1
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2024:e202400232. [PMID: 39434498 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Tamil Nadu, Chennai, 600116, India
| | - Natarajan Chandrasekaran
- Senior Professor & Former Director, Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore Campus, Tiruvalam road, Tamil Nadu, Katpadi, Vellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Tamil Nadu, Chennai, 600116, India
| |
Collapse
|
2
|
Takács T, László L, Tilajka Á, Novák J, Buday L, Vas V. Insulin receptor substrate 1 is a novel member of EGFR signaling in pancreatic cells. Eur J Cell Biol 2024; 103:151457. [PMID: 39326351 DOI: 10.1016/j.ejcb.2024.151457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely incurable cancer type characterized by cells with highly proliferative capacity and resistance against the current therapeutic options. Our study reveals that IRS1 acts as a bridging molecule between EGFR and IGFR/InsR signalization providing a potential mechanism for the interplay between signaling pathways and bypassing EGFR-targeted or IGFR/InsR-targeted therapies. The analysis of IRS1 phosphorylation status in four pancreatic cell lines identified the impact of EGFR signaling on IRS1 activation in comparison with InsR/IGFR signaling. Significantly reduced viability was observed in IRS1-silenced cells even upon EGF stimulation showing the critical role of IRS1 in the EGFR signaling network in both malignant and normal pancreatic cells. This study also demonstrated that EGFR binds directly to IRS1 and at least on two tyrosine sites, Y612 and Y896, IRS1 becomes phosphorylated in response to EGF stimulation. Mechanistically, the EGFR-mediated phosphorylation of IRS1 can further activate the MAPK signaling pathway with the recruitment of GRB2 protein. Collectively, in this study, IRS1 was identified as a crucial regulator in the EGFR signaling suggesting IRS1 as a potential target for more durable responses to targeted PDAC therapy.
Collapse
Affiliation(s)
- Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Loretta László
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Álmos Tilajka
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Julianna Novák
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Department of Molecular Biology, Semmelweis University, Budapest 1094, Hungary
| | - Virag Vas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| |
Collapse
|
3
|
Weidle UH, Nopora A. CircRNAs in Pancreatic Cancer: New Tools for Target Identification and Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:327-349. [PMID: 38944427 PMCID: PMC11215428 DOI: 10.21873/cgp.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
Sapoor S, Nageh M, Shalma NM, Sharaf R, Haroun N, Salama E, Pratama Umar T, Sharma S, Sayad R. Bidirectional relationship between pancreatic cancer and diabetes mellitus: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:3522-3529. [PMID: 38846873 PMCID: PMC11152885 DOI: 10.1097/ms9.0000000000002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Pancreatic cancer (PC) is a fatal malignant disease. It is well known that the relationship between PC and type 2 diabetes mellitus (T2DM) is a complicated bidirectional relationship. The most important factors causing increased risks of pancreatic cancer are hyperglycaemia, hyperinsulinemia, pancreatitis, and dyslipidemia. Genetics and the immune system also play an important role in the relationship between diabetes mellitus and pancreatic cancer. The primary contributors to this association involve insulin resistance and inflammatory processes within the tumour microenvironment. The combination of diabetes and obesity can contribute to PC by inducing hyperinsulinemia and influencing leptin and adiponectin levels. Given the heightened incidence of pancreatic cancer in diabetes patients compared to the general population, early screening for pancreatic cancer is recommended. Diabetes negatively impacts the survival of pancreatic cancer patients. Among patients receiving chemotherapy, it reduced their survival. The implementation of a healthy lifestyle, including weight management, serves as an initial preventive measure to mitigate the risk of disease development. The role of anti-diabetic drugs on survival is controversial; however, metformin may have a positive impact, especially in the early stages of cancer, while insulin therapy increases the risk of PC.
Collapse
Affiliation(s)
| | | | | | - Rana Sharaf
- Faculty of Medicine, Alexandria University, Alexandria
| | - Nooran Haroun
- Faculty of Medicine, Alexandria University, Alexandria
| | - Esraa Salama
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Mehmetoglu-Gurbuz T, Lakshmanaswamy R, Perez K, Sandoval M, Jimenez CA, Rocha J, Goldfarb RM, Perry C, Bencomo A, Neela N, Barragan JA, Sanchez R, Swain RM, Subramani R. Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis. Antioxidants (Basel) 2023; 12:1791. [PMID: 37891871 PMCID: PMC10604165 DOI: 10.3390/antiox12101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species are frequently associated with various cancers including pancreatic ductal adenocarcinomas (PDACs). Superoxide dismutase 2 (SOD2) is an enzyme that plays an important role in reactive oxygen species (ROS) signaling. Investigating the molecular function and biological functions of SOD2 can help us develop new therapeutic options and uncover new biomarkers for PDAC diagnosis and prognosis. Here, we show that nimbolide (NB), a triterpene limonoid, effectively blocks the growth and metastasis of PDACs by suppressing the expression and activity of SOD2. To identify the role of SOD2 in NB-induced anticancer activity, we used RNA interference to silence and plasmid transfection to overexpress it. Silencing SOD2 significantly reduced the growth and metastatic characteristics like epithelial-to-mesenchymal transition, invasion, migration, and colony-forming capabilities of PDACs, and NB treatment further reduced these characteristics. Conversely, the overexpression of SOD2 enhanced these metastatic characteristics. ROS signaling has a strong feedback mechanism with the PI3K/Akt signaling pathway, which could be mediated through SOD2. Finally, NB treatment to SOD2-overexpressing PDAC xenografts resulted in significant inhibition of tumor growth and metastasis. Overall, this work suggests that NB, a natural and safe phytochemical that silences SOD2 to induce high levels of ROS generation, results in increased apoptosis and reduced growth and progression of PDACs. The role of SOD2 in regulating NB-induced ROS generation presents itself as a therapeutic option for PDACs.
Collapse
Affiliation(s)
- Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Karla Perez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Mayra Sandoval
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Casandra A. Jimenez
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jackelyn Rocha
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rachel Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Courtney Perry
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Alejandra Bencomo
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Nishkala Neela
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jose A. Barragan
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Raquel Sanchez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Risa Mia Swain
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
6
|
Lin YC, Hou YC, Wang HC, Shan YS. New insights into the role of adipocytes in pancreatic cancer progression: paving the way towards novel therapeutic targets. Theranostics 2023; 13:3925-3942. [PMID: 37554282 PMCID: PMC10405844 DOI: 10.7150/thno.82911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies across the world, which is due to delayed diagnosis and resistance to current therapies. The interactions between pancreatic tumor cells and their tumor microenvironment (TME) allow cancer cells to escape from anti-cancer therapies, leading to difficulties in treating PC. With endocrine function and lipid storage capacity, adipose tissue can maintain energy homeostasis. Direct or indirect interaction between adipocytes and PC cells leads to adipocyte dysfunction characterized by morphological change, fat loss, abnormal adipokine secretion, and fibroblast-like transformation. Various adipokines released from dysfunctional adipocytes have been reported to promote proliferation, invasion, metastasis, stemness, and chemoresistance of PC cells via different mechanisms. Additional lipid outflow from adipocytes can be taken into the TME and thus alter the metabolism in PC cells and surrounding stromal cells. Besides, the trans-differentiation potential enables adipocytes to turn into various cell types, which may give rise to an inflammatory response as well as extracellular matrix reorganization to modulate tumor burden. Understanding the molecular basis behind the protumor functions of adipocytes in PC may offer new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Imaging Center, Innovation Headquarter, National Cheng Kung University; Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
7
|
Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell Death Dis 2022; 13:682. [PMID: 35931675 PMCID: PMC9355957 DOI: 10.1038/s41419-022-05103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan-Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.
Collapse
|
8
|
PTML Modeling for Pancreatic Cancer Research: In Silico Design of Simultaneous Multi-Protein and Multi-Cell Inhibitors. Biomedicines 2022; 10:biomedicines10020491. [PMID: 35203699 PMCID: PMC8962338 DOI: 10.3390/biomedicines10020491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PANC) is a dangerous type of cancer that is a major cause of mortality worldwide and exhibits a remarkably poor prognosis. To date, discovering anti-PANC agents remains a very complex and expensive process. Computational approaches can accelerate the search for anti-PANC agents. We report for the first time two models that combined perturbation theory with machine learning via a multilayer perceptron network (PTML-MLP) to perform the virtual design and prediction of molecules that can simultaneously inhibit multiple PANC cell lines and PANC-related proteins, such as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and the insulin-like growth factor 1 receptor (IGF1R). Both PTML-MLP models exhibited accuracies higher than 78%. Using the interpretation from one of the PTML-MLP models as a guideline, we extracted different molecular fragments desirable for the inhibition of the PANC cell lines and the aforementioned PANC-related proteins and then assembled some of those fragments to form three new molecules. The two PTML-MLP models predicted the designed molecules as potentially versatile anti-PANC agents through inhibition of the three PANC-related proteins and multiple PANC cell lines. Conclusions: This work opens new horizons for the application of the PTML modeling methodology to anticancer research.
Collapse
|
9
|
Stalnecker CA, Grover KR, Edwards AC, Coleman MF, Yang R, DeLiberty JM, Papke B, Goodwin CM, Pierobon M, Petricoin EF, Gautam P, Wennerberg K, Cox AD, Der CJ, Hursting SD, Bryant KL. Concurrent Inhibition of IGF1R and ERK Increases Pancreatic Cancer Sensitivity to Autophagy Inhibitors. Cancer Res 2022; 82:586-598. [PMID: 34921013 PMCID: PMC8886214 DOI: 10.1158/0008-5472.can-21-1443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 01/18/2023]
Abstract
The aggressive nature of pancreatic ductal adenocarcinoma (PDAC) mandates the development of improved therapies. As KRAS mutations are found in 95% of PDAC and are critical for tumor maintenance, one promising strategy involves exploiting KRAS-dependent metabolic perturbations. The macrometabolic process of autophagy is upregulated in KRAS-mutant PDAC, and PDAC growth is reliant on autophagy. However, inhibition of autophagy as monotherapy using the lysosomal inhibitor hydroxychloroquine (HCQ) has shown limited clinical efficacy. To identify strategies that can improve PDAC sensitivity to HCQ, we applied a CRISPR-Cas9 loss-of-function screen and found that a top sensitizer was the receptor tyrosine kinase (RTK) insulin-like growth factor 1 receptor (IGF1R). Additionally, reverse phase protein array pathway activation mapping profiled the signaling pathways altered by chloroquine (CQ) treatment. Activating phosphorylation of RTKs, including IGF1R, was a common compensatory increase in response to CQ. Inhibition of IGF1R increased autophagic flux and sensitivity to CQ-mediated growth suppression both in vitro and in vivo. Cotargeting both IGF1R and pathways that antagonize autophagy, such as ERK-MAPK axis, was strongly synergistic. IGF1R and ERK inhibition converged on suppression of glycolysis, leading to enhanced dependence on autophagy. Accordingly, concurrent inhibition of IGF1R, ERK, and autophagy induced cytotoxicity in PDAC cell lines and decreased viability in human PDAC organoids. In conclusion, targeting IGF1R together with ERK enhances the effectiveness of autophagy inhibitors in PDAC. SIGNIFICANCE Compensatory upregulation of IGF1R and ERK-MAPK signaling limits the efficacy of autophagy inhibitors chloroquine and hydroxychloroquine, and their concurrent inhibition synergistically increases autophagy dependence and chloroquine sensitivity in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kajal R. Grover
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - A. Cole Edwards
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan M. DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Björn Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Prson Gautam
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Bie C, Chen Y, Tang H, Li Q, Zhong L, Peng X, Shi Y, Lin J, Lai J, Wu S, Tang S. Insulin-Like Growth Factor 1 Receptor Drives Hepatocellular Carcinoma Growth and Invasion by Activating Stat3-Midkine-Stat3 Loop. Dig Dis Sci 2022; 67:569-584. [PMID: 33559791 DOI: 10.1007/s10620-021-06862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Activation of the insulin-like growth factor 1 receptor (IGF-1R)-mediated Janus kinase (JAK)1/2-Stat3 pathway contributes to hepatocarcinogenesis. Specifically, a previous study showed that IGF-1R inhibition downregulated Midkine expression in hepatocellular carcinoma (HCC). AIMS The present study investigated the role of IGF-1R-JAK1/2-Stat3 and Midkine signaling in HCC, in addition to the molecular link between the IGF-1R-Stat3 pathway and Midkine. METHODS The expression levels of IGF-1R, Stat3, and Midkine were measured using reverse transcription-quantitative PCR, following which the association of IGF-1R with Stat3 and Midkine expression was evaluated in HCC. The molecular link between the IGF-1R-Stat3 pathway and Midkine was then investigated in vitro before the effect of IGF-1R-Stat3 and Midkine signaling on HCC growth and invasion was studied in vitro and in vivo. RESULTS IGF-1R, Stat3, and Midkine mRNA overexpressions were all found in HCC, where the levels of Stat3 and Midkine mRNA correlated positively with those of IGF-1R. In addition, Midkine mRNA level also correlated positively with Stat3 mRNA expression in HCC tissues. IGF-1R promoted Stat3 activation, which in turn led to the upregulation of Midkine expression in Huh7 cells. Similarly, Midkine also promoted Stat3 activation through potentiating JAK1/2 phosphorylation. Persistent activation of this Stat3-Midkine-Stat3 positive feedback signal loop promoted HCC growth and invasion, the inhibition of which resulted in significant antitumor activities both in vitro and in vivo. CONCLUSIONS Constitutive activation of the IGF-1R-mediated Stat3-Midkine-Stat3 positive feedback loop is present in HCC, the inhibition of which can serve as a potential therapeutic intervention strategy for HCC.
Collapse
Affiliation(s)
- Caiqun Bie
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, 518104, Guangdong, People's Republic of China
| | - Yanfang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Huijun Tang
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, 518104, Guangdong, People's Republic of China
| | - Qing Li
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Lu Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xiaojuan Peng
- Department of Endocrinology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Junqin Lin
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Junlong Lai
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shenglan Wu
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, 518104, Guangdong, People's Republic of China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Popescu VB, Kanhaiya K, Năstac DI, Czeizler E, Petre I. Network controllability solutions for computational drug repurposing using genetic algorithms. Sci Rep 2022; 12:1437. [PMID: 35082323 PMCID: PMC8791995 DOI: 10.1038/s41598-022-05335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximize its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We demonstrate our algorithm on several cancer networks and on several random networks with their edges distributed according to the Erdős-Rényi, the Scale-Free, and the Small World properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches.
Collapse
Affiliation(s)
| | | | - Dumitru Iulian Năstac
- POLITEHNICA University of Bucharest, Faculty of Electronics, Telecommunications and Information Technology, 061071, Bucharest, Romania
| | - Eugen Czeizler
- Computer Science, Åbo Akademi University, 20500, Turku, Finland
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania
| | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, 20014, Turku, Finland.
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania.
| |
Collapse
|
12
|
Xiao Z, Li J, Yu Q, Zhou T, Duan J, Yang Z, Liu C, Xu F. An Inflammatory Response Related Gene Signature Associated with Survival Outcome and Gemcitabine Response in Patients with Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2022; 12:778294. [PMID: 35002712 PMCID: PMC8733666 DOI: 10.3389/fphar.2021.778294] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with an extremely low 5-year survival rate. Accumulating evidence has unveiled that inflammatory response promotes tumor progression, enhances angiogenesis, and causes local immunosuppression. Herein, we aim to develop an inflammatory related prognostic signature, and found it could be used to predict gemcitabine response in PDAC. Methods: PDAC cohorts with mRNA expression profiles and clinical information were systematically collected from the four public databases. An inflammatory response related genes (IRRGs) prognostic signature was constructed by LASSO regression analysis. Kaplan–Meier survival analysis, receiver operating characteristic analysis, principal component analysis, and univariate and multivariate Cox analyses were carried out to evaluate effectiveness, and reliability of the signature. The correlation between gemcitabine response and risk score was evaluated in the TCGA-PAAD cohort. The GDSC database, pRRophetic algorithm, and connectivity map analysis were used to predict gemcitabine sensitivity and identify potential drugs for the treatment of PDAC. Finally, we analyzed differences in frequencies of gene mutations, infiltration of immune cells, as well as biological functions between different subgroups divided by the prognostic signature. Results: We established a seven IRRGs (ADM, DCBLD2, EREG, ITGA5, MIF, TREM1, and BTG2) signature which divided the PDAC patients into low- and high-risk groups. Prognostic value of the signature was validated in 11 PDAC cohorts consisting of 1337 PDAC patients from 6 countries. A nomogram that integrated the IRRGs signature and clinicopathologic factors of PDAC patients was constructed. The risk score showed positive correlation with gemcitabine resistance. Two drugs (BMS-536924 and dasatinib) might have potential therapeutic implications in high-risk PDAC patients. We found that the high-risk group had higher frequencies of KRAS, TP53, and CDKN2A mutations, increased infiltration of macrophages M0, neutrophils, and macrophages M2 cells, as well as upregulated hypoxia and glycolysis pathways, while the low-risk group had increased infiltration of CD8+ T, naïve B, and plasma and macrophages M1 cells. Conclusion: We constructed and validated an IRRGs signature that could be used to predict the prognosis and gemcitabine response of patients with PDAC, as well as two drugs (BMS-536924 and dasatinib) may contribute to PDAC treatment.
Collapse
Affiliation(s)
- Zhijun Xiao
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jinyin Li
- Department of Pharmacy, Xuhui Central Hospital of Shanghai, Shanghai, China
| | - Qian Yu
- Division of Interventional Radiology, University of Chicago, Chicago, IL, United States
| | - Ting Zhou
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jingjing Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Zhen Yang
- Department of Central Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Cuicui Liu
- Department of Clinical Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Feng Xu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.,Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| |
Collapse
|
13
|
Saisana M, Griffin SM, May FEB. Insulin and the insulin receptor collaborate to promote human gastric cancer. Gastric Cancer 2022; 25:107-123. [PMID: 34554347 PMCID: PMC8732810 DOI: 10.1007/s10120-021-01236-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric adenocarcinoma is common and consequent mortality high. Presentation and mortality are increased in obese individuals, many of whom have elevated circulating insulin concentrations. High plasma insulin concentrations may promote, and increase mortality from, gastric adenocarcinoma. Tumour promotion activities of insulin and its receptor are untested in gastric cancer cells. METHODS Tumour gene amplification and expression were computed from sequencing and microarray data. Associations with patient survival were assessed. Insulin-dependent signal transduction, growth, apoptosis and anoikis were analysed in metastatic cells from gastric adenocarcinoma patients and in cell lines. Receptor involvement was tested by pharmacological inhibition and genetic knockdown. RNA was analysed by RT-PCR and proteins by western transfer and immunofluorescence. RESULTS INSR expression was higher in tumour than in normal gastric tissue. High tumour expression was associated with worse patient survival. Insulin receptor was detected readily in metastatic gastric adenocarcinoma cells and cell lines. Isoforms B and A were expressed. Pharmacological inhibition prevented cell growth and division, and induced caspase-dependent cell death. Rare tumour INS expression indicated tumours would be responsive to pancreatic or therapeutic insulins. Insulin stimulated gastric adenocarcinoma cell PI3-kinase/Akt signal transduction, proliferation, and survival. Insulin receptor knockdown inhibited proliferation and induced programmed cell death. Type I IGF receptor knockdown did not induce cell death. CONCLUSIONS The insulin and IGF signal transduction pathway is dominant in gastric adenocarcinoma. Gastric adenocarcinoma cell survival depends upon insulin receptor. That insulin has direct cancer-promoting effects on tumour cells has implications for clinical management of obese and diabetic cancer patients.
Collapse
Affiliation(s)
- Marina Saisana
- grid.1006.70000 0001 0462 7212Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK
| | - S. Michael Griffin
- grid.1006.70000 0001 0462 7212Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK ,grid.420004.20000 0004 0444 2244Department of Surgery, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE1 4LP UK
| | - Felicity E. B. May
- grid.1006.70000 0001 0462 7212Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK ,grid.1006.70000 0001 0462 7212Department of Pathology, Faculty of Medical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH UK ,grid.420004.20000 0004 0444 2244Department of Oncology, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE1 4LP UK
| |
Collapse
|
14
|
Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM, Brodt P. Targeting the IGF-Axis Potentiates Immunotherapy for Pancreatic Ductal Adenocarcinoma Liver Metastases by Altering the Immunosuppressive Microenvironment. Mol Cancer Ther 2021; 20:2469-2482. [PMID: 34552012 PMCID: PMC8677570 DOI: 10.1158/1535-7163.mct-20-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/13/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, resistant to chemotherapy and associated with high incidence of liver metastases and poor prognosis. Using murine models of aggressive PDAC, we show here that in mice bearing hepatic metastases, treatment with the IGF-Trap, an inhibitor of type I insulin-like growth factor receptor (IGF-IR) signaling, profoundly altered the local, immunosuppressive tumor microenvironment in the liver, curtailing the recruitment of myeloid-derived suppressor cells, reversing innate immune cell polarization and inhibiting metastatic expansion. Significantly, we found that immunotherapy with anti-PD-1 antibodies also reduced the growth of experimental PDAC liver metastases, and this effect was enhanced when combined with IGF-Trap treatment, resulting in further potentiation of a T-cell response. Our results show that a combinatorial immunotherapy based on dual targeting of the prometastatic immune microenvironment of the liver via IGF blockade, on one hand, and reversing T-cell exhaustion on the other, can provide a significant therapeutic benefit in the management of PDAC metastases.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - John David Konda
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Stephanie Perrino
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Centre at UC San Diego Health, La Jolla, California
| | - Pnina Brodt
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
- Department of Medicine, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Oncology, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Davoodvandi A, Farshadi M, Zare N, Akhlagh SA, Alipour Nosrani E, Mahjoubin-Tehran M, Kangari P, Sharafi SM, Khan H, Aschner M, Baniebrahimi G, Mirzaei H. Antimetastatic Effects of Curcumin in Oral and Gastrointestinal Cancers. Front Pharmacol 2021; 12:668567. [PMID: 34456716 PMCID: PMC8386020 DOI: 10.3389/fphar.2021.668567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) cancers are known as frequently occurred solid malignant tumors that can cause the high rate mortality in the world. Metastasis is a significant destructive feature of tumoral cells, which directly correlates with decreased prognosis and survival. Curcumin, which is found in turmeric, has been identified as a potent therapeutic natural bioactive compound (Curcuma longa). It has been traditionally applied for centuries to treat different diseases, and it has shown efficacy for its anticancer properties. Numerous studies have revealed that curcumin inhibits migration and metastasis of GI cancer cells by modulating various genes and proteins, i.e., growth factors, inflammatory cytokines and their receptors, different types of enzymes, caspases, cell adhesion molecules, and cell cycle proteins. Herein, we summarized the antimetastatic effects of curcumin in GI cancers, including pancreatic cancer, gastric cancer, colorectal cancer, oral cancer, and esophageal cancer.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | | | - Esmail Alipour Nosrani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Maryam Sharafi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
17
|
Hassanlou M, Soltani BM, Medlej A, Kay M, Mowla SJ. Hsa-miR-6165 downregulates insulin-like growth factor-1 receptor (IGF-1R) expression and enhances apoptosis in SW480 cells. Biol Chem 2021; 401:477-485. [PMID: 31702994 DOI: 10.1515/hsz-2018-0421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 10/10/2019] [Indexed: 01/06/2023]
Abstract
MicroRNAs are small non-coding RNAs that are implicated in various biological processes. Hsa-miR-6165 (miR-6165), located in the p75NTR gene, is known to induce apoptosis in human cell lines, but its mechanism of action is not fully understood yet. Here, we predicted the insulin-like growth factor 1 receptor (IGF-1R) gene as a bona fide target for miR-6165. The overexpression of miR-6165 in SW480 cells resulted in significant downregulation of IGF-1R expression as detected by real time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Also, it resulted in reduced transcript levels of AKT2, AKT3, PI3KR3, PI3KR5, CCND1, c-MYC and P21 genes detected by RT-qPCR analysis. In addition, a direct interaction between miR-6165 and a 3'UTR sequence of the IGF-1R gene was verified through a dual luciferase assay. Furthermore, miR-6165 and IGF-1R showed opposite patterns of expression during the neural differentiation process of NT2 cells. Annexin V analysis and MTT assay showed that miR-6165 overexpression was followed by increased apoptosis and reduced the viability rate of SW480 cells. Moreover, a lower expression level of miR-6165 was detected in high-grade colorectal tumors compared with low-grade tumors. Taken together, the results of our study suggest a tumor suppressive role of miR-6165 in colorectal cancer, which seems to take place by regulating IGF-1R gene expression.
Collapse
Affiliation(s)
- Maryam Hassanlou
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 114-115, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 114-115, Iran
| | - Abdallah Medlej
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 114-115, Iran
| | - Maryam Kay
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 114-115, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 114-115, Iran
| |
Collapse
|
18
|
Geleta B, Park KC, Jansson PJ, Sahni S, Maleki S, Xu Z, Murakami T, Pajic M, Apte MV, Richardson DR, Kovacevic Z. Breaking the cycle: Targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma. FASEB J 2021; 35:e21347. [PMID: 33484481 DOI: 10.1096/fj.202002279r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PaCa) is characterized by dense stroma that hinders treatment efficacy, with pancreatic stellate cells (PSCs) being a major contributor to this stromal barrier and PaCa progression. Activated PSCs release hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1) that induce PaCa proliferation, metastasis and resistance to chemotherapy. We demonstrate for the first time that the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is a potent inhibitor of the PaCa-PSC cross-talk, leading to inhibition of HGF and IGF-1 signaling. NDRG1 also potently reduced the key driver of PaCa metastasis, namely GLI1, leading to reduced PSC-mediated cell migration. The novel clinically trialed anticancer agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which upregulates NDRG1, potently de-sensitized PaCa cells to ligands secreted by activated PSCs. DpC and NDRG1 also inhibited the PaCa-mediated activation of PSCs via inhibition of sonic hedgehog (SHH) signaling. In vivo, DpC markedly reduced PaCa tumor growth and metastasis more avidly than the standard chemotherapy for this disease, gemcitabine. Uniquely, DpC was selectively cytotoxic against PaCa cells, while "re-programming" PSCs to an inactive state, decreasing collagen deposition and desmoplasia. Thus, targeting NDRG1 can effectively break the oncogenic cycle of PaCa-PSC bi-directional cross-talk to overcome PaCa desmoplasia and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Bekesho Geleta
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Cancer Drug Resistance Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, Department of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Takashi Murakami
- Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Zaklina Kovacevic
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia.,Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev 2021; 40:865-878. [PMID: 34142285 DOI: 10.1007/s10555-021-09977-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma continues to be a lethal disease, for which efficient treatment options are very limited. Increasing efforts have been taken to understand how to prevent or intercept this disease at an early stage. There is convincing evidence from epidemiologic and preclinical studies that the antidiabetic drug metformin possesses beneficial effects in pancreatic cancer, including reducing the risk of developing the disease and improving survival in patients with early-stage disease. This review will summarize the current literature about the epidemiological data on metformin and pancreatic cancer as well as describe the preclinical evidence illustrating the anticancer effects of metformin in pancreatic cancer. Underlying mechanisms and targets of metformin will also be discussed. These include direct effects on transformed pancreatic epithelial cells and indirect, systemic effects on extra-pancreatic tissues.
Collapse
Affiliation(s)
- Guido Eibl
- Department of Surgery, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| |
Collapse
|
20
|
Xelwa N, Candy GP, Devar J, Omoshoro-Jones J, Smith M, Nweke EE. Targeting Growth Factor Signaling Pathways in Pancreatic Cancer: Towards Inhibiting Chemoresistance. Front Oncol 2021; 11:683788. [PMID: 34195085 PMCID: PMC8236623 DOI: 10.3389/fonc.2021.683788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the most deadly cancers, ranking amongst the top leading cause of cancer related deaths in developed countries. Features such as dense stroma microenvironment, abnormal signaling pathways, and genetic heterogeneity of the tumors contribute to its chemoresistant characteristics. Amongst these features, growth factors have been observed to play crucial roles in cancer cell survival, progression, and chemoresistance. Here we review the role of the individual growth factors in pancreatic cancer chemoresistance. Importantly, the interplay between the tumor microenvironment and chemoresistance is explored in the context of pivotal role played by growth factors. We further describe current and future potential therapeutic targeting of these factors.
Collapse
|
21
|
Arias-Pinilla GA, Modjtahedi H. Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers (Basel) 2021; 13:1781. [PMID: 33917882 PMCID: PMC8068268 DOI: 10.3390/cancers13081781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Gustavo A. Arias-Pinilla
- Department of Oncology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|
22
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
23
|
Subramani R, Medel J, Flores K, Perry C, Galvez A, Sandoval M, Rivera S, Pedroza DA, Penner E, Chitti M, Lakshmanaswamy R. Hepatocyte nuclear factor 1 alpha influences pancreatic cancer growth and metastasis. Sci Rep 2020; 10:20225. [PMID: 33214606 PMCID: PMC7678871 DOI: 10.1038/s41598-020-77287-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor 1 homeobox alpha (HNF1α) is a transcription factor involved in endodermal organogenesis and pancreatic precursor cell differentiation and development. Earlier studies have reported a role for HNF1α in pancreatic ductal adenocarcinoma (PDAC) but it is controversial. The mechanism by which it impacts PDAC is yet to be explored in depth. In this study, using the online databases we observed that HNF1α is upregulated in PDAC, which was also confirmed by our immunohistochemical analysis of PDAC tissue microarray. Silencing HNF1α reduced the proliferative, migratory, invasive and colony forming capabilities of pancreatic cancer cells. Key markers involved in these processes (pPI3K, pAKT, pERK, Bcl2, Zeb, Snail, Slug) were significantly changed in response to alterations in HNF1α expression. On the other hand, overexpression of HNF1α did not induce any significant change in the aggressiveness of pancreatic cancer cells. Our results demonstrate that reduced expression of HNF1α leads to inhibition of pancreatic cancer growth and progression, which indicates that it could be a potential oncogene and target for PDAC.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.
| | - Joshua Medel
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.,Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kristina Flores
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Courtney Perry
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Adriana Galvez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA
| | - Mayra Sandoval
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Servando Rivera
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Elizabeth Penner
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.,Department of Pathology and Laboratory Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mahika Chitti
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
24
|
Ma Q, Wu H, Xiao Y, Liang Z, Liu T. Upregulation of exosomal microRNA‑21 in pancreatic stellate cells promotes pancreatic cancer cell migration and enhances Ras/ERK pathway activity. Int J Oncol 2020; 56:1025-1033. [PMID: 32319558 DOI: 10.3892/ijo.2020.4986] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/20/2020] [Indexed: 11/05/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are typically activated in pancreatic ductal adenocarcinoma (PDAC) and release exosomes containing high levels of microRNA‑21 (miR‑21). However, the specific roles of exosomal miR‑21 in regulating the PDAC malignant phenotype remain unknown. The present study aimed to determine the effects of exosomal miR‑21 on the migratory ability of PDAC cells and explore the potential underlying molecular mechanism. Weighted gene correlation network and The Cancer Genome Atlas database analysis revealed that high miR‑21 levels were associated with a poor prognosis in patients with pancreatic adenocarcinoma, and that the Ras/ERK signaling pathway may be a potential target of miR‑21. In vitro, PDAC cells were demonstrated to internalize the PSC-derived exosome, resulting in high miR‑21 levels, which subsequently promoted cell migration, induced epithelial‑to‑mesenchymal transition (EMT) and increased matrix metalloproteinase‑2/9 activity. In addition, exosomal miR‑21 increased the levels of ERK1/2 and Akt phosphorylation in PDAC cells. Collectively, these results suggested that PSC‑derived exosomal miR‑21 may promote PDAC cell migration and EMT and enhance Ras/ERK signaling activity. Thus, miR‑21 may be a potential cause of poor prognosis in patients with pancreatic cancer and a new treatment target.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Ying Xiao
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| |
Collapse
|
25
|
Chen B, Li Q, Zhou Y, Wang X, Zhang Q, Wang Y, Zhuang H, Jiang X, Xiong W. The long coding RNA AFAP1-AS1 promotes tumor cell growth and invasion in pancreatic cancer through upregulating the IGF1R oncogene via sequestration of miR-133a. Cell Cycle 2019; 17:1949-1966. [PMID: 30300116 DOI: 10.1080/15384101.2018.1496741] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a significant role in the progression of many cancers, including pancreatic cancer (PC). However, the biological function and regulatory mechanisms of lncRNAs in PC remains largely unclear. The aim of this study was to identify and evaluate the potential functions of lncRNAs in PC and reveal the underlying mechanisms of their effects. Screening of published microarray data (GEO accession Nos. GSE16515 and GSE32688), revealed lncRNA AFAP1-AS1 to be one of the most upregulated lncRNAs in PC tissues. High expression of AFAP1-AS1 was correlated with advanced stages, tumor size and lymph node metastasis, as well as with poorer overall survival in patients with PC. Functionally, knockdown of AFAP1-AS1 by transfection with siRNA inhibited the proliferative and invasive capacities of PaCa-2 and SW1990 PC cells, promoted apoptosis of PC cells in vitro, and impaired in-vivo tumorigenicity. In particular, it was hypothesized that AFAP1-AS1 may act as a competitive endogenous RNA (ceRNA), effectively becoming a sink for miR-133a whose expression was found to be downregulated in PC tissues and cell lines, and which was negatively correlated with the expression of AFAP1-AS1. We also found that the IGF1R oncogene which is an important regulator of MEK/ERK signaling pathway, was positively regulated by AFAP1-AS1 through ameliorating miR-133a-mediated IGF1R repression in PC tissues. Moreover, we demonstrated that knockdown of IGF1R by transfection with si-IGF1R suppressed cell proliferation, invasion and migration of PaCa-2 and SW1990 PC cells, suggesting that IGF1R may function as an oncogene in PC cells. Further investigations revealed that miR-133a reversed the biological effects of AFAP1-AS1 on PC cells. Collectively, the findings provide new evidence that AFAP1-AS1 could regulate the progression of pancreatic cancer by acting as a ceRNA, and suggest it has potential for use as both a biomarker for the early detection PC and for the development of individualized therapies for PC.
Collapse
Affiliation(s)
- Bo Chen
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Qinhua Li
- b Department of Hepatology , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yongping Zhou
- c Department of Hepatobiliary Surgery , Wuxi Second Hospital, Nanjing Medical University , Wuxi , Jiangsu , China
| | - Xujing Wang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Qiqi Zhang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yongkun Wang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Huiren Zhuang
- a Department of Hepatopancreatobiliary Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaohua Jiang
- d Department of Gastroenterological Surgery , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Wujun Xiong
- b Department of Hepatology , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
26
|
Mok L, Kim Y, Lee S, Choi S, Lee S, Jang JY, Park T. HisCoM-PAGE: Hierarchical Structural Component Models for Pathway Analysis of Gene Expression Data. Genes (Basel) 2019; 10:E931. [PMID: 31739607 PMCID: PMC6896173 DOI: 10.3390/genes10110931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Although there have been several analyses for identifying cancer-associated pathways, based on gene expression data, most of these are based on single pathway analyses, and thus do not consider correlations between pathways. In this paper, we propose a hierarchical structural component model for pathway analysis of gene expression data (HisCoM-PAGE), which accounts for the hierarchical structure of genes and pathways, as well as the correlations among pathways. Specifically, HisCoM-PAGE focuses on the survival phenotype and identifies its associated pathways. Moreover, its application to real biological data analysis of pancreatic cancer data demonstrated that HisCoM-PAGE could successfully identify pathways associated with pancreatic cancer prognosis. Simulation studies comparing the performance of HisCoM-PAGE with other competing methods such as Gene Set Enrichment Analysis (GSEA), Global Test, and Wald-type Test showed HisCoM-PAGE to have the highest power to detect causal pathways in most simulation scenarios.
Collapse
Affiliation(s)
- Lydia Mok
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Sungkyoung Choi
- Department of Applied Mathematics, Hanyang University (ERICA), Ansan 15588, Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Department of Statistics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
28
|
Wang XH, Wu HY, Gao J, Wang XH, Gao TH, Zhang SF. IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Manag Res 2019; 11:5459-5472. [PMID: 31354352 PMCID: PMC6580139 DOI: 10.2147/cmar.s196862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Neuroblastoma (NB) displays the most heterogeneity in clinical manifestation. The insulin-like growth factor 1 receptor (IGF1R) has long been recognized for its role in tumourigenesis and growth. The IGF/IGF1R pathway is important in maintaining cell survival. It is reported that IGF1R participates in the occurrence of NB, but the mechanism is still unclear. Methods Human NB cell lines IMR-32 and SH-SY5Y were recruited in this study. IGF1R was knocked down by transfection with short hairpin RNA. Signal transducer and activator of transcription 3 (STAT3) expression was inhibited by Cryptotanshinone treatment. Cell proliferation, migration, and invasion were determined by MTT assay, wound healing assay, and cell invasion assay, respectively. The cancer stem cell properties were characterized by tumour sphere formation assay and colony formation assay. The mRNA and protein expression levels of related proteins were detected by RT-PCR and Western blot, respectively. Results The knockdown of IGF1R inhibits NB cell tumourigenesis and the epithelial-mesenchymal transition (EMT) of NB cells. Additionally, IGF1R was found to stimulate cancer stem cell-like properties in NPC cells. The knockdown of IGF1R significantly reduced the phosphorylation of AKT, and STAT3, indicating that the activation of the AKT and STAT3 pathways was inhibited by IGF1R knockdown. Furthermore, IGF1R was demonstrated to stimulate cancer stem cell-like properties in NB cells via the regulation of the STAT3/AKT axis. Conclusion IGF1R promotes cancer stem cell properties to facilitate EMT in neuroblastoma via the STAT3/AKT axis.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Hai-Ying Wu
- Department of Obstetrics, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Jian Gao
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Xu-Hui Wang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Tian-Hui Gao
- Department of Medical Oncology, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| | - Shu-Feng Zhang
- Department of Pediatric Surgery, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, People's Republic of China
| |
Collapse
|
29
|
Qi B, Zhang R, Sun R, Guo M, Zhang M, Wei G, Zhang L, Yu S, Huang H. IGF-1R inhibitor PQ401 inhibits osteosarcoma cell proliferation, migration and colony formation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1589-1598. [PMID: 31933976 PMCID: PMC6947108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
IGF-1R is expressed abnormally in osteosarcoma (OS) and could participate in its progression. In this study, we aimed to explore the effect of the IGF-1R inhibitor PQ401 as a treatment for OS. The relative expression of IGF-1R in OS patient tumors and the U2OS cell line were determined by qRT-PCR and by accessing information in a public database. Inhibition of cell proliferation by PQ401 was determined by MTT assay. Cell migration under low concentration treatment of PQ401 was carried out by transwell and wound healing assays. PQ401 induction of OS cell apoptosis was investigated by flow cytometry. Tumorigenesis under PQ401 treatment was evaluated by a colony formation assay. Finally, downstream blockage of the IGF-1R pathway was verified by western blotting. Our results show that the expression of IGF-1R was remarkably higher in OS cells, particularly in U2OS, than in other cancer-type cell lines. The inhibition of the IGF-1R pathway by PQ401 exhibited significant anticancer activity in the U2OS cell line in not only proliferation but also migration and colony formation. In addition, PQ401 is a strong inducer of OS cell apoptosis. Furthermore, western blotting was used to demonstrate that the IGF-1R related downstream pathway, including total ERK1/2, was significantly inhibited by PQ401. Thus, IGF-1R inhibition may represent a novel treatment for OS.
Collapse
Affiliation(s)
- Baochang Qi
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| | - Riping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| | - Rujun Sun
- Department of Operating Room, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Department of Cardiology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| | - Guojun Wei
- Department of Orthopedics, The Xiang’an Hospital Affiliated to Xiamen UniversityChina
| | - Lei Zhang
- Department of Pathology, Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| | - Shan Yu
- The Key Laboratory of Myocardial Ischemia, Department of Pathology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| | - Hui Huang
- Department of Operating Room, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, China
| |
Collapse
|
30
|
The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells. ACTA ACUST UNITED AC 2019; 55:medicina55040090. [PMID: 30987250 PMCID: PMC6524349 DOI: 10.3390/medicina55040090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023]
Abstract
Background and objectives: Mounting evidence shows that curcumin, a bioactive substance originating from turmeric root, has anticancer properties. Additionally, curcumin prevents the migration and metastasis of tumor cells. However, the molecular mechanism involved in the anti-metastatic action of curcumin is not clear. Most studies have suggested that migration inhibition is related to curcumin’s anti-inflammatory properties. Curcumin possesses a regulatory effect on insulin and insulin-like growth factor-1 (IGF-1) receptors and signaling. Insulin signaling is one of the important pathways involved in tumor initiation and progression; therefore, we proposed that the anti-metastatic effect of curcumin may mediate the downregulation of insulin and insulin-like growth factor-1 receptors. Materials and Methods: Viable resistant cells resulting from treating SW480 cells with 5-fluorouracil (5-FU) were subjected to curcumin treatment to analyze the proliferation and migration capacity in comparison to the untreated counterparts. To test the proliferation and migration potential, MTT, colony formation, and wound healing assays were performed. Real-time polymerase chain reaction (RT-PCR) was performed to measure the mRNA expression of insulin-like growth factor-1R (IGF-1R), insulin receptor (IR), and avian myelocytomatosis virus oncogene cellular homolog (MYC). Results: Our findings showed that curcumin significantly decreased insulin and IGF-1 receptors in addition to MYC expression. Additionally, the downregulation of the insulin and insulin-like growth factor-1 receptors was correlated to a greater decrease in the proliferation and migration of chemoresistant colorectal cancer cells. Conclusions: These results suggest the possible therapeutic effectiveness of curcumin in adjuvant therapy in metastatic colorectal cancer.
Collapse
|
31
|
Ali AI, Oliver AJ, Samiei T, Chan JD, Kershaw MH, Slaney CY. Genetic Redirection of T Cells for the Treatment of Pancreatic Cancer. Front Oncol 2019; 9:56. [PMID: 30809507 PMCID: PMC6379296 DOI: 10.3389/fonc.2019.00056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional treatments for pancreatic cancer are largely ineffective, and the prognosis for the vast majority of patients is poor. Clearly, new treatment options are desperately needed. Immunotherapy offers hope for the development of treatments for pancreatic cancer. A central requirement for the efficacy of this approach is the existence of cancer antigen-specific T cells, but these are often not present or difficult to isolate for most pancreatic tumors. Nevertheless, specific T cells can be generated using genetic modification to express chimeric antigen receptors (CAR), which can enable T cell responses against pancreatic tumor cells. CAR T cells can be produced ex vivo and expanded in vitro for infusion into patients. Remarkable responses have been documented using CAR T cells against several malignancies, including leukemias and lymphomas. Based on these successes, the extension of CAR T cell therapy for pancreatic cancer holds great promise. However, there are a number of challenges that limit the full potential of CAR T cell therapies for pancreatic cancer, including the highly immunosuppressive tumor microenvironment (TME). In this article, we will review the recent progress in using CAR T cells in pancreatic cancer preclinical and clinical settings, discuss hurdles for utilizing the full potential of CAR T cell therapy and propose research strategies and future perspectives. Research into the use of CAR T cell therapy in pancreatic cancer setting is rapidly gaining momentum and understanding strategies to overcome the current challenges in the pancreatic cancer setting will allow the development of effective CAR T cell therapies, either alone or in combination with other treatments to benefit pancreatic cancer patients.
Collapse
Affiliation(s)
- Aesha I Ali
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Tinaz Samiei
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jack D Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Gu Z, Lin C, Hu J, Xia J, Wei S, Gao D. USP34 Regulated Human Pancreatic Cancer Cell Survival via AKT and PKC Pathways. Biol Pharm Bull 2019; 42:573-579. [PMID: 30686807 DOI: 10.1248/bpb.b18-00646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreatic cancer is known to be a fatal disease, which is difficult to be diagnosed in its early stages. Ubiquitin-Specific Protease 34 (USP34) are closely related to human cancers in the development and progression. However, there are rarely studies about the role of USP34 in pancreatic cancer. Thus, we aimed to investigate the effect of USP34 in human pancreatic cancer. Short-hairpin RNA targeting USP34 (USP34-shRNA) and USP34 overexpression lentivirus were used in the current study. The level of USP34 in human pancreatic cancer (PANC-1) cells were then analyzed by quantitative (q)RT-PCR. In addition, Western blotting was used to examine phosphorylated (p)-AKT, p-protein kinase C (PKC) and p-extracellular signal-regulated kinase (ERK) protein levels. CCK-8 assay, flow cytometry, and migration assay were used to detect cell proliferation, apoptosis and migration, respectively in vitro. According to the result of qRT-PCR and Western blotting, USP34-shRNA1 significantly downregulated USP34 gene level in PANC-1 cell. Subsequently, Western blotting assay indicated that USP34 silencing significantly down-regulated the expression of p-AKT and p-PKC in cells. On the other hand, USP34 overexpressing remarkably up-regulated the expression of p-AKT and p-PKC in cells. In addition, USP34 overexpression promoted PANC-1 cell proliferation and migration via up-regulating the proteins of p-AKT and p-PKC. Moreover, USP34 overexpression reversed AKT inhibitor and PKC inhibitor induced PACN-1 cell apoptosis. Our results indicated USP34 regulated h PANC-1 cell survival via AKT and PKC pathways, and which played a pro-survival role in human pancreatic cancer. Therefore, we suggested USP34 could be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwei Gu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University
| | - Changjie Lin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University
| | - Jian Hu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University
| | - Jing Xia
- Department of General Surgery, The Second Affiliated Hospital of Soochow University
| | - Shaohua Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University
| | - Dekang Gao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University
| |
Collapse
|
33
|
Jafari R, Zolbanin NM, Majidi J, Atyabi F, Yousefi M, Jadidi-Niaragh F, Aghebati-Maleki L, Shanehbandi D, Zangbar MSS, Rafatpanah H. Anti-Mucin1 Aptamer-Conjugated Chitosan Nanoparticles for Targeted Co-Delivery of Docetaxel and IGF-1R siRNA to SKBR3 Metastatic Breast Cancer Cells. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30041514 PMCID: PMC6305820 DOI: 10.29252/.23.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Targeted co-delivery of siRNA and a chemotherapeutic drug is an attractive approach to cancer drug design and treatment. This study was carried out to design an anti-Mucin1 aptamer (Apt)-conjugated chitosan nanoparticle (NP) for targeted co-delivery of insulin-like growth factor receptor 1 (IGF-1R) Silencer siRNA and docetaxel (DTX) to SKBR3 cells. Methods Characterization of nano-drugs, cellular uptake of NPs, cell viability, and gene expression studies were evaluated based on metastatic breast cancer cells. Results The results of this study showed that NPs had spherical and smooth morphology with 110-118 nm in size and had positive zeta potential (12-14 mV). siRNA and DTX were considerably loaded into NPs. The appropriate conjugation of the Apt to the NPs was affirmed by gel electrophoresis. The Apt-conjugated NPs were observed to enhance the cellular uptake of NPs into the SKBR3 cells. Although the combination treatment significantly decreased the cell viability of SKBR3 cells, the augmentative effect was observed when Apt was conjugated to NPs. Furthermore, Apt-conjugated NPs dramatically reduced the genetic expression of IGF-1R, signal transducers and activators of transcription 3 (STAT3), matrix metalloproteinases (MMP9), and vascular growth factor (VEGF). Conclusion The targeted NPs may augment the targeting of pathways involved in tumorigenesis and metastasis of breast cancer. Therefore, more animal model experiments are needed to further clarify the efficacy and safety of this functionalized nanodrug.
Collapse
Affiliation(s)
- Reza Jafari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Immunology Research Center, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Houshang Rafatpanah
- Immunology Research Center, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Houshang Rafatpanah Immunology Research Center, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran; Tel.: (+98-51) 38002376; Mobile: (+98-915) 5014680; E-mail:
| |
Collapse
|
34
|
monirinasab H, Asadi H, Rostamizadeh K, Esmaeilzadeh A, Khodaei M, Fathi M. Novel lipid-polymer hybrid nanoparticles for siRNA delivery and IGF-1R gene silencing in breast cancer cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
TROP-2 exhibits tumor suppressive functions in cervical cancer by dual inhibition of IGF-1R and ALK signaling. Gynecol Oncol 2018; 152:185-193. [PMID: 30429055 DOI: 10.1016/j.ygyno.2018.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Inactivation of tumor suppressor genes promotes initiation and progression of cervical cancer. This study aims to investigate the tumor suppressive effects of TROP-2 in cervical cancer cells and to explain the underlying mechanisms. METHODS The tumor suppressive functions of TROP-2 in cervical cancer cells were examined by in vitro and in vivo tumorigenic functional assays. Downstream factors of TROP-2 were screened using Human Phospho-Receptor Tyrosine Kinase Array. Small molecule inhibitors were applied to HeLa cells to test the TROP-2 effects on the oncogenicity of IGF-1R and ALK. Protein interactions between TROP-2 and the ligands of IGF-1R and ALK were detected via immunoprecipitation assay and protein-protein affinity prediction. RESULTS In vitro and in vivo functional assays showed that overexpression of TROP-2 significantly inhibited the oncogenicity of cervical cancer cells; while knockdown of TROP-2 exhibited opposite effects. Human Phospho-Receptor Tyrosine Kinase Array showed that the activity of IGF-1R and ALK was stimulated by TROP-2 knockdown. Small molecule inhibitors AG1024 targeting IGF-1R and Crizotinib targeting ALK were treated to HeLa cells with and without TROP-2 overexpression, and results from cell viability and migration assays indicated that the oncogenicity of vector-transfected cells was repressed to a greater extent by the inhibition of either IGF-1R or ALK than that of the TROP-2-overexpressed cells. Immunoprecipitation assay and protein-protein affinity prediction suggested protein interactions between TROP-2 and the ligands of IGF-1R and ALK. CONCLUSIONS Collectively, our results support that TROP-2 exhibits tumor suppressor functions in cervical cancer through inhibiting the activity of IGF-1R and ALK.
Collapse
|
36
|
Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma. J Cancer Res Clin Oncol 2018; 144:2377-2390. [PMID: 30225540 DOI: 10.1007/s00432-018-2749-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Recently, we identified the microRNA-99 family as unfavorable prognostic factor in patients with pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to evaluate its value as circulating biomarker for PDAC. METHODS Tissue and corresponding preoperative blood samples of 181 patients with PDAC UICC Stages I-IV (n = 90), intraductal papillary mucinous neoplasm (IPMN, n = 11), chronic pancreatitis (n = 40), pancreatic cystadenoma (n = 20), and age-matched healthy blood serum controls (n = 20) were collected between 2014 and 2017 prospectively. Expression of microRNA-21 as confirmatory marker and the microRNA-99 family, consisting of microRNA-99a, -99b, and -100, was analyzed by qRT-PCR. Target analysis of insulin-like growth factor 1 receptor (IGF1R) was performed using tissue array immunohistochemistry and Western blotting. RESULTS Expression of microRNA-99 family members was significantly increased in macrodissected tumor tissue and corresponding blood serum samples (p < 0.05) of patients with PDAC of all stages. Correspondingly, its target protein IGF1R was upregulated (p < 0.001) in carcinoma tissue. Circulating and tissue-related microRNA-100 could well discriminate PDAC from healthy samples with area under the receiver operating characteristic (ROC) curve (AUC) values of 0.81 and 0.85, respectively. Low expression of circulating microRNA-100 was associated with significantly improved overall survival (p = 0.004) and recurrence-free survival (p = 0.03) in multivariate analyses. Circulating microRNA-21 was overexpressed in PDAC with fair discrimination between PDAC and healthy controls (AUC = 0.71) and decreased overall survival (p = 0.046) and recurrence-free survival (p = 0.03) in PDAC patients. CONCLUSIONS Multivariate survival and ROC analyses identified circulating microRNA-100 as potential diagnostic and prognostic marker in PDAC patients.
Collapse
|
37
|
Kim M, Baek M, Kim DJ. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Curr Pharm Des 2018. [PMID: 28625132 DOI: 10.2174/1381612823666170616082125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphorylation is a crucial signaling mechanism that plays a role in epithelial carcinogenesis. Protein tyrosine kinases (PTKs) control various cellular processes including growth, differentiation, metabolism, and motility by activating major signaling pathways including STAT3, AKT, and MAPK. Genetic mutation of PTKs and/or prolonged activation of PTKs and their downstream pathways can lead to the development of epithelial cancer. Therefore, PTKs became an attractive target for cancer prevention. PTK inhibitors are continuously being developed, and they are currently used for the treatment of cancers that show a high expression of PTKs. Protein tyrosine phosphatases (PTPs), the homeostatic counterpart of PTKs, negatively regulate the rate and duration of phosphotyrosine signaling. PTPs initially were considered to be only housekeeping enzymes with low specificity. However, recent studies have demonstrated that PTPs can function as either tumor suppressors or tumor promoters, depending on their target substrates. Together, both PTK and PTP signal transduction pathways are potential therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
38
|
FOXC1 plays a crucial role in the growth of pancreatic cancer. Oncogenesis 2018; 7:52. [PMID: 29976975 PMCID: PMC6033944 DOI: 10.1038/s41389-018-0061-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022] Open
Abstract
IGF-1R signaling controls various vital cellular functions and this signaling is deregulated in many cancers, including pancreatic cancer. Several efforts have mainly focused on inhibiting the IGF-1R signaling cascade. The outcomes of these focused preclinical studies have been positive, whereas clinical trials of IGF-1R inhibitors in pancreatic cancer have failed, raising the questions about this therapeutic approach. This necessitates a better understanding of the role of IGF-1R signaling in pancreatic cancer. We investigated the impact of IGF-1R signaling on crucial transcription factors and identified the FOXC1 as one of the crucial regulator of IGF-1R signaling. We employed genetic approaches to overexpress and silence FOXC1 in pancreatic cancer cells. Our results demonstrate that IGF-1R and FOXC1 seem to positively regulate each other. Further, FOXC1 increased the metastatic abilities of pancreatic cancer cells by enhancing cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, and angiogenesis. The data from xenograft experiments further established the importance of FOXC1 in pancreatic tumorigenesis. In conclusion, FOXC1 is a potent oncogenic transcription factor, which promotes pancreatic cancer growth and metastasis. Thus, targeting FOXC1 could be a potential therapeutic strategy against pancreatic cancer.
Collapse
|
39
|
Lin Y, Rong L, Zhao J, Lin R, Li S. MicroRNA‑539 inhibits cell proliferation, colony formation and invasion in pancreatic ductal adenocarcinoma by directly targeting IGF‑1R. Mol Med Rep 2018; 18:1804-1811. [PMID: 29901181 DOI: 10.3892/mmr.2018.9109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/15/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) possess oncogenic and tumour‑suppressive roles in the carcinogenesis and progression of pancreatic ductal adenocarcinoma (PDAC) by regulating the expression of numerous cancer‑related genes. Thus, the investigation on the expression and roles of miRNAs in PDAC may facilitate the identification of novel and effective targets for the clinical diagnosis and treatment of patients with PDAC. miRNA‑539 (miR‑539) has been studied in multiple types of human cancer. However, its expression and potential biological function in PDAC remain unclear. In the current study, the expression level, clinical significance, roles and underlying molecular mechanism of miR‑539 in PDAC. The present results demonstrated that miR‑539 expression was downregulated in PDAC tissues and cell lines. A low miR‑539 level was associated with TNM stage and lymph node metastasis of patients with PDAC. miR‑539 overexpression induced a significant reduction in the proliferation, colony formation and invasion of PDAC cells. Insulin‑like growth factor 1 receptor (IGF‑1R) was confirmed as a direct target gene of miR‑539 in PDAC. Further analysis indicated that IGF‑1R was overexpressed in PDAC tissues. Notably, the mRNA expression of IGF‑1R was negatively correlated with miR‑539 levels in PDAC tissues. In addition, the recovered IGF‑1R expression also partially counteracted the suppressive roles of miR‑539 overexpression in PDAC cells. Overall, miR‑539 may inhibit the aggressive behaviour of PDAC by directly targeting IGF‑1R and may serve as a novel therapeutic target for patients with this disease.
Collapse
Affiliation(s)
- Yongquan Lin
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Lihua Rong
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Jingrong Zhao
- Department of General Surgery, The 89th Hospital of Chinese People's Liberation Army, Weifang, Shandong 262500, P.R. China
| | - Ronghui Lin
- Health clinics, Qingzhou Yanghe River Authority, Qingzhou, Shandong 261021, P.R. China
| | - Shuhua Li
- Department of Emergency, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
40
|
Song Y, Zhao Y, Ding X, Wang X. microRNA-532 suppresses the PI3K/Akt signaling pathway to inhibit colorectal cancer progression by directly targeting IGF-1R. Am J Cancer Res 2018; 8:435-449. [PMID: 29636999 PMCID: PMC5883094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023] Open
Abstract
Substantial evidence has shown that numerous microRNAs (miRNAs) are deregulated in colorectal cancer (CRC) and that their dysregulation is involved in CRC formation and progression. miRNA-based targeted therapy that inhibits or restores expression may be a promising therapeutic approach for anti-cancer therapy. Therefore, a comprehensive investigation of the mechanisms underlying CRC occurrence and development may help identify effective therapeutic targets for the therapy of CRC, thus improving the prognosis of patients with this disease. This study showed that miRNA-532 (miR-532) was significantly down-regulated in CRC tissues and cell lines. Low miR-532 expression strongly correlated with aggressive clinicopathological characteristics, including tumor size, lymphatic metastasis and TNM stage. Exogenous expression of miR-532 restricted cell proliferation, colony formation, migration and invasion; promoted cell apoptosis in vitro; and reduced tumor growth in vivo. Mechanistically, insulin-like growth factor 1 receptor (IGF-1R) was determined to be a novel direct target gene of miR-532 in CRC. In clinical CRC tissues, the expression of miR-532 was inversely correlated with that of IGF-1R, which was clearly overexpressed in CRC tissues. Furthermore, IGF-1R silencing simulated the tumor-suppressing roles of miR-532 in CRC. Moreover, recovered IGF-1R expression antagonized the inhibitory effects of miR-532 overexpression on CRC cells. Notably, miR-532 overexpression inhibited activation of the PI3K/Akt signaling pathway in CRC, both in vitro and in vivo. These results indicate that miR-532 plays an important role in CRC development, partly by directly targeting IGF-1R and regulating the PI3K/Akt signaling pathway. Thus, the miR-532/IGF-1R axis has clinical significance in the therapy of patients with CRC.
Collapse
Affiliation(s)
- Ying Song
- Department of Digestive Endoscopy, The Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Yue Zhao
- Department of Vascular Surgery, The China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Xiangfu Ding
- Department of Thyroid Surgery, The Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Xiaodong Wang
- Department of Digestive Endoscopy, The Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| |
Collapse
|
41
|
Mytilinaiou M, Nikitovic D, Berdiaki A, Papoutsidakis A, Papachristou DJ, Tsatsakis A, Tzanakakis GN. IGF-I regulates HT1080 fibrosarcoma cell migration through a syndecan-2/Erk/ezrin signaling axis. Exp Cell Res 2017; 361:9-18. [PMID: 28962916 DOI: 10.1016/j.yexcr.2017.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 11/17/2022]
Abstract
Fibrosarcoma is a tumor of mesenchymal origin, originating from fibroblasts. IGF-I is an anabolic growth factor which exhibits significant involvement in cancer progression. In this study, we investigated the possible participation of syndecan-2 (SDC-2), a cell membrane heparan sulfate (HS) proteoglycan on IGF-I dependent fibrosarcoma cell motility. Our results demonstrate that SDC-2-deficient HT1080 cells exhibit attenuated IGF-I-dependent chemotactic migration (p < 0.001). SDC-2 was found to co-localize to IGF-I receptor (IGF-IR) in a manner dependent on IGF-I activity (P ≤ 0.01). In parallel, the downregulation of SDC-2 significantly inhibited both basal and due to IGF-I action ERK1/2 activation, (p < 0.001). The phosphorylation levels of ezrin (Thr567), which is suggested to act as a signaling bridge between the cellular membrane receptors and actin cytoskeleton, were strongly enhanced by IGF-I at both 1h and 24h (p < 0.05; p < 0.01). The formation of an immunoprecipitative complex revealed an association between SDC2 and ezrin which was enhanced through IGF-I action (p < 0.05). Immunoflourescence demonstrated a co-localization of IGF-IR, SDC2 and ezrin upregulated by IGF-I action. IGF-I enhanced actin polymerization and ezrin/actin specific localization to cell membranes. Finally, treatment with IGF-I strongly increased SDC2 expression at both the mRNA and protein level (p < 0.001). Therefore, we propose a novel SDC2-dependent mechanism, where SDC2 is co-localized with IGF-IR and enhances its' IGFI-dependent downstream signaling. SDC2 mediates directly IGFI-induced ERK1/2 activation, it recruits ezrin, contributes to actin polymerization and ezrin/actin specific localization to cell membranes, ultimately facilitating the progression of IGFI-dependent fibrosarcoma cell migration.
Collapse
Affiliation(s)
- Maria Mytilinaiou
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Laboratory of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medicine, University of Patras, Patras, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece.
| |
Collapse
|
42
|
Lev A, Lulla AR, Wagner J, Ralff MD, Kiehl JB, Zhou Y, Benes CH, Prabhu VV, Oster W, Astsaturov I, Dicker DT, El-Deiry WS. Anti-pancreatic cancer activity of ONC212 involves the unfolded protein response (UPR) and is reduced by IGF1-R and GRP78/BIP. Oncotarget 2017; 8:81776-81793. [PMID: 29137221 PMCID: PMC5669847 DOI: 10.18632/oncotarget.20819] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is chemo-resistant and metastasizes early with an overall five-year survival of ∼8.2%. First-in-class imipridone ONC201 is a small molecule in clinical trials with anti-cancer activity. ONC212, a fluorinated-ONC201 analogue, shows preclinical efficacy in melanoma and hepatocellular-cancer models. We investigated efficacy of ONC201 and ONC212 against pancreatic cancer cell lines (N=16 including 9 PDX-cell lines). We demonstrate ONC212 efficacy in 4 in-vivo models including ONC201-resistant tumors. ONC212 is active in pancreatic cancer as single agent or in combination with 5-fluorouracil, irinotecan, oxaliplatin or RTK inhibitor crizotinib. Based on upregulation of pro-survival IGF1-R in some tumors, we found an active combination of ONC212 with inhibitor AG1024, including in vivo. We show a rationale for targeting pancreatic cancer using ONC212 combined with targeting the unfolded-protein response and ER chaperones such as GRP78/BIP. Our results lay the foundation to test imipridones, anti-cancer agents, in pancreatic cancer, that is refractory to most drugs.
Collapse
Affiliation(s)
- Avital Lev
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Amriti R Lulla
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jessica Wagner
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Marie D Ralff
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Joshua B Kiehl
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Biostatistics Department, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | | - Igor Astsaturov
- Department of Hematology/Oncology, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David T Dicker
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wafik S El-Deiry
- Department of Hematology/Oncology, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
43
|
Wang Q, Wang H, Jia Y, Ding H, Zhang L, Pan H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncol Lett 2017; 14:3545-3551. [PMID: 28927111 PMCID: PMC5588063 DOI: 10.3892/ol.2017.6643] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a common dietary flavonoid, which has been demonstrated to exert anticancer effects in multiple cancer models. However, the detailed mechanisms underlying the inhibitory effect of luteolin on glioblastoma cell metastasis remain poorly understood. The present study assessed the effects of luteolin in the U251MG and U87MG human glioblastoma cell lines. Luteolin treatment significantly inhibited glioblastoma cell migration, and this effect was associated with downregulated matrix metalloproteinase (MMP)-2, MMP-9 and upregulated tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. In addition, luteolin also inhibited the epithelial-mesenchymal transition-associated phenotype. Furthermore, the phosphorylated insulin-like growth factor-1 receptor/phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (p-IGF-1R/PI3K/AKT/mTOR) signaling pathway was demonstrated to participate in these processes. The results of the present study demonstrated that the flavonoid luteolin reduced the migration of glioblastoma cells by altering p-IGF-1R/PI3K/AKT/mTOR activation, and may have potential applications for chemoprevention in a clinical setting.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Jia
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hui Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
44
|
Liu H, Li L, Chen H, Kong R, Pan S, Hu J, Wang Y, Li Y, Sun B. Silencing IGFBP-2 decreases pancreatic cancer metastasis and enhances chemotherapeutic sensitivity. Oncotarget 2017; 8:61674-61686. [PMID: 28977895 PMCID: PMC5617455 DOI: 10.18632/oncotarget.18669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has remained one of the most devastating and lethal malignancies characterized by local invasion, distant metastasis and a high degree of chemoresistance. Insulin-like growth factor binding protein 2 (IGFBP-2) is a member of the IGFBP family of proteins, and it is highly expressed in pancreatic cancer patients’ serum and tumor tissues. IGFBP-2 also mediates tumor cell growth, invasion and resistance, while the mechanisms remain unclear. In this study, we sought to determine the impact of IGFBP-2 expression on pancreatic cancer tumorigenesis and metastasis in vitro and in vivo. Wound healing, migration and invasion assays revealed that knockdown of IGFBP-2 inhibits cancer cell migration and invasion. Downregulation of IGFBP-2 attenuates EMT via increasing the E-cadherin and reducing the vimentin and N-cadherin. PTCH-1 is found contribute to the function of IGFBP-2 in suppressing metastasis and EMT of pancreatic cancer. Silencing IGFBP-2 inhibited invasion and metastatic properties, partially through inhibiting PTCH1 in pancreatic cancer. Additionally, inhibition of IGFBP-2 enhanced the sensitivity of pancreatic cancer cells to gemcitabine, suppressed tumor growth and potentiated the anti-tumor effect of gemcitabine in the orthotopic tumor model. Our results provide novel insight of IGFBP-2 as a promising target to inhibit the metastasis and overcome the chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Huan Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
45
|
Yu YX, Pan WC, Cheng YF. Silencing of advanced glycosylation and glycosylation and product-specific receptor (RAGE) inhibits the metastasis and growth of non-small cell lung cancer. Am J Transl Res 2017; 9:2760-2774. [PMID: 28670367 PMCID: PMC5489879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/20/2017] [Indexed: 06/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) constitutes the main cases of lung cancer and is the world's most common and lethal cancer owing to regional invasion or distant metastasis. Growing morbidity and lethality demonstrates that valid molecular target in management of NSCLC metastasis is still absence. The receptor of advanced glycation end-products (RAGE) has been identified as an oncogenic gene and appears to promote the growth and metastasis of various cancers. Here, we investigated if RAGE targeted by RNA interference (RNAi) might have certain effect on the restraint of the growth of NSCLC and tumor metastasis. Wound healing and Transwell invasion assays indicated that RAGE favored the metastatic capabilities of NSCLC H1975 cells. Besides, soft-agar colony assay revealed that silencing RAGE significantly blocked colony-forming capability of H1975 cells in vitro. Furthermore, we observed that RAGE participated in H1975 cells growth, metastasis and epithelial-mesenchymal transition (EMT) by regulating interdict crux intracellular signaling pathways, including phosphatidylinositol-3 kinase/serine-threonine kinase (PI3K/AKT) and V-Ki-ras2 kirsten rat sarcoma viral oncogene homolog/RAF proto-oncogene serine/threonine-protein kinase (KRAS/RAF-1). In xenograft model, significantly reduction intumor growth and Ki67 expression was demonstrated in nude mice inoculation with RAGE down-regulation H1975 cells. To conclude, our study demonstrated that RAGE played a crucial role in the metastasis and growth of NSCLC by regulating PI3K/AKT and KRAS/RAF-1 signaling pathways, thereby might be a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yan Xia Yu
- Cancer Treatment Research Center, Qilu Hospital of Shandong UniversityNo.107, Wenhua West Road, Jinan, China
| | - Wen Chong Pan
- Cancer Treatment Research Center, Qilu Hospital of Shandong UniversityNo.107, Wenhua West Road, Jinan, China
| | - Yu Feng Cheng
- Cancer Treatment Research Center, Qilu Hospital of Shandong UniversityNo.107, Wenhua West Road, Jinan, China
| |
Collapse
|
46
|
Gong Y, Zhang B, Liao Y, Tang Y, Mai C, Chen T, Tang H. Serum Insulin-Like Growth Factor Axis and the Risk of Pancreatic Cancer: Systematic Review and Meta-Analysis. Nutrients 2017; 9:nu9040394. [PMID: 28420208 PMCID: PMC5409733 DOI: 10.3390/nu9040394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/02/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Objective: To investigate the association between serum concentration of insulin-like growth factor (IGF) and the risk of pancreatic cancer (PaC). Methods: We identified eligible studies in Medline and EMBASE databases (no reference trials from 2014 to 2016) in addition to the reference lists of original studies and review articles on this topic. A summary of relative risks with 95% confidence intervals (CI) was calculated using a random-effects model. The heterogeneity between studies was assessed using Cochran Q and I2 statistics. Results: Ten studies (seven nested case-control studies and three retrospective case-control studies) were selected as they met our inclusion criteria in this meta-analysis. All these studies were published between 1997 and 2013. The current data suggested that serum concentrations of IGF-I, IGF-II and insulin-like growth factor binding protein-3 (IGFBP-3)in addition to the IGF-I/IGFBP-3 ratio were not associated with an increased risk of PaC (Summary relative risks (SRRs) = 0.92, 95% CI: 0.67–1.16 for IGF-I; SRRs = 0.84, 95% CI: 0.54–1.15 for IGF-II; SRRs = 0.93, 95% CI: 0.69–1.17 for IGFBP-3; SRRs = 0.97, 95% CI: 0.71–1.23 for IGF-I/IGFBP-3 ratio). There was no publication bias in the present meta-analysis. Conclusion: Serum concentrations of IGF-I, IGF-II, IGFBP-1 and IGFBP-3 as well as the IGF-I/IGFBP-3 ratio were not associated with increased risk of PaC.
Collapse
Affiliation(s)
- Yuanfeng Gong
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital& Institute of Guangzhou Medical University, Guangzhou 510095, China.
| | - Bingyi Zhang
- Department of Ultrasound, the First People's Hospital of Yichang, China Three Gorges University, Yichang 443000, China.
| | - Yadi Liao
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital& Institute of Guangzhou Medical University, Guangzhou 510095, China.
| | - Yunqiang Tang
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital& Institute of Guangzhou Medical University, Guangzhou 510095, China.
| | - Cong Mai
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital& Institute of Guangzhou Medical University, Guangzhou 510095, China.
| | - Tiejun Chen
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital& Institute of Guangzhou Medical University, Guangzhou 510095, China.
| | - Hui Tang
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital& Institute of Guangzhou Medical University, Guangzhou 510095, China.
| |
Collapse
|
47
|
Basu R, Wu S, Kopchick JJ. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget 2017; 8:21579-21598. [PMID: 28223541 PMCID: PMC5400608 DOI: 10.18632/oncotarget.15375] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Recent reports have confirmed highest levels of growth hormone (GH) receptor (GHR) transcripts in melanoma, one of the most aggressive forms of human cancer. Yet the mechanism of GH action in melanoma remains mostly unknown. Here, using human malignant melanoma cells, we examined the effects of GH excess or siRNA mediated GHR knock-down (GHRKD) on tumor proliferation, migration and invasion. GH promoted melanoma progression while GHRKD attenuated the same. Western blot analysis revealed drastic modulation of multiple oncogenic signaling pathways (JAK2, STAT1, STAT3, STAT5, AKT, mTOR, SRC and ERK1/2) following addition of GH or GHRKD. Further, we show that GH excess upregulates expression of markers of epithelial mesenchymal transition in human melanoma, while the effects were reversed by GHRKD. Interestingly, we observed consistent expression of GH transcript in the melanoma cells as well as marked modulation of the IGF receptors and binding proteins (IGF1R, IGF2R, IR, IGFBP2, IGFBP3) and the oncogenic HGF-MET mRNA, in response to excess GH or GHRKD. Our study thus identifies the mechanistic model of GH-GHR action in human melanoma and validates it as an important pharmacological target of intervention.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
48
|
Snail-Modulated MicroRNA 493 Forms a Negative Feedback Loop with the Insulin-Like Growth Factor 1 Receptor Pathway and Blocks Tumorigenesis. Mol Cell Biol 2017; 37:MCB.00510-16. [PMID: 27956702 DOI: 10.1128/mcb.00510-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022] Open
Abstract
In this study, we have identified one microRNA, microRNA 493 (miR-493), which could simultaneously and directly regulate multiple genes downstream of the insulin-like growth factor 1 receptor (IGF1R) pathway, including IGF1R, by binding with complementary sequences in the 3' untranslated region (UTR) of mRNAs of IGF1R, insulin receptor substrate 1 (IRS1), and mitogen-activated protein kinase 1 (MAPK1), thereby potentiating their inhibitory function at multiple levels in development and progression of cancers. This binding was further confirmed by pulldown of miR with AGO-2 antibody. Further, results from head and neck samples showed that miR-493 levels were significantly downregulated in tumors, with a concomitant increase in the expression of IGF1R and key downstream effectors. Functional studies from miR-493 overexpression cells and nude-mouse models revealed the tumor suppressor functions of miR-493. Regulation studies revealed that Snail binds to the miR-493 promoter and represses it. We found the existence of a dynamic negative feedback loop in the regulation of IGF1R and miR-493 mediated via Snail. Our study showed that nicotine treatment significantly decreases the levels of miR-493-with a concomitant increase in the levels of Snail-an indication of progression of cells toward tumorigenesis, reestablishing the role of tobacco as a major risk factor for head and neck cancers and elucidating the mechanism behind nicotine-mediated tumorigenesis.
Collapse
|
49
|
Liu CJ, Yang JH, Huang FZ, Nie WP, Liu CP, Mao XH, Yin XM, Shen XB, Peng C, Chen MF, Jiang B, Liu XY, Wu JS. Glutathione-s-transferase A 4 (GSTA4) suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting AKT pathway. Am J Transl Res 2017; 9:301-315. [PMID: 28337261 PMCID: PMC5340668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies of cancers and its prognosis remains dismal due to the paucity of effective therapeutic targets. Up-regulation of glutathione-s-transferase A 4 (GSTA4) is associated with poor prognosis of HCC, but its functional mechanism in HCC remains unclear. In this study, we investigated the roles of GSTA4 in tumor growth and metastasis of HCC and found that GSTA4 was frequently up-regulated in HCC tissues. Through gain- and loss-of-function studies, GSTA4 was demonstrated to significantly regulate cell proliferation, migration, and invasion in vitro. Furthermore, GSTA4 overexpressing significantly promoted the tumorigenicity and metastasis of HCC cells in nude mice models bearing human HCC, whereas silencing endogenous GSTA4 caused an opposite outcome. Moreover, we demonstrated that GSTA4 enhanced HCC aggressiveness by activating protein kinase B (AKT) signaling. In multivariate analysis, our results GSTA4 overexpression promotes the progression of hepatocellular carcinoma and might represent a novel therapeutic target for its treatment.
Collapse
Affiliation(s)
- Chang Jun Liu
- Department of General Surgery, The Third Xiangya Hospital of Central South University410013, Changsha, Hunan, China
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Jin Hui Yang
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Fei Zhou Huang
- Department of General Surgery, The Third Xiangya Hospital of Central South University410013, Changsha, Hunan, China
| | - Wan Pin Nie
- Department of General Surgery, The Third Xiangya Hospital of Central South University410013, Changsha, Hunan, China
| | - Chu Ping Liu
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Xian Hai Mao
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Xin Min Yin
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Xian Bo Shen
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Mei Fu Chen
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| | - Xun Yang Liu
- Department of General Surgery, The Third Xiangya Hospital of Central South University410013, Changsha, Hunan, China
| | - Jin Shu Wu
- Department of Hepatobiliary Surgery Hunan People’s Hospital410005, Changsha, Hunan, China
| |
Collapse
|
50
|
Wu W, Ma J, Shao N, Shi Y, Liu R, Li W, Lin Y, Wang S. Co-Targeting IGF-1R and Autophagy Enhances the Effects of Cell Growth Suppression and Apoptosis Induced by the IGF-1R Inhibitor NVP-AEW541 in Triple-Negative Breast Cancer Cells. PLoS One 2017; 12:e0169229. [PMID: 28046018 PMCID: PMC5207513 DOI: 10.1371/journal.pone.0169229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most intractable type of breast cancer, and there is a lack of effective targeted therapy. Insulin-like growth factor-1 receptor (IGF-1R) is reportedly a potential target for TNBC treatment. However, satisfying treatment outcomes in breast cancer patients have yet to be achieved with IGF-1R-targeted agents. METHODS To confirm whether inhibiting IGF-1R could induce autophagy, we detected autophagy-related proteins by western blotting and immunofluorescence staining of LC3-II. The IGF-1R inhibitor NVP-AEW541, autophagy inhibitor 3-methyladenine (3-MA) and Atg7 small interfering RNA (siRNA) were used to further investigate the effects of autophagy induced by IGF-1R inhibition in TNBC cells. The CCK8 assay, EdU assay, apoptosis and cell cycle analyses were applied to test cell function after treatment. RESULTS NVP-AEW541 markedly induced autophagy in TNBC cells by increasing the levels of the autophagy-related protein Beclin-1 and the LC3-II/LC-I ratio and reducing the selective autophagy substrate p62. Joint application of 3-MA or Atg7 siRNA enhanced the cell growth inhibition and apoptosis effects of NVP-AEW541 by arresting cells at G1/G0 phase and increasing Bax expression and decreasing that of Bcl-2. CONCLUSION Targeting IGF-1R in TNBC induces cell-protective autophagy, thereby weakening the therapeutic effect of agents directed toward IGF-1R. Our findings reveal that combined use autophagy-disrupting agents can enhance the therapeutic efficacy of IGF-1R inhibitors in TNBC cells and may provide a valuable treatment strategy for IGF-1R inhibitor-based therapies for TNBC and other IGF-1 signaling-associated tumors.
Collapse
Affiliation(s)
- Weibin Wu
- Department of Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Vascular Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyi Ma
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Department of Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yawei Shi
- Department of Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Li
- Department of Vascular Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Lin
- Department of Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Department of Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Vascular Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|