanh
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Phat Voong Vinh
- Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
19
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
20
|
Zhao Y, Zhang X, Torres VVL, Liu H, Rocker A, Zhang Y, Wang J, Chen L, Bi W, Lin J, Strugnell RA, Zhang S, Lithgow T, Zhou T, Cao J. An Outbreak of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Wenzhou, China. Front Public Health 2019; 7:229. [PMID: 31552210 PMCID: PMC6736603 DOI: 10.3389/fpubh.2019.00229] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Carbapenem-resistant, hypervirulent Klebsiella pneumoniae (CR-hvKP) has recently emerged as a significant threat to public health. In this study, 29 K. pneumoniae isolates were isolated from eight patients admitted to the intensive care unit (ICU) of a comprehensive teaching hospital located in China from March 2017 to January 2018. Clinical information of patients was the basis for the further analyses of the isolates including antimicrobial susceptibility tests, identification of antibiotic resistance and virulence gene determinants, multilocus sequence typing (MLST), XbaI-macrorestriction by pulsed-field gel electrophoresis (PFGE). Selected isolates representing distinct resistance profiles and virulence phenotypes were screened for hypervirulence in a Galleria mellonella larvae infection model. In the course of the outbreak, the overall mortality rate of patients was 100% (n = 8) attributed to complications arising from CR-hvKP infections. All isolates except one (28/29, 96.6%) were resistant to multiple antimicrobial agents, and harbored diverse resistance determinants that included the globally prevalent carbapenemase blaKPC−2. Most isolates had hypervirulent genotypes being positive for 19 virulence-associated genes, including iutA (25/29, 86.2%), rmpA (27/29, 93.1%), ybtA (27/29, 93.1%), entB (29/29, 100%), fimH (29/29, 100%), and mrkD (29/29, 100%). MLST revealed ST11 for the majority of isolates (26/29, 89,7%). Infection assays demonstrated high mortality in the Galleria mellonella model with the highest LD50 values for three isolates (<105 CFU/mL) demonstrating the degree of hypervirulence of these CR-hvKP isolates, and is discussed relative to previous outbreaks of CR-hvKP.
Collapse
Affiliation(s)
- Yajie Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Von Vergel L Torres
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Haiyang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andrea Rocker
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiawei Wang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzi Bi
- School of Medicine, The Fourth Affiliated Hospital of Zhejiang University, Jinhua, China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Siqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Lai YC, Lu MC, Hsueh PR. Hypervirulence and carbapenem resistance: two distinct evolutionary directions that led high-risk Klebsiella pneumoniae clones to epidemic success. Expert Rev Mol Diagn 2019; 19:825-837. [PMID: 31343934 DOI: 10.1080/14737159.2019.1649145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Over the past few decades, Klebsiella pneumoniae has become a significant threat to public health and is now listed as an ESKAPE pathogen. Evolving with versatile capabilities, K. pneumoniae is a population composed of genetically and phenotypically diverse bacteria. However, epidemic K. pneumoniae are restricted to specific clonal lineages. The clonal group CG23 comprises hypervirulent K. pneumoniae displaying limited resistance to antimicrobials and is frequently associated with the community-acquired invasive syndrome. On the other hand, CG258 is another clonal group of K. pneumoniae that has evolved resistance to carbapenems, primarily by acquiring the carbapenemase-encoding genes through nosocomial carriage. Areas covered: With a focus on the high-risk K. pneumoniae clonal lineages CG23 and CG258, we review recent advances including the newly discovered lineage-specific genomic features, and the molecular basis of K. pneumoniae-associated epidemiology, antimicrobial resistance, and hypervirulence. Expert opinion: Both CG23 and CG258 can establish reservoirs in susceptible individuals. Empirical antimicrobial regimens that are prescribed for immediate treatments frequently create selective pressures that favor the high-risk lineages to develop into prominent colonizers. This dilemma reinforces the need for effective therapies that require rapid and accurate diagnosis of epidemic K. pneumoniae.
Collapse
Affiliation(s)
- Yi-Chyi Lai
- Department of Internal Medicine, Chung Shan Medical University Hospital , Taichung , Taiwan.,Department of Microbiology and Immunology, Chung Shan Medical University , Taichung , Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University , Taichung , Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital , Taichung , Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei , Taiwan.,Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
22
|
Discovery of anti-mucoviscous activity of rifampicin and its potential as a candidate antivirulence agent against hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2019; 54:167-175. [DOI: 10.1016/j.ijantimicag.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/13/2019] [Accepted: 05/25/2019] [Indexed: 11/21/2022]
|
23
|
Abstract
Hypervirulent K. pneumoniae (hvKp) is an evolving pathotype that is more virulent than classical K. pneumoniae (cKp). hvKp usually infects individuals from the community, who are often healthy. Infections are more common in the Asian Pacific Rim but are occurring globally. hvKp infection frequently presents at multiple sites or subsequently metastatically spreads, often requiring source control. hvKp has an increased ability to cause central nervous system infection and endophthalmitis, which require rapid recognition and site-specific treatment. The genetic factors that confer hvKp's hypervirulent phenotype are present on a large virulence plasmid and perhaps integrative conjugal elements. Increased capsule production and aerobactin production are established hvKp-specific virulence factors. Similar to cKp, hvKp strains are becoming increasingly resistant to antimicrobials via acquisition of mobile elements carrying resistance determinants, and new hvKp strains emerge when extensively drug-resistant cKp strains acquire hvKp-specific virulence determinants, resulting in nosocomial infection. Presently, clinical laboratories are unable to differentiate cKp from hvKp, but recently, several biomarkers and quantitative siderophore production have been shown to accurately predict hvKp strains, which could lead to the development of a diagnostic test for use by clinical laboratories for optimal patient care and for use in epidemiologic surveillance and research studies.
Collapse
Affiliation(s)
- Thomas A Russo
- Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo-State University of New York, Buffalo, New York, USA
- The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, New York, USA
- The Veterans Administration Western New York Healthcare System, Buffalo, New York, USA
| | - Candace M Marr
- Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA
- Erie County Medical Center, Buffalo, New York, USA
| |
Collapse
|
24
|
Andrade JCBN, Gatto M, Rodrigues DR, Soares ÂMVDC, Calvi SA. Cryptococcus neoformans and gattii promote DNA damage in human peripheral blood mononuclear cells. Med Mycol 2019. [PMID: 28633410 DOI: 10.1093/mmy/myx046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis, a systemic mycosis capable of disseminating to the central nervous system with frequent lethal effects, is caused by the species Cryptococus neoformans and Cryptococcus gattii. Several infectious agents such as virus, bacteria, and parasites may be associated to DNA damage and carcinogenesis in humans. Products of the oxidative metabolism, such as NO, produced as a host defense mechanism to destroy these pathogens, have been implicated in this damage process, due to excessive production related to an established chronic inflammatory response. Here, we investigated whether C. neoformans and /or C. gattii can cause DNA damage in human peripheral blood mononuclear cells (PBMCs) and whether this process is related to NO levels produced by PBMCs. We found that both species are equally able to induce genotoxicity in PBMCs. However, an association between DNA damage and high NO levels was only detected in relation to C. gattii. The results point to the possibility that patients with cryptococcosis are more susceptible to the development of other diseases.
Collapse
Affiliation(s)
| | - Mariana Gatto
- Botucatu School of Medicine - UNESP, Campus Botucatu, Tropical Diseases Department, São Paulo, Brazil
| | - Daniela Ramos Rodrigues
- Biosciences Institute - UNESP, Campus Botucatu, Microbiology and Immunology Department, São Paulo, Brazil
| | | | - Sueli Aparecida Calvi
- Botucatu School of Medicine - UNESP, Campus Botucatu, Tropical Diseases Department, São Paulo, Brazil
| |
Collapse
|
25
|
Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A, Gorrie CL, Lam MMC, Duchêne S, Jenney A, Holt KE. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet 2019; 15:e1008114. [PMID: 30986243 PMCID: PMC6483277 DOI: 10.1371/journal.pgen.1008114] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/25/2019] [Accepted: 03/29/2019] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae has emerged as an important cause of two distinct public health threats: multi-drug resistant (MDR) healthcare-associated infections and drug susceptible community-acquired invasive infections. These pathotypes are generally associated with two distinct subsets of K. pneumoniae lineages or 'clones' that are distinguished by the presence of acquired resistance genes and several key virulence loci. Genomic evolutionary analyses of the most notorious MDR and invasive community-associated ('hypervirulent') clones indicate differences in terms of chromosomal recombination dynamics and capsule polysaccharide diversity, but it remains unclear if these differences represent generalised trends. Here we leverage a collection of >2200 K. pneumoniae genomes to identify 28 common clones (n ≥ 10 genomes each), and perform the first genomic evolutionary comparison. Eight MDR and 6 hypervirulent clones were identified on the basis of acquired resistance and virulence gene prevalence. Chromosomal recombination, surface polysaccharide locus diversity, pan-genome, plasmid and phage dynamics were characterised and compared. The data showed that MDR clones were highly diverse, with frequent chromosomal recombination generating extensive surface polysaccharide locus diversity. Additional pan-genome diversity was driven by frequent acquisition/loss of both plasmids and phage. In contrast, chromosomal recombination was rare in the hypervirulent clones, which also showed a significant reduction in pan-genome diversity, largely driven by a reduction in plasmid diversity. Hence the data indicate that hypervirulent clones may be subject to some sort of constraint for horizontal gene transfer that does not apply to the MDR clones. Our findings are relevant for understanding the risk of emergence of individual K. pneumoniae strains carrying both virulence and acquired resistance genes, which have been increasingly reported and cause highly virulent infections that are extremely difficult to treat. Specifically, our data indicate that MDR clones pose the greatest risk, because they are more likely to acquire virulence genes than hypervirulent clones are to acquire resistance genes.
Collapse
Affiliation(s)
- Kelly L. Wyres
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ryan R. Wick
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Roni Froumine
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Alex Tokolyi
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Claire L. Gorrie
- Department of Infectious Diseases and Microbiology Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Margaret M. C. Lam
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Adam Jenney
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
26
|
Pope JL, Yang Y, Newsome RC, Sun W, Sun X, Ukhanova M, Neu J, Issa JP, Mai V, Jobin C. Microbial Colonization Coordinates the Pathogenesis of a Klebsiella pneumoniae Infant Isolate. Sci Rep 2019; 9:3380. [PMID: 30833613 PMCID: PMC6399262 DOI: 10.1038/s41598-019-39887-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Enterobacteriaceae are among the first colonizers of neonate intestine. Members of this family, such as Escherichia and Klebsiella, are considered pathobionts and as such are capable of inducing local and systemic disease under specific colonization circumstances. Interplay between developing microbiota and pathogenic function of pathobionts are poorly understood. In this study, we investigate the functional interaction between various colonization patterns on an early colonizer, K. pneumoniae. K. pneumoniae 51-5 was isolated from stool of a healthy, premature infant, and found to contain the genotoxin island pks associated with development of colorectal cancer. Using intestinal epithelial cells, macrophages, and primary splenocytes, we demonstrate K. pneumoniae 51-5 upregulates expression of proinflammatory genes in vitro. Gnotobiotic experiments in Il10-/- mice demonstrate the neonate isolate induces intestinal inflammation in vivo, with increased expression of proinflammatory genes. Regulation of microbiota assembly revealed K. pneumoniae 51-5 accelerates onset of inflammation in Il10-/- mice, most significantly when microbiota is naturally acquired. Furthermore, K. pneumoniae 51-5 induces DNA damage and cell cycle arrest. Interestingly, K. pneumoniae 51-5 induced tumors in ApcMin/+; Il10-/- mice was not significantly affected by absence of colibactin activating enzyme, ClbP. These findings demonstrate pathogenicity of infant K. pneumoniae isolate is sensitive to microbial colonization status.
Collapse
Affiliation(s)
- Jillian L Pope
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel C Newsome
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiaolun Sun
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Poultry Science, University of Arkanasas, Fayetteville, Arkansas, USA
| | - Maria Ukhanova
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Josef Neu
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Volker Mai
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA.
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
27
|
Lan Y, Zhou M, Jian Z, Yan Q, Wang S, Liu W. Prevalence of pks gene cluster and characteristics of Klebsiella pneumoniae-induced bloodstream infections. J Clin Lab Anal 2019; 33:e22838. [PMID: 30737883 PMCID: PMC6528554 DOI: 10.1002/jcla.22838] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The emerging pks-positive (pks+ ) strains have aroused great public concern recently. Colibactin, encoded by pks gene cluster, has been reported to be involved in DNA damage and increased virulence. Little is known about its prevalence among Klebsiella pneumoniae-induced bloodstream infections (BSIs). Therefore, the aim of this study was to investigate the prevalence of pks gene cluster, and molecular and clinical characteristics of K pneumoniae-induced BSIs. METHODS A total of 190 non-duplicate K pneumoniae bloodstream isolates were collected at a university hospital in China from March 2016 to March 2018. Molecular characteristics including capsular types, virulence, and pks genes were detected by polymerase chain reaction (PCR). Clinical characteristics and antimicrobial susceptibility were also investigated. RESULTS Overall, 21.6% (41/190) of K pneumoniae bloodstream isolates were hypervirulent K pneumoniae(hvKP). The prevalence of pks gene cluster was 26.8% (51/190). The positive rates of K1, K57, and genes associated with hypervirulence, that is, rmpA, wcaG, mrkD, allS, ybtS, kfu,and iucA, were significantly higher in the pks+ isolates than the pks-negative (pks- ) isolates (P < 0.05), while the pks+ isolates were significantly less resistant to 11 antimicrobial agents than the pks- isolates. Multivariate analysis showed diabetes mellitus, and K1 and K20 capsular types as independent risk factors for pks+ K pneumoniaebloodstream infections. CONCLUSIONS The pks+ K pneumoniae was prevalent in individuals with bloodstream infections in mainland China. The high rates of hypervirulent determinants among pks+ K pneumoniaerevealed the potential pathogenicity of this emerging gene cluster. Diabetes mellitus, and K1 and K20 capsular types were identified as independent risk factors associated with pks+ K pneumoniaebloodstream infections. This study highlights the significance of clinical awareness and epidemic surveillance of pks+ strains.
Collapse
Affiliation(s)
- You Lan
- Department of Clinical Laboratory, Xiangya Hospital Central South University, Changsha, China
| | - Mao Zhou
- Department of Clinical Laboratory, Xiangya Hospital Central South University, Changsha, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital Central South University, Changsha, China
| | - Siyi Wang
- Department of Clinical Laboratory, Xiangya Hospital Central South University, Changsha, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
28
|
Khaertynov KS, Anokhin VA, Rizvanov AA, Davidyuk YN, Semyenova DR, Lubin SA, Skvortsova NN. Virulence Factors and Antibiotic Resistance of Klebsiella pneumoniae Strains Isolated From Neonates With Sepsis. Front Med (Lausanne) 2018; 5:225. [PMID: 30155466 PMCID: PMC6102385 DOI: 10.3389/fmed.2018.00225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/24/2018] [Indexed: 01/02/2023] Open
Abstract
Introduction:Klebsiella pneumoniae is one of the most important infectious agents in neonates. There are “classic” and hypervirulent strains of K. pneumoniae. The “classic” non-virulent strain of K. pneumoniae, producing extended-spectrum beta-lactamases (ESBLs), is associated with nosocomial infections. Hypervirulent K. pneumoniae strains are associated with invasive infections in previously healthy adult people, and most of them exhibit antimicrobial susceptibility. The role of virulent strains of K. pneumoniae (including hv-KP) in neonatal infections is unknown. The aim of the study was the assessment of the impact of virulence factors and antibiotic resistance of K. pneumoniae strains on clinical features and outcomes of neonatal infection. Materials and Methods: Two groups of infants were enrolled. The first group consisted of 10 neonates with sepsis caused by K. pneumoniae. The second group consisted of 10 neonates with urinary tract infection (UTI) caused by K. pneumoniae. We investigated the susceptibility of K. pneumoniae isolates to antibiotics, the ability of the microorganism to produce ESBL, and virulence factors, including the rmpA gene, aerobactin, and colibactin genes. In neonates with sepsis, we investigated K. pneumoniae isolates, which was taken from the blood, in neonates with UTI—from the urine. Results: In neonates with sepsis testing of K. pneumoniae isolates for ESBL production was positive in 60% of cases, in neonates with UTI—in 40% of cases. All blood and urine ESBL producing K. pneumoniae isolates were resistant to ampicillins, including protected ones, and third-generation cephalosporins. At the same time, these isolates were sensitive to meropenem, amikacin, and ciprofloxacin. The rmpA gene was detected in four blood, and three urine K. pneumoniae isolates. In neonates with sepsis rmpA gene in two cases was detected in ESBL-producing K. pneumoniae isolates. They were infants with meningitis, and both cases were fatal. In the group of infants with UTI, the rmpA gene was detected only in K. pneumoniae isolates not producing ESBL. Aerobactin and colibactin genes were detected in two neonates with sepsis and in three neonates with UTI. In all cases, aerobactin and colibactin genes were detected only in rmpA-positive K. pneumoniae isolates. Out of three fatal outcomes, two cases were caused by hv-KP producing ESBL. Conclusion: The prevalence of virulent strains of K. pneumoniae among neonates with sepsis and other neonatal infection is higher than we think. The most severe forms of neonatal sepsis with an unfavorable outcome in our study were due to virulent strains of K. pneumoniae.
Collapse
Affiliation(s)
- Khalit S Khaertynov
- Department of Children Infectious Diseases, Kazan State Medical University, Kazan, Russia
| | - Vladimir A Anokhin
- Department of Children Infectious Diseases, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yuriy N Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dina R Semyenova
- Department of Children Infectious Diseases, Kazan State Medical University, Kazan, Russia
| | - Sergey A Lubin
- The Neonatal Intensive Care Unit, City Children's Clinical Hospital N1, Kazan, Russia
| | | |
Collapse
|
29
|
Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan YH, Hoh CH, Archuleta S, Molton JS, Kalimuddin S, Koh TH, Passet V, Brisse S, Holt KE. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun 2018; 9:2703. [PMID: 30006589 PMCID: PMC6045662 DOI: 10.1038/s41467-018-05114-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/31/2018] [Indexed: 01/14/2023] Open
Abstract
Severe liver abscess infections caused by hypervirulent clonal-group CG23 Klebsiella pneumoniae have been increasingly reported since the mid-1980s. Strains typically possess several virulence factors including an integrative, conjugative element ICEKp encoding the siderophore yersiniabactin and genotoxin colibactin. Here we investigate CG23's evolutionary history, showing several deep-branching sublineages associated with distinct ICEKp acquisitions. Over 80% of liver abscess isolates belong to sublineage CG23-I, which emerged in ~1928 following acquisition of ICEKp10 (encoding yersiniabactin and colibactin), and then disseminated globally within the human population. CG23-I's distinguishing feature is the colibactin synthesis locus, which reportedly promotes gut colonisation and metastatic infection in murine models. These data show circulation of CG23 K. pneumoniae decades before the liver abscess epidemic was first recognised, and provide a framework for future epidemiological and experimental studies of hypervirulent K. pneumoniae. To support such studies we present an open access, completely sequenced CG23-I human liver abscess isolate, SGH10.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kelly L Wyres
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sebastian Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ryan R Wick
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Louise M Judd
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Chu-Han Hoh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Sophia Archuleta
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - James S Molton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, 169608, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Virginie Passet
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, 75015, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, 75015, Paris, France
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
- The London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
30
|
Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, Brisse S, Holt KE. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 2018; 4. [PMID: 29985125 PMCID: PMC6202445 DOI: 10.1099/mgen.0.000196] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements (MGEs) that frequently transfer within and between bacterial species play a critical role in bacterial evolution, and often carry key accessory genes that associate with a bacteria’s ability to cause disease. MGEs carrying antimicrobial resistance (AMR) and/or virulence determinants are common in the opportunistic pathogen Klebsiella pneumoniae, which is a leading cause of highly drug-resistant infections in hospitals. Well-characterised virulence determinants in K. pneumoniae include the polyketide synthesis loci ybt and clb (also known as pks), encoding the iron-scavenging siderophore yersiniabactin and genotoxin colibactin, respectively. These loci are located within an MGE called ICEKp, which is the most common virulence-associated MGE of K. pneumoniae, providing a mechanism for these virulence factors to spread within the population. Here we apply population genomics to investigate the prevalence, evolution and mobility of ybt and clb in K. pneumoniae populations through comparative analysis of 2498 whole-genome sequences. The ybt locus was detected in 40 % of K. pneumoniae genomes, particularly amongst those associated with invasive infections. We identified 17 distinct ybt lineages and 3 clb lineages, each associated with one of 14 different structural variants of ICEKp. Comparison with the wider population of the family Enterobacteriaceae revealed occasional ICEKp acquisition by other members. The clb locus was present in 14 % of all K. pneumoniae and 38.4 % of ybt+ genomes. Hundreds of independent ICEKp integration events were detected affecting hundreds of phylogenetically distinct K. pneumoniae lineages, including at least 19 in the globally-disseminated carbapenem-resistant clone CG258. A novel plasmid-encoded form of ybt was also identified, representing a new mechanism for ybt dispersal in K. pneumoniae populations. These data indicate that MGEs carrying ybt and clb circulate freely in the K. pneumoniae population, including among multidrug-resistant strains, and should be considered a target for genomic surveillance along with AMR determinants.
Collapse
Affiliation(s)
- Margaret M C Lam
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Ryan R Wick
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L Wyres
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Claire L Gorrie
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M Judd
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Adam W J Jenney
- 2Department Infectious Diseases and Microbiology Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Sylvain Brisse
- 3Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Kathryn E Holt
- 4London School of Hygiene and Tropical Medicine, London, UK.,1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Druzhinin VG, Matskova LV, Fucic A. Induction and modulation of genotoxicity by the bacteriome in mammals. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:70-77. [PMID: 29807578 DOI: 10.1016/j.mrrev.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
The living environment is a multilevel physical and chemical xenobiotic complex with potentially mutagenic effects and health risks. In addition to inorganic exposures, all terrestrial and aquatic living forms interact with microbiota as selectively established communities of bacteria, viruses and fungi. Along these lines, the human organism should then be considered a "meta-organism" with complex dynamics of interaction between the environment and microbiome. Bacterial communities within the microbiome, bacteriome, by its mass, symbiotic or competitive position and composition are in a fragile balance with the host organisms and have a crucial impact on their homeostasis. Bacteriome taxonomic composition is modulated by age, sex and host genetic profile and may be changed by adverse environmental exposures and life style factors such as diet or drug intake. A changed and/or misbalanced bacteriome has genotoxic potential with significant impact on the pathogenesis of acute, chronic and neoplastic diseases in the host organism. Bacteria may produce genotoxins, express a variety of pathways in which they generate free radicals or affect DNA repair causing genome damage, cell cycle arrest and apoptosis, modulate immune response and launch carcinogenesis in the host organism. Future investigations should focus on the interplay between exposure to xenobiotics and bacteriome composition, immunomodulation caused by misbalanced bacteriome, impact of the environment on bacteriome composition in children and its lifelong effect on health risks.
Collapse
Affiliation(s)
- V G Druzhinin
- Department of Genetics, Kemerovo State University, Kemerovo. Russia; Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - L V Matskova
- Department of Microbiology and Tumor Biology, Karolinska Institute, Stockholm. Sweden
| | - A Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
32
|
Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: More Than a New Bacterial Toxin. Toxins (Basel) 2018; 10:toxins10040151. [PMID: 29642622 PMCID: PMC5923317 DOI: 10.3390/toxins10040151] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
Cyclomodulins are bacterial toxins that interfere with the eukaryotic cell cycle. A new cyclomodulin called colibactin, which is synthetized by the pks genomic island, was discovered in 2006. Despite many efforts, colibactin has not yet been purified, and its structure remains elusive. Interestingly, the pks island is found in members of the family Enterobacteriaceae (mainly Escherichia coli and Klebsiella pneumoniae) isolated from different origins, including from intestinal microbiota, septicaemia, newborn meningitis, and urinary tract infections. Colibactin-producing bacteria induce chromosomal instability and DNA damage in eukaryotic cells, which leads to senescence of epithelial cells and apoptosis of immune cells. The pks island is mainly observed in B2 phylogroup E. coli strains, which include extra-intestinal pathogenic E. coli strains, and pksE. coli are over-represented in biopsies isolated from colorectal cancer. In addition, pksE. coli bacteria increase the number of tumours in diverse colorectal cancer mouse models. Thus, colibactin could have a major impact on human health. In the present review, we will focus on the biological effects of colibactin, the distribution of the pks island, and summarize what is currently known about its synthesis and its structure.
Collapse
Affiliation(s)
- Tiphanie Faïs
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| | - Richard Bonnet
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Guillaume Dalmasso
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
33
|
Abstract
Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli. Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR), and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2) protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells. Colorectal cancer is the third-most-common cause of cancer death. In addition to known risk factors such as high-fat diets and alcohol consumption, genotoxic intestinal Escherichia coli bacteria producing colibactin are proposed to play a role in colon cancer development. Here, by using transient infections with genotoxic E. coli, we showed that colibactins directly generate DNA cross-links in cellulo. Such lesions are converted into double-strand breaks during the repair response. DNA cross-links, akin to those induced by metabolites of alcohol and high-fat diets and by widely used anticancer drugs, are both severely mutagenic and profoundly cytotoxic lesions. This finding of a direct induction of DNA cross-links by a bacterium should facilitate delineating the role of E. coli in colon cancer and engineering new anticancer agents.
Collapse
|
34
|
Stary L, Mezerova K, Skalicky P, Zboril P, Raclavsky V. Are we any closer to screening for colorectal cancer using microbial markers?A critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:333-338. [DOI: 10.5507/bp.2017.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
|
35
|
Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, Jeong BC, Lee SH. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front Cell Infect Microbiol 2017; 7:483. [PMID: 29209595 PMCID: PMC5702448 DOI: 10.3389/fcimb.2017.00483] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is one of the most clinically relevant species in immunocompromised individuals responsible for community-acquired and nosocomial infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Since the mid-1980s, hypervirulent K. pneumoniae, generally associated with the hypermucoviscosity phenotype, has emerged as a clinically significant pathogen responsible for serious disseminated infections, such as pyogenic liver abscesses, osteomyelitis, and endophthalmitis, in a generally younger and healthier population. Hypervirulent K. pneumoniae infections were primarily found in East Asia and now are increasingly being reported worldwide. Although most hypervirulent K. pneumoniae isolates are antibiotic-susceptible, some isolates with combined virulence and resistance, such as the carbapenem-resistant hypervirulent K. pneumoniae isolates, are increasingly being detected. The combination of multidrug resistance and enhanced virulence has the potential to cause the next clinical crisis. To better understand the basic biology of hypervirulent K. pneumoniae, this review will provide a summarization and discussion focused on epidemiology, hypervirulence-associated factors, and antibiotic resistance mechanisms of such hypervirulent strains. Epidemiological analysis of recent clinical isolates in China warns the global dissemination of hypervirulent K. pneumoniae strains with extensive antibiotic resistance in the near future. Therefore, an immediate response to recognize the global dissemination of this hypervirulent strain with resistance determinants is an urgent priority.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College, Danvers, MA, United States
| | - Chang-Jun Cha
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| |
Collapse
|
36
|
Lu MC, Chen YT, Chiang MK, Wang YC, Hsiao PY, Huang YJ, Lin CT, Cheng CC, Liang CL, Lai YC. Colibactin Contributes to the Hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in Mouse Meningitis Infections. Front Cell Infect Microbiol 2017; 7:103. [PMID: 28409125 PMCID: PMC5374149 DOI: 10.3389/fcimb.2017.00103] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is the most common pathogen of community-acquired meningitis in Taiwan. However, the lack of a physiologically relevant meningitis model for K. pneumoniae has impeded research into its pathogenesis mechanism. Based on the core genome MLST analyses, the hypervirulent K1 K. pneumoniae strains, which are etiologically implicated in adult meningitis, mostly belong to a single clonal complex, CC23. Some K1 CC23 K. pneumoniae strains carry a gene cluster responsible for colibactin production. Colibactin is a small genotoxic molecule biosynthesized by an NRPS-PKS complex, which is encoded by genes located on the pks island. Compared to other hypervirulent K. pneumoniae which primarily infect the liver, the colibactin-producing (pks+) K1 CC23 strains had significant tropism toward the brain of BALB/c mice. We aimed in this study to develop a physiologically relevant meningitis model with the use of pks+ K1 CC23 K. pneumoniae. Acute meningitis was successfully induced in adult BALB/c male mice through orogastric, intranasal, and intravenous inoculation of pks+ K1 CC23 K. pneumoniae. Besides the typical symptoms of bacterial meningitis, severe DNA damages, and caspase 3-independent cell death were elicited by the colibactin-producing K1 CC23 K. pneumoniae strain. The deletion of clbA, which abolished the production of colibactin, substantially hindered K. pneumoniae hypervirulence in the key pathogenic steps toward the development of meningitis. Our findings collectively demonstrated that colibactin was necessary but not sufficient for the meningeal tropism of pks+ K1 CC23 K. pneumoniae, and the mouse model established in this study can be applied to identify other virulence factors participating in the development of this life-threatening disease.
Collapse
Affiliation(s)
- Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University HospitalTaichung, Taiwan.,Department of Microbiology and Immunology, School of Medicine, China Medical UniversityTaichung, Taiwan
| | - Ying-Tsong Chen
- Institute of Molecular and Genomic Medicine, National Health Research InstitutesMiaoli County, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing UniversityTaichung, Taiwan
| | - Ming-Ko Chiang
- Department of Life Science, National Chung Cheng UniversityChia-Yi County, Taiwan
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University HospitalTaichung, Taiwan
| | - Pei-Yi Hsiao
- Department of Microbiology and Immunology, Chung Shan Medical UniversityTaichung, Taiwan
| | - Yi-Jhen Huang
- Institute of Genomics and Bioinformatics, National Chung Hsing UniversityTaichung, Taiwan
| | - Ching-Ting Lin
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
| | - Ching-Chang Cheng
- Laboratory Animal Service Center, China Medical UniversityTaichung, Taiwan
| | - Chih-Lung Liang
- Department of Microbiology and Immunology, Chung Shan Medical UniversityTaichung, Taiwan
| | - Yi-Chyi Lai
- Department of Internal Medicine, Chung Shan Medical University HospitalTaichung, Taiwan.,Department of Microbiology and Immunology, Chung Shan Medical UniversityTaichung, Taiwan
| |
Collapse
|
37
|
Prevalence and characteristics of pks genotoxin gene cluster-positive clinical Klebsiella pneumoniae isolates in Taiwan. Sci Rep 2017; 7:43120. [PMID: 28233784 PMCID: PMC5324043 DOI: 10.1038/srep43120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
The pks gene cluster encodes enzymes responsible for the synthesis of colibactin, a genotoxin that has been shown to induce DNA damage and contribute to increased virulence. The present study investigated the prevalence of pks in clinical K. pneumoniae isolates from a national surveillance program in Taiwan, and identified microbiological and molecular factors associated with pks-carriage. The pks gene cluster was detected in 67 (16.7%) of 400 isolates from various specimen types. Multivariate analysis revealed that isolates of K1, K2, K20, and K62 capsular types (p < 0.001), and those more susceptible to antimicrobial agents (p = 0.001) were independent factors strongly associated with pks-carriage. Phylogenetic studies on the sequence type (ST) and pulsed-field gel electrophoresis patterns indicated that the pks-positive isolates belong to a clonal group of ST23 in K1, a locally expanding ST65 clone in K2, a ST268-related K20 group, and a highly clonal ST36:K62 group. Carriage of rmpA, iutC, and ybtA, the genes associated with hypervirulence, was significantly higher in the pks-positive isolates than the pks-negative isolates (95.5% vs. 13.2%, p < 0.001). Further studies to determine the presence of hypervirulent pks-bearing bacterial populations in the flora of community residents and their association with different disease entities may be warranted.
Collapse
|
38
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
39
|
Marcoleta AE, Berríos-Pastén C, Nuñez G, Monasterio O, Lagos R. Klebsiella pneumoniae Asparagine tDNAs Are Integration Hotspots for Different Genomic Islands Encoding Microcin E492 Production Determinants and Other Putative Virulence Factors Present in Hypervirulent Strains. Front Microbiol 2016; 7:849. [PMID: 27375573 PMCID: PMC4891358 DOI: 10.3389/fmicb.2016.00849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
Due to the developing of multi-resistant and invasive hypervirulent strains, Klebsiella pneumoniae has become one of the most urgent bacterial pathogen threats in the last years. Genomic comparison of a growing number of sequenced isolates has allowed the identification of putative virulence factors, proposed to be acquirable mainly through horizontal gene transfer. In particular, those related with synthesizing the antibacterial peptide microcin E492 (MccE492) and salmochelin siderophores were found to be highly prevalent among hypervirulent strains. The determinants for the production of both molecules were first reported as part of a 13-kbp segment of K. pneumoniae RYC492 chromosome, and were cloned and characterized in E. coli. However, the genomic context of this segment in K. pneumoniae remained uncharacterized. In this work, we provided experimental and bioinformatics evidence indicating that the MccE492 cluster is part of a highly conserved 23-kbp genomic island (GI) named GIE492, that was integrated in a specific asparagine-tRNA gene (asn-tDNA) and was found in a high proportion of isolates from liver abscesses sampled around the world. This element resulted to be unstable and its excision frequency increased after treating bacteria with mitomycin C and upon the overexpression of the island-encoded integrase. Besides the MccE492 genetic cluster, it invariably included an integrase-coding gene, at least seven protein-coding genes of unknown function, and a putative transfer origin that possibly allows this GI to be mobilized through conjugation. In addition, we analyzed the asn-tDNA loci of all the available K. pneumoniae assembled chromosomes to evaluate them as GI-integration sites. Remarkably, 73% of the strains harbored at least one GI integrated in one of the four asn-tDNA present in this species, confirming them as integration hotspots. Each of these tDNAs was occupied with different frequencies, although they were 100% identical. Also, we identified a total of 47 asn-tDNA-associated GIs that were classified into 12 groups of homology differing in theencoded functionalities but sharing with GIE492 a conserved recombination module and potentially its mobility features. Most of these GIs encoded factors with proven or potential role in pathogenesis, constituting a major reservoir of virulence factors in this species.
Collapse
Affiliation(s)
- Andrés E Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Camilo Berríos-Pastén
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Gonzalo Nuñez
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
40
|
Nguen NT, Vafin RR, Rzhanova IV, Kolpakov AI, Gataullin IG, Tyulkin SV, Siniagina MN, Grigoryeva TV, Ilinskaya ON. Molecular-genetic analysis of microorganisms with intraepithelial invasion isolated from patients with colorectal cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.18821/0208-0613-2016-34-1-13-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Bossuet-Greif N, Dubois D, Petit C, Tronnet S, Martin P, Bonnet R, Oswald E, Nougayrède JP. Escherichia coli ClbS is a colibactin resistance protein. Mol Microbiol 2015; 99:897-908. [PMID: 26560421 DOI: 10.1111/mmi.13272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 12/24/2022]
Abstract
The genomic pks island codes for the biosynthetic machinery that produces colibactin, a peptide-polyketide metabolite. Colibactin is a genotoxin that contributes to the virulence of extra-intestinal pathogenic Escherichia coli and promotes colorectal cancer. In this work, we examined whether the pks-encoded clbS gene of unknown function could participate in the self-protection of E. coli-producing colibactin. A clbS mutant was not impaired in the ability to inflict DNA damage in HeLa cells, but the bacteria activated the SOS response and ceased to replicate. This autotoxicity phenotype was markedly enhanced in a clbS uvrB double mutant inactivated for DNA repair by nucleotide excision but was suppressed in a clbS clbA double mutant unable to produce colibactin. In addition, ectopic expression of clbS protected infected HeLa cells from colibactin. Thus, ClbS is a resistance protein blocking the genotoxicity of colibactin both in the procaryotic and the eucaryotic cells.
Collapse
Affiliation(s)
- Nadège Bossuet-Greif
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| | - Damien Dubois
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,CHU Toulouse, Service de bactériologie-Hygiène, Toulouse, France
| | - Claude Petit
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,INP-ENVT ESC, Toulouse, France
| | - Sophie Tronnet
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| | - Patricia Martin
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,CHU Toulouse, Service de bactériologie-Hygiène, Toulouse, France
| | - Richard Bonnet
- Université d'Auvergne, Inserm UMR 1071, INRA USC 2018, Clermont-Ferrand, France
| | - Eric Oswald
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,CHU Toulouse, Service de bactériologie-Hygiène, Toulouse, France
| | - Jean-Philippe Nougayrède
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
42
|
Abstract
Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of small molecules from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota-derived molecules are discovered in the future and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and understanding their biological relevance.
Collapse
Affiliation(s)
- Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Michael A Fischbach
- Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Abstract
UNLABELLED Highly invasive, community-acquired Klebsiella pneumoniae infections have recently emerged, resulting in pyogenic liver abscesses. These infections are caused by hypervirulent K. pneumoniae (hvKP) isolates primarily of capsule serotype K1 or K2. Hypervirulent K1 isolates belong to clonal complex 23 (CC23), indicating that this clonal lineage has a specific genetic background conferring hypervirulence. Here, we apply whole-genome sequencing to a collection of K. pneumoniae isolates to characterize the phylogenetic background of hvKP isolates with an emphasis on CC23. Most of the hvKP isolates belonged to CC23 and grouped into a distinct monophyletic clade, revealing that CC23 is a unique clonal lineage, clearly distinct from nonhypervirulent strains. Separate phylogenetic analyses of the CC23 isolates indicated that the CC23 lineage evolved recently by clonal expansion from a single common ancestor. Limited grouping according to geographical origin was observed, suggesting that CC23 has spread globally through multiple international transmissions. Conversely, hypervirulent K2 strains clustered in genetically unrelated groups. Strikingly, homologues of a large virulence plasmid were detected in all hvKP clonal lineages, indicating a key role in K. pneumoniae hypervirulence. The plasmid encodes two siderophores, aerobactin and salmochelin, and RmpA (regulator of the mucoid phenotype); all these factors were found to be restricted to hvKP isolates. Genomic comparisons revealed additional factors specifically associated with CC23. These included a distinct variant of a genomic island encoding yersiniabactin, colibactin, and microcin E492. Furthermore, additional novel genomic regions unique to CC23 were revealed which may also be involved in the increased virulence of this important clonal lineage. IMPORTANCE During the last 3 decades, hypervirulent Klebsiella pneumoniae (hvKP) isolates have emerged, causing severe community-acquired infections primarily in the form of pyogenic liver abscesses. This syndrome has so far primarily been found in Southeast Asia, but increasing numbers of cases are being reported worldwide, indicating that the syndrome is turning into a globally emerging disease. We applied whole-genome sequencing to a collection of K. pneumoniae clinical isolates to reveal the phylogenetic background of hvKP and to identify genetic factors associated with the increased virulence. The hvKP isolates primarily belonged to clonal complex 23 (CC23), and this clonal lineage was revealed to be clearly distinct from nonhypervirulent strains. A specific virulence plasmid was found to be associated with hypervirulence, and novel genetic determinants uniquely associated with CC23 were identified. Our findings extend the understanding of the genetic background of the emergence of hvKP clones.
Collapse
|
44
|
Lemercier C. When our genome is targeted by pathogenic bacteria. Cell Mol Life Sci 2015; 72:2665-76. [PMID: 25877988 PMCID: PMC11114081 DOI: 10.1007/s00018-015-1900-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic cells repair thousands of lesions arising in the genome at each cell cycle. The most hazardous damage is likely DNA double-strand breaks (DSB) that cleave the double helix backbone. DSBs occur naturally during T cell receptor and immunoglobulin gene recombination in lymphocytes. DSBs can also arise as a consequence of exogenous stresses (e.g., ionizing irradiation, chemotherapeutic drugs, viruses) or oxidative processes. An increasing number of studies have reported that infection with pathogenic bacteria also alters the host genome, producing DSB and other modifications on DNA. This review focuses on recent data on bacteria-induced DNA damage and the known strategies used by these pathogens to maintain a physiological niche in the host. Even after DNA repair in infected cells, "scars" often remain on chromosomes and might generate genomic instability at the next cell division. Chronic inflammation in tissue, combined with infection and DNA damage, can give rise to genomic instability and eventually cancer. A functional link between the DNA damage response and the innate immune response has been recently established. Pathogenic bacteria also highjack the host cell cycle, often acting on the stability of the master regulator p53, or dampen the DNA damage response to support bacterial replication in an appropriate reservoir. Except in a few cases, the molecular mechanisms responsible for DNA lesions are poorly understood, although ROS release during infection is a serious candidate for generating DNA breaks. Thus, chronic or repetitive infections with genotoxic bacteria represent a common source of DNA lesions that compromise host genome integrity.
Collapse
Affiliation(s)
- Claudie Lemercier
- INSERM, UMR_S 1038, BGE (Large Scale Biology), 38054, Grenoble, France,
| |
Collapse
|
45
|
|
46
|
Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc Natl Acad Sci U S A 2014; 111:13181-6. [PMID: 25157164 DOI: 10.1073/pnas.1403274111] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Antibiotic therapy disrupts the human intestinal microbiota. In some patients rapid overgrowth of the enteric bacterium Klebsiella oxytoca results in antibiotic-associated hemorrhagic colitis (AAHC). We isolated and identified a toxin produced by K. oxytoca as the pyrrolobenzodiazepine tilivalline and demonstrated its causative action in the pathogenesis of colitis in an animal model. Tilivalline induced apoptosis in cultured human cells in vitro and disrupted epithelial barrier function, consistent with the mucosal damage associated with colitis observed in human AAHC and the corresponding animal model. Our findings reveal the presence of pyrrolobenzodiazepines in the intestinal microbiota and provide a mechanism for colitis caused by a resident pathobiont. The data link pyrrolobenzodiazepines to human disease and identify tilivalline as a target for diagnosis and neutralizing strategies in prevention and treatment of colitis.
Collapse
|