1
|
Xu J, Wang Z, van Gogh S, Rawlik M, Spindler S, Stampanoni M. Intensity-based iterative reconstruction for helical grating interferometry breast CT with static grating configuration. OPTICS EXPRESS 2022; 30:13847-13863. [PMID: 35472989 DOI: 10.1364/oe.455967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Grating interferometry breast computed tomography (GI-BCT) has the potential to provide enhanced soft tissue contrast and to improve visualization of cancerous lesions for breast imaging. However, with a conventional scanning protocol, a GI-BCT scan requires longer scanning time and higher operation complexity compared to conventional attenuation-based CT. This is mainly due to multiple grating movements at every projection angle, so-called phase stepping, which is used to retrieve attenuation, phase, and scattering (dark-field) signals. To reduce the measurement time and complexity and extend the field of view, we have adopted a helical GI-CT setup and present here the corresponding tomographic reconstruction algorithm. This method allows simultaneous reconstruction of attenuation, phase contrast, and scattering images while avoiding grating movements. Experiments on simulated phantom and real initial intensity, visibility and phase maps are provided to validate our method.
Collapse
|
2
|
Birnbacher L, Braig EM, Pfeiffer D, Pfeiffer F, Herzen J. Quantitative X-ray phase contrast computed tomography with grating interferometry : Biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:4171-4188. [PMID: 33846846 PMCID: PMC8566444 DOI: 10.1007/s00259-021-05259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The ability of biomedical imaging data to be of quantitative nature is getting increasingly important with the ongoing developments in data science. In contrast to conventional attenuation-based X-ray imaging, grating-based phase contrast computed tomography (GBPC-CT) is a phase contrast micro-CT imaging technique that can provide high soft tissue contrast at high spatial resolution. While there is a variety of different phase contrast imaging techniques, GBPC-CT can be applied with laboratory X-ray sources and enables quantitative determination of electron density and effective atomic number. In this review article, we present quantitative GBPC-CT with the focus on biomedical applications.
Collapse
Affiliation(s)
- Lorenz Birnbacher
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva-Maria Braig
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
4
|
Recent advances in X-ray imaging of breast tissue: From two- to three-dimensional imaging. Phys Med 2020; 79:69-79. [PMID: 33171371 DOI: 10.1016/j.ejmp.2020.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a globally widespread disease whose detection has already been significantly improved by the introduction of screening programs. Nevertheless, mammography suffers from low soft tissue contrast and the superposition of diagnostically relevant anatomical structures as well as from low values for sensitivity and specificity especially for dense breast tissue. In recent years, two techniques for X-ray breast imaging have been developed that bring advances for the early detection of breast cancer. Grating-based phase-contrast mammography is a new imaging technique that is able to provide three image modalities simultaneously (absorption-contrast, phase-contrast and dark-field signal). Thus, an enhanced detection and delineation of cancerous structures in the phase-contrast image and an improved visualization and characterization of microcalcifications in the dark-field image is possible. Furthermore, latest studies about this approach show that dose-compatible imaging with polychromatic X-ray sources is feasible. In order to additionally overcome the limitations of projection-based imaging, efforts were also made towards the development of breast computed tomography (BCT), which recently led to the first clinical installation of an absorption-based BCT system. Further research combining the benefits of both imaging technologies is currently in progress. This review article summarizes the latest advances in phase-contrast imaging for the female breast (projection-based and three-dimensional view) with special focus on possible clinical implementations in the future.
Collapse
|
5
|
Heck L, Eggl E, Grandl S, Dierolf M, Jud C, Günther B, Achterhold K, Mayr D, Gleich B, Hellerhoff K, Pfeiffer F, Herzen J. Dose and spatial resolution analysis of grating-based phase-contrast mammography using an inverse Compton x-ray source. J Med Imaging (Bellingham) 2020; 7:023505. [PMID: 32341937 PMCID: PMC7175026 DOI: 10.1117/1.jmi.7.2.023505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/06/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Although the mortality rate of breast cancer was reduced with the introduction of screening mammography, many women undergo unnecessary subsequent examinations due to inconclusive diagnoses. Superposition of anatomical structures especially within dense breasts in conjunction with the inherently low soft tissue contrast of absorption images compromises image quality. This can be overcome by phase-contrast imaging. Approach: We analyze the spatial resolution of grating-based multimodal mammography using a mammographic phantom and one freshly dissected mastectomy specimen at an inverse Compton x-ray source. Here, the focus was on estimating the spatial resolution with the sample in the beam path and discussing benefits and drawbacks of the method used and the estimation of the mean glandular dose. Finally, the possibility of improving the spatial resolution is investigated by comparing monochromatic grating-based mammography with the standard one. Results: The spatial resolution is constant or also higher for the image acquired with monochromatic radiation and the contrast-to-noise ratio (CNR) is higher in our approach while the dose can be reduced by up to 20%. Conclusions: In summary, phase-contrast imaging helps to improve tumor detection by advanced diagnostic image quality. We demonstrate a higher spatial resolution for one mastectomy specimen and increased CNR at an equal or lower dose for the monochromatic measurements.
Collapse
Affiliation(s)
- Lisa Heck
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Elena Eggl
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Susanne Grandl
- Ludwig Maximilian University of Munich, Institute for Clinical Radiology, Munich, Germany
| | - Martin Dierolf
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Christoph Jud
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Benedikt Günther
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Klaus Achterhold
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Doris Mayr
- Ludwig Maximilian University of Munich, Institute of Pathology, Munich, Germany
| | - Bernhard Gleich
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Karin Hellerhoff
- Ludwig Maximilian University of Munich, Institute for Clinical Radiology, Munich, Germany
| | - Franz Pfeiffer
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany.,Technical University of Munich, School of Medicine and Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Julia Herzen
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| |
Collapse
|
6
|
Advanced 3D Imaging of Uterine Leiomyoma's Morphology by Propagation-based Phase-Contrast Microtomography. Sci Rep 2019; 9:10580. [PMID: 31332223 PMCID: PMC6646365 DOI: 10.1038/s41598-019-47048-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Uterine leiomyoma is the most common benign smooth muscle tumor in women pelvis, originating from the myometrium. It is caused by a disorder of fibrosis, with a large production and disruption of extracellular matrix (ECM). Medical treatments are still very limited and no preventative therapies have been developed. We supposed that synchrotron-based phase-contrast microtomography (PhC-microCT) may be an appropriate tool to assess the 3D morphology of uterine leiomyoma, without the use of any contrast agent. We used this technique to perform the imaging and the quantitative morphometric analysis of healthy myometrium and pathologic leiomyomas. The quantitative morphometric analysis of collagen bundles was coupled to the Roschger approach. This method, previously only used to evaluate mineralized bone density distribution, was applied here to study the fibrosis mass density distribution in healthy and pathologic biopsies from two patients. This protocol was shown to be powerful in studying uterine leiomyomas, detecting also small signs of the ECM alteration. This is of paramount importance not only for the follow-up of the present study, i.e. the investigation of different compounds and their possible therapeutic benefits, but also because it offers new methodologic possibilities for future studies of the ECM in soft tissues of different body districts.
Collapse
|
7
|
Hellerhoff K, Birnbacher L, Sztrókay-Gaul A, Grandl S, Auweter S, Willner M, Marschner M, Mayr D, Reiser MF, Pfeiffer F, Herzen J. Assessment of intraductal carcinoma in situ (DCIS) using grating-based X-ray phase-contrast CT at conventional X-ray sources: An experimental ex-vivo study. PLoS One 2019; 14:e0210291. [PMID: 30625220 PMCID: PMC6326478 DOI: 10.1371/journal.pone.0210291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The extent of intraductal carcinoma in situ (DCIS) is commonly underestimated due to the discontinuous growth and lack of microcalcifications. Specimen radiography has been established to reduce the rate of re-excision. However, the predictive value for margin assessment with conventional specimen radiography for DCIS is low. In this study we assessed the potential of grating-based phase-contrast computed tomography (GBPC-CT) at conventional X-ray sources for specimen tomography of DCIS containing samples. MATERIALS AND METHODS GBPC-CT was performed on four ex-vivo breast specimens containing DCIS and invasive carcinoma of non-specific type. Phase-contrast and absorption-based datasets were manually matched with corresponding histological slices as the standard of reference. RESULTS Matching of CT images and histology was successful. GBPC-CT showed an improved soft tissue contrast compared to absorption-based images revealing more histological details in the same sections. Non-calcifying DCIS exceeding the invasive tumor could be correlated to areas of dilated bright ducts around the tumor. CONCLUSIONS GBPC-CT imaging at conventional X-ray sources offers improved depiction quality for the imaging of breast tissue samples compared to absorption-based imaging, allows the identification of diagnostically relevant tissue details, and provides full three-dimensional assessment of sample margins.
Collapse
MESH Headings
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Calcinosis/diagnostic imaging
- Calcinosis/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Female
- Humans
- In Vitro Techniques
- Mammography/methods
- Microscopy, Phase-Contrast/methods
- Prospective Studies
- Tomography, X-Ray Computed/methods
Collapse
Affiliation(s)
- Karin Hellerhoff
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Lorenz Birnbacher
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- * E-mail:
| | - Anikó Sztrókay-Gaul
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Susanne Grandl
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Sigrid Auweter
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Marian Willner
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Mathias Marschner
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F. Reiser
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
8
|
Brombal L, Golosio B, Arfelli F, Bonazza D, Contillo A, Delogu P, Donato S, Mettivier G, Oliva P, Rigon L, Taibi A, Tromba G, Zanconati F, Longo R. Monochromatic breast computed tomography with synchrotron radiation: phase-contrast and phase-retrieved image comparison and full-volume reconstruction. J Med Imaging (Bellingham) 2018; 6:031402. [PMID: 30525064 DOI: 10.1117/1.jmi.6.3.031402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
A program devoted to performing the first in vivo synchrotron radiation (SR) breast computed tomography (BCT) is ongoing at the Elettra facility. Using the high spatial coherence of SR, phase-contrast (PhC) imaging techniques can be used. The latest high-resolution BCT acquisitions of breast specimens, obtained with the propagation-based PhC approach, are herein presented as part of the SYRMA-3D collaboration effort toward the clinical exam. Images are acquired with a 60 - μ m pixel dead-time-free single-photon-counting CdTe detector. The samples are imaged at 32 and 38 keV in a continuous rotating mode, delivering 5 to 20 mGy of mean glandular dose. Contrast-to-noise ratio (CNR) and spatial resolution performances are evaluated for both PhC and phase-retrieved images, showing that by applying the phase-retrieval algorithm a five-time CNR increase can be obtained with a minor loss in spatial resolution across soft tissue interfaces. It is shown that, despite having a poorer CNR, PhC images can provide a sharper visualization of microcalcifications, thus being complementary to phase-retrieved images. Furthermore, the first full-volume scan of a mastectomy sample ( 9 × 9 × 3 cm 3 ) is reported. This investigation into surgical specimens indicates that SR BCT in terms of CNR, spatial resolution, scan duration, and scan volume is feasible.
Collapse
Affiliation(s)
- Luca Brombal
- University of Trieste, Department of Physics, Trieste, Italy.,INFN Division of Trieste, Trieste, Italy
| | - Bruno Golosio
- University of Cagliari, Department of Physics, Cagliari, Italy.,INFN Division of Cagliari, Cagliari, Italy
| | - Fulvia Arfelli
- University of Trieste, Department of Physics, Trieste, Italy.,INFN Division of Trieste, Trieste, Italy
| | - Deborah Bonazza
- University of Trieste, Department of Medical Science, Cattinara Hospital, Trieste, Italy
| | - Adriano Contillo
- University of Ferrara, Department of Physics and Earth Science, Ferrara, Italy.,INFN Division of Ferrara, Ferrara, Italy
| | - Pasquale Delogu
- University of Siena, Department of Physical Sciences, Earth and Environment, Siena, Italy.,INFN Division of Pisa, Pisa, Italy
| | - Sandro Donato
- University of Trieste, Department of Physics, Trieste, Italy.,INFN Division of Trieste, Trieste, Italy
| | - Giovanni Mettivier
- University of Napoli Federico II, Department of Physics, Napoli, Italy.,INFN Division of Napoli, Napoli, Italy
| | - Piernicola Oliva
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy.,INFN Division of Cagliari, Cagliari, Italy
| | - Luigi Rigon
- University of Trieste, Department of Physics, Trieste, Italy.,INFN Division of Trieste, Trieste, Italy
| | - Angelo Taibi
- University of Ferrara, Department of Physics and Earth Science, Ferrara, Italy.,INFN Division of Ferrara, Ferrara, Italy
| | | | - Fabrizio Zanconati
- University of Trieste, Department of Medical Science, Cattinara Hospital, Trieste, Italy
| | - Renata Longo
- University of Trieste, Department of Physics, Trieste, Italy.,INFN Division of Trieste, Trieste, Italy
| |
Collapse
|
9
|
X-Ray Phase-Contrast Technology in Breast Imaging: Principles, Options, and Clinical Application. AJR Am J Roentgenol 2018; 211:133-145. [DOI: 10.2214/ajr.17.19179] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
De Marco F, Marschner M, Birnbacher L, Noël P, Herzen J, Pfeiffer F. Analysis and correction of bias induced by phase stepping jitter in grating-based X-ray phase-contrast imaging. OPTICS EXPRESS 2018; 26:12707-12722. [PMID: 29801307 DOI: 10.1364/oe.26.012707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Grating-based X-ray phase-contrast (gbPC) is an X-ray phase-contrast imaging method involving optical gratings that typically employs the Talbot self-imaging effect. X-ray phase contrast is known to provide significant benefits for biomedical imaging. To investigate these benefits for gbPC, a high-sensitivity gbPC micro-CT setup for small biological samples has been constructed. A gbPC projection measurement simultaneously retrieves the transmittance, differential-phase and dark-field modalities of a sample. Phase stepping, the most common gbPC acquisition technique, involves several acquisitions at different lateral positions of one of the gratings. The three modalities can then be retrieved by least-squares- or FFT-based methods. Unfortunately, increasing differential-phase sensitivity also leads to an increased magnitude of artifacts introduced during retrieval of the modalities from the phase-stepping data, which limits image quality. Most importantly, processing of phase-stepping data with incorrect stepping positions (i.e., spatial sampling jitter) can introduce artifacts to the modalities. Using data from the high-sensitivity gbPC setup, as well as simulations, we show that an artifact is introduced by the jitter which is correlated with the phase of the stepping curve. We present a theoretical explanation for this correlation by introducing small deviations to an equidistant sampling of a stepping curve and approximating the effect on the calculation of the three gbPC modalities with a first-order Taylor approximation. Finally, we present an algorithm for the detection and removal of these artifacts that exploits these correlations. We show that this algorithm is able to eliminate these artifacts without degrading true image information.
Collapse
|
11
|
Pfeiffer F, Reiser M, Rummeny E. [X‑ray Phase Contrast : Principles, potential and advances in clinical translation]. Radiologe 2018; 58:218-225. [PMID: 29374312 DOI: 10.1007/s00117-018-0357-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
More than 100 years ago Max von Laue in Munich discovered that X‑rays can be interpreted not only as X‑ray quanta in a particle picture, but also show a wave character. This property has been used for a long time in basic research (e.g. in crystallography for determining the structure of proteins), but so far has had no application in medical imaging. In the last 10 years, however, very impressive technological progress could be made in preclinical research, which also makes the utilization of the wave character of X‑ray light possible for medical imaging. These novel radiography procedures, so-called phase-contrast and dark-field imaging, have a great potential for a pronounced improvement in X‑ray imaging and therefore, also the diagnosis of important diseases. This article describes the basic principles of these novel procedures, summarizes the preclinical research results already achieved exemplified by various organs and shows the potential for future clinical utilization in radiography and computed tomography.
Collapse
Affiliation(s)
- F Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Department Physik & Munich School of BioEngineering, Technische Universität München, München, Deutschland. .,Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland.
| | - M Reiser
- Klinik und Poliklinik für Radiologie, Klinikum der Universität, Ludwig-Maximilians-Universität München, München, Deutschland
| | - E Rummeny
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| |
Collapse
|
12
|
Pinkert MA, Salkowski LR, Keely PJ, Hall TJ, Block WF, Eliceiri KW. Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 2018; 5:010901. [PMID: 29392158 PMCID: PMC5777512 DOI: 10.1117/1.jmi.5.1.010901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide and ranks second in terms of overall cancer deaths. One of the difficulties associated with treating breast cancer is that it is a heterogeneous disease with variations in benign and pathologic tissue composition, which contributes to disease development, progression, and treatment response. Many of these phenotypes are uncharacterized and their presence is difficult to detect, in part due to the sparsity of methods to correlate information between the cellular microscale and the whole-breast macroscale. Quantitative multiscale imaging of the breast is an emerging field concerned with the development of imaging technology that can characterize anatomic, functional, and molecular information across different resolutions and fields of view. It involves a diverse collection of imaging modalities, which touch large sections of the breast imaging research community. Prospective studies have shown promising results, but there are several challenges, ranging from basic physics and engineering to data processing and quantification, that must be met to bring the field to maturity. This paper presents some of the challenges that investigators face, reviews currently used multiscale imaging methods for preclinical imaging, and discusses the potential of these methods for clinical breast imaging.
Collapse
Affiliation(s)
- Michael A. Pinkert
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Lonie R. Salkowski
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
| | - Patricia J. Keely
- University of Wisconsin–Madison, Department of Cell and Regenerative Biology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Timothy J. Hall
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Walter F. Block
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
13
|
Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography. Invest Radiol 2017; 52:223-231. [PMID: 28079701 DOI: 10.1097/rli.0000000000000346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to determine the diagnostic accuracy of grating-based phase-contrast computed tomography (gb-PCCT) to classify and quantify coronary vessel characteristics in comparison with optical coherence tomography (OCT) and histopathology in an ex vivo setting. MATERIALS AND METHODS After excision from 5 heart specimens, 15 human coronary arteries underwent gb-PCCT examination using an experimental imaging setup consisting of a rotating molybdenum anode x-ray tube, a Talbot-Lau grating interferometer, and a single photon counting detector. Subsequently, all vessels were imaged by OCT and histopathologically processed. Optical coherence tomography, gb-PCCT, and histopathology images were manually matched using anatomical landmarks. Optical coherence tomography and gb-PCCT were reviewed by 2 independent observers blinded to histopathology. Vessel, lumen, and plaque area were measured, and plaque characteristics (lipid rich, calcified, and fibrous) were determined for each section. Measures of diagnostic accuracy were derived, applying histopathology as the standard of reference. RESULTS Of a total of 286 assessed cross sections, 241 corresponding sections were included in the statistical analysis. Quantitative measures derived from gb-PCCT were significantly higher than from OCT (P < 0.001) and were strongly correlated with histopathology (Pearson r ≥0.85 for gb-PCCT and ≥0.61 for OCT, respectively). Results of Bland-Altman analysis demonstrated smaller mean differences between OCT and histopathology than for gb-PCCT and histopathology. Limits of agreement were narrower for gb-PCCT with regard to lumen area, for OCT with regard to plaque area, and were comparable with regard to vessel area. Based on histopathology, 228/241 (94.6%) sections were classified as fibrous, calcified, or lipid rich. The diagnostic accuracy of gb-PCCT was excellent for the detection of all plaque components (sensitivity, ≥0.95; specificity, ≥0.94), whereas the results for OCT showed sensitivities of ≥0.73 and specificities of ≥0.66. CONCLUSIONS In this ex vivo setting, gb-PCCT provides excellent results in the assessment of coronary atherosclerotic plaque characteristics and vessel dimensions in comparison to OCT and histopathology. Thus, the technique may serve as adjunct nondestructive modality for advanced plaque characterization in an experimental setting.
Collapse
|
14
|
Coello E, Sperl JI, Bequé D, Benz T, Scherer K, Herzen J, Sztrókay-Gaul A, Hellerhoff K, Pfeiffer F, Cozzini C, Grandl S. Fourier domain image fusion for differential X-ray phase-contrast breast imaging. Eur J Radiol 2017; 89:27-32. [DOI: 10.1016/j.ejrad.2017.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/25/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
15
|
Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT. Sci Rep 2017; 7:45400. [PMID: 28361951 PMCID: PMC5374440 DOI: 10.1038/srep45400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.
Collapse
|
16
|
Richter V, Willner MS, Henningsen J, Birnbacher L, Marschner M, Herzen J, Kimm MA, Noël PB, Rummeny EJ, Pfeiffer F, Fingerle AA. Ex vivo characterization of pathologic fluids with quantitative phase-contrast computed tomography. Eur J Radiol 2016; 86:99-104. [PMID: 28027773 DOI: 10.1016/j.ejrad.2016.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/04/2016] [Accepted: 11/06/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE X-ray phase-contrast imaging (PCI) provides additional information beyond absorption characteristics by detecting the phase shift of the X-ray beam passing through material. The grating-based system works with standard polychromatic X-ray sources, promising a possible clinical implementation. PCI has been shown to provide additional information in soft-tissue samples. The aim of this study was to determine if ex vivo quantitative phase-contrast computed tomography (PCCT) may differentiate between pathologic fluid collections. MATERIALS AND METHODS PCCT was performed with the grating interferometry method. A protein serial dilution, human blood samples and 17 clinical samples of pathologic fluid retentions were imaged and correlated with clinical chemistry measurements. Conventional and phase-contrast tomography images were reconstructed. Phase-contrast Hounsfield Units (HUp) were used for quantitative analysis analogously to conventional HU. The imaging was analyzed using overall means, ROI values as well as whole-volume-histograms and vertical gradients. Contrast to noise ratios were calculated between different probes and between imaging methods. RESULTS HUp showed a very good linear correlation with protein concentration in vitro. In clinical samples, HUp correlated rather well with cell count and triglyceride content. PCI was better than absorption imaging at differentiating protein concentrations in the protein samples as well as at differentiating blood plasma from cellular components. PCI also allowed for differentiation of watery samples (such as lymphoceles) from pus. CONCLUSION Phase-contrast computed tomography is a promising tool for the differentiation of pathologic fluids that appear homogenous with conventional attenuation imaging.
Collapse
Affiliation(s)
- Vivien Richter
- Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Weg 3, 72076 Tuebingen, Germany.
| | - Marian S Willner
- Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany.
| | - John Henningsen
- Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany.
| | - Lorenz Birnbacher
- Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany.
| | - Mathias Marschner
- Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany.
| | - Julia Herzen
- Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany.
| | - Melanie A Kimm
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Peter B Noël
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Franz Pfeiffer
- Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany.
| | - Alexander A Fingerle
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
17
|
Allner S, Koehler T, Fehringer A, Birnbacher L, Willner M, Pfeiffer F, Noël PB. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography. Phys Med Biol 2016; 61:3867-56. [PMID: 27100408 DOI: 10.1088/0031-9155/61/10/3867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.
Collapse
Affiliation(s)
- S Allner
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography. Sci Rep 2016; 6:24022. [PMID: 27040492 PMCID: PMC4819174 DOI: 10.1038/srep24022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/18/2016] [Indexed: 11/08/2022] Open
Abstract
The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.
Collapse
|
19
|
Meiser J, Willner M, Schröter T, Hofmann A, Rieger J, Koch F, Birnbacher L, Schüttler M, Kunka D, Meyer P, Faisal A, Amberger M, Duttenhofer T, Weber T, Hipp A, Ehn S, Walter M, Herzen J, Schulz J, Pfeiffer F, Mohr J. Increasing the field of view in grating based X-ray phase contrast imaging using stitched gratings. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:379-388. [PMID: 27257876 DOI: 10.3233/xst-160552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Grating based X-ray differential phase contrast imaging (DPCI) allows for high contrast imaging of materials with similar absorption characteristics. In the last years' publications, small animals or parts of the human body like breast, hand, joints or blood vessels have been studied. Larger objects could not be investigated due to the restricted field of view limited by the available grating area. In this paper, we report on a new stitching method to increase the grating area significantly: individual gratings are merged on a carrier substrate. Whereas the grating fabrication process is based on the LIGA technology (X-ray lithography and electroplating) different cutting and joining methods have been evaluated. First imaging results using a 2×2 stitched analyzer grating in a Talbot-Lau interferometer have been generated using a conventional polychromatic X-ray source. The image quality and analysis confirm the high potential of the stitching method to increase the field of view considerably.
Collapse
Affiliation(s)
- J Meiser
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| | - M Willner
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - T Schröter
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| | - A Hofmann
- Institute for Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - J Rieger
- Erlangen Center for Astroparticle Physics, Friedrich - Alexander - Universität Erlangen - Nürnberg, Erlangen, Germany
| | - F Koch
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| | - L Birnbacher
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - M Schüttler
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - D Kunka
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| | - P Meyer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| | - A Faisal
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| | - M Amberger
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| | | | - T Weber
- Erlangen Center for Astroparticle Physics, Friedrich - Alexander - Universität Erlangen - Nürnberg, Erlangen, Germany
| | - A Hipp
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - S Ehn
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - M Walter
- Microworks GmbH, Karlsruhe, Germany
| | - J Herzen
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - J Schulz
- Microworks GmbH, Karlsruhe, Germany
| | - F Pfeiffer
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - J Mohr
- Institute of Microstructure Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Izadifar Z, Honaramooz A, Wiebe S, Belev G, Chen X, Chapman D. Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments. Biomaterials 2016; 82:151-67. [DOI: 10.1016/j.biomaterials.2015.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 02/01/2023]
|
21
|
Longo R, Arfelli F, Bellazzini R, Bottigli U, Brez A, Brun F, Brunetti A, Delogu P, Di Lillo F, Dreossi D, Fanti V, Fedon C, Golosio B, Lanconelli N, Mettivier G, Minuti M, Oliva P, Pinchera M, Rigon L, Russo P, Sarno A, Spandre G, Tromba G, Zanconati F. Towards breast tomography with synchrotron radiation at Elettra: first images. Phys Med Biol 2016; 61:1634-49. [PMID: 26836274 DOI: 10.1088/0031-9155/61/4/1634] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)(3) CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR.
Collapse
|
22
|
Willner M, Fior G, Marschner M, Birnbacher L, Schock J, Braun C, Fingerle AA, Noël PB, Rummeny EJ, Pfeiffer F, Herzen J. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples. PLoS One 2015; 10:e0137016. [PMID: 26322638 PMCID: PMC4556454 DOI: 10.1371/journal.pone.0137016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.
Collapse
Affiliation(s)
- Marian Willner
- Department of Physics & Institute of Medical Engineering, Technische Universität München, Garching, Germany
- * E-mail:
| | - Gabriel Fior
- Department of Physics & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - Mathias Marschner
- Department of Physics & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - Lorenz Birnbacher
- Department of Physics & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - Jonathan Schock
- Department of Physics & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - Christian Braun
- Institute of Forensic Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander A. Fingerle
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Peter B. Noël
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Franz Pfeiffer
- Department of Physics & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | - Julia Herzen
- Department of Physics & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| |
Collapse
|
23
|
Pacilè S, Brun F, Dullin C, Nesterest YI, Dreossi D, Mohammadi S, Tonutti M, Stacul F, Lockie D, Zanconati F, Accardo A, Tromba G, Gureyev TE. Clinical application of low-dose phase contrast breast CT: methods for the optimization of the reconstruction workflow. BIOMEDICAL OPTICS EXPRESS 2015; 6:3099-3112. [PMID: 26309770 PMCID: PMC4541534 DOI: 10.1364/boe.6.003099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 05/29/2023]
Abstract
Results are presented of a feasibility study of three-dimensional X-ray tomographic mammography utilising in-line phase contrast. Experiments were performed at SYRMEP beamline of Elettra synchrotron. A specially designed plastic phantom and a mastectomy sample containing a malignant lesion were used to study the reconstructed image quality as a function of different image processing operations. Detailed evaluation and optimization of image reconstruction workflows have been carried out using combinations of several advanced computed tomography algorithms with different pre-processing and post-processing steps. Special attention was paid to the effect of phase retrieval on the diagnostic value of the reconstructed images. A number of objective image quality indices have been applied for quantitative evaluation of the results, and these were compared with subjective assessments of the same images by three experienced radiologists and one pathologist. The outcomes of this study provide practical guidelines for the optimization of image processing workflows in synchrotron-based phase-contrast mammo-tomography.
Collapse
Affiliation(s)
- S. Pacilè
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza (Trieste),
Italy
- Department of Engineering and Architecture, University of Trieste, Trieste,
Italy
| | - F. Brun
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza (Trieste),
Italy
- Department of Engineering and Architecture, University of Trieste, Trieste,
Italy
| | - C. Dullin
- Department of Diagnostic and Interventional Radiology, University Hospital Goettingen, Goettingen,
Germany
| | - Y. I. Nesterest
- Commonwealth Scientific and Industrial Research Organisation, Melbourne,
Australia
| | - D. Dreossi
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza (Trieste),
Italy
| | - S. Mohammadi
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza (Trieste),
Italy
- The Abdus Salam International Centre for Theoretical Physics, Trieste,
Italy
- now at LAC+ USC Medical Center, Los Angeles, CA,
USA
| | - M. Tonutti
- AOU - Trieste Hospital, Department of Radiology, Trieste,
Italy
| | - F. Stacul
- AOU - Trieste Hospital, Department of Radiology, Trieste,
Italy
| | - D. Lockie
- Maroondah BreastScreen, Melbourne,
Australia
| | - F. Zanconati
- Department of Medical Science-Unit of Pathology, University of Trieste, Trieste,
Italy
| | - A. Accardo
- Department of Engineering and Architecture, University of Trieste, Trieste,
Italy
| | - G. Tromba
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza (Trieste),
Italy
| | - T. E. Gureyev
- Commonwealth Scientific and Industrial Research Organisation, Melbourne,
Australia
- School of Physics and Astronomy, Monash University, Clayton, VIC,
Australia
- School of Science and Engineering, University of New England, Armidale, NSW,
Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville,
Australia
| |
Collapse
|
24
|
Hipp A, Willner M, Herzen J, Auweter S, Chabior M, Meiser J, Achterhold K, Mohr J, Pfeiffer F. Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources. OPTICS EXPRESS 2014; 22:30394-30409. [PMID: 25606986 DOI: 10.1364/oe.22.030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Grating interferometry has been successfully adapted at standard X-ray tubes and is a promising candidate for a broad use of phase-contrast imaging in medical diagnostics or industrial testing. The achievable image quality using this technique is mainly dependent on the interferometer performance with the interferometric visibility as crucial parameter. The presented study deals with experimental investigations of the spectral dependence of the visibility in order to understand the interaction between the single contributing energies. Especially for the choice which type of setup has to be preferred using a polychromatic source, this knowledge is highly relevant. Our results affirm previous findings from theoretical investigations but also show that measurements of the spectral contributions to the visibility are necessary to fully characterize and optimize a grating interferometer and cannot be replaced by only relying on simulated data up to now.
Collapse
|