1
|
Takasato S, Bando T, Ohnishi K, Tsuzuki M, Hikichi Y, Kiba A. Phosphatidylinositol-phospholipase C3 negatively regulates the hypersensitive response via complex signaling with MAP kinase, phytohormones, and reactive oxygen species in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4721-4735. [PMID: 37191942 PMCID: PMC10433933 DOI: 10.1093/jxb/erad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Phospholipid signaling plays important roles in plant immune responses. Here, we focused on two phospholipase C3 (PLC3) orthologs in the Nicotiana benthamiana genome, NbPLC3-1 and NbPLC3-2. We generated NbPLC3-1 and NbPLC3-2-double-silenced plants (NbPLC3s-silenced plants). In NbPLC3s-silenced plants challenged with Ralstonia solanacearum 8107, induction of hypersensitive response (HR)-related cell death and bacterial population reduction was accelerated, and the expression level of Nbhin1, a HR marker gene, was enhanced. Furthermore, the expression levels of genes involved in salicylic acid and jasmonic acid signaling drastically increased, reactive oxygen species production was accelerated, and NbMEK2-induced HR-related cell death was also enhanced. Accelerated HR-related cell death was also observed by bacterial pathogens Pseudomonas cichorii, P. syringae, bacterial AvrA, oomycete INF1, and TMGMV-CP with L1 in NbPLC3s-silenced plants. Although HR-related cell death was accelerated, the bacterial population was not reduced in double NbPLC3s and NbCoi1-suppressed plants nor in NbPLC3s-silenced NahG plants. HR-related cell death acceleration and bacterial population reduction resulting from NbPLC3s-silencing were compromised by the concomitant suppression of either NbPLC3s and NbrbohB (respiratory oxidase homolog B) or NbPLC3s and NbMEK2 (mitogen activated protein kinase kinase 2). Thus, NbPLC3s may negatively regulate both HR-related cell death and disease resistance through MAP kinase- and reactive oxygen species-dependent signaling. Disease resistance was also regulated by NbPLC3s through jasmonic acid- and salicylic acid-dependent pathways.
Collapse
Affiliation(s)
- Shiori Takasato
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Takuya Bando
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Tsuzuki
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
2
|
Pei M, Xie X, Peng B, Chen X, Chen Y, Li Y, Wang Z, Lu G. Identification and Expression Analysis of Phosphatidylinositol Transfer Proteins Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112122. [PMID: 37299101 DOI: 10.3390/plants12112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the OsPITPs genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of OsML-1, OsSEC14-3, OsSEC14-4, OsSEC14-15, and OsSEC14-19 genes were significantly affected by infection of rice blast fungus Magnaporthe oryzae. Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to M. oryzae infection through the Me JA and SA pathway.
Collapse
Affiliation(s)
- Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoyi Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinchi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Fukui K, Ohnishi K, Hikichi Y, Kiba A. Phosphatidylinositol-phospholipase C4 suppresses the hypersensitive response of Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:87-92. [PMID: 38213930 PMCID: PMC10777131 DOI: 10.5511/plantbiotechnology.22.1207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2024]
Abstract
Phospholipid signaling plays an important role in plant immune responses. Here, we isolated two phospholipase C4 (PLC4) orthologs in the Nicotiana benthamiana genome, designated as N. benthamiana PLC4-1 and PLC4-2 (NbPLC4-1 and NbPLC4-2). We created NbPLC4-1- and NbPLC4-2- silenced plants. Induction of the hypersensitive response (HR), including HR cell death and bacterial population reduction, was accelerated in both NbPLC4-1- and NbPLC4-2-silenced plants challenged with N. benthamiana-incompatible Ralstonia solanacearum 8107. The NbPLC4-1- and NbPLC4-2-silenced plants also showed enhanced expression of Nbhin1, a HR marker gene. Expressions of genes for salicylic acid (SA) and jasmonic acid (JA) signaling were drastically increased in NbPLC4-1- and NbPLC4-2-silenced plants by R. solanacearum inoculation. In addition, NbPLC4-1 and NbPLC4-2 silencing triggered reactive oxygen species (ROS) hyper-production. These results suggest that NbPLC4s are closely associated with JA, SA, and ROS signaling and act as negative regulators of the HR in N. benthamiana.
Collapse
Affiliation(s)
- Kotoko Fukui
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant-Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
4
|
Tagami S, Ohnishi K, Hikichi Y, Kiba A. Trigalactosyldiacylglycerol 3 protein orthologs are required for basal disease resistance in Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:373-378. [PMID: 34782825 PMCID: PMC8562578 DOI: 10.5511/plantbiotechnology.21.0624a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Phosphatidic acid plays an important role in Nicotiana benthamiana immune responses against phytopathogenic bacteria. We analyzed the contributions of endoplasmic reticulum-derived chloroplast phospholipids, including phosphatidic acid, to the resistance of N. benthamiana against Ralstonia solanacearum. Here, we focused on trigalactosyldiacylglycerol 3 (TGD3) protein as a candidate required for phosphatidic acid signaling. On the basis of Arabidopsis thaliana TGD3 sequences, we identified two putative TGD3 orthologs in the N. benthamiana genome, NbTGD3-1 and NbTGD3-2. To address the role of TGD3s in plant defense responses, we created double NbTGD3-silenced plants using virus-induced gene silencing. The NbTGD3-silenced plants showed a moderately reduced growth phenotype. Bacterial growth and the appearance of bacterial wilt disease were accelerated in NbTGD3-silenced plants, compared with control plants, challenged with R. solanacearum. The NbTGD3-silenced plants showed reduced both expression of allene oxide synthase that encoded jasmonic acid biosynthetic enzyme and NbPR-4, a marker gene for jasmonic acid signaling, after inoculation with R. solanacearum. Thus, NbTGD3-mediated endoplasmic reticulum-chloroplast lipid transport might be required for jasmonic acid signaling-mediated basal disease resistance in N. benthamiana.
Collapse
Affiliation(s)
- Shuhei Tagami
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
5
|
Cavaco AR, Matos AR, Figueiredo A. Speaking the language of lipids: the cross-talk between plants and pathogens in defence and disease. Cell Mol Life Sci 2021; 78:4399-4415. [PMID: 33638652 PMCID: PMC11073031 DOI: 10.1007/s00018-021-03791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
Lipids and fatty acids play crucial roles in plant immunity, which have been highlighted over the past few decades. An increasing number of studies have shown that these molecules are pivotal in the interactions between plants and their diverse pathogens. The roles played by plant lipids fit in a wide spectrum ranging from the first physical barrier encountered by the pathogens, the cuticle, to the signalling pathways that trigger different immune responses and expression of defence-related genes, mediated by several lipid molecules. Moreover, lipids have been arising as candidate biomarkers of resistance or susceptibility to different pathogens. Studies on the apoplast and extracellular vesicles have been highlighting the possible role of lipids in the intercellular communication and the establishment of systemic acquired resistance during plant-pathogen interactions. From the pathogen perspective, lipid metabolism and specific lipid molecules play pivotal roles in the pathogen's life cycle completion, being crucial during recognition by the plant and evasion from the host immune system, therefore potentiating infection. Studies conducted in the last years have contributed to a better understanding of the language of lipids during the cross-talk between plants and pathogens. However, it is essential to continue exploring the knowledge brought up to light by transcriptomics and proteomics studies towards the elucidation of lipid signalling processes during defence and disease. In this review, we present an updated overview on lipids associated to plant-pathogen interactions, exploiting their roles from the two sides of this battle.
Collapse
Affiliation(s)
- Ana Rita Cavaco
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Matos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
6
|
Fu J, Shi Y, Wang L, Zhang H, Li J, Fang J, Ji R. Planthopper-Secreted Salivary Disulfide Isomerase Activates Immune Responses in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:622513. [PMID: 33537052 PMCID: PMC7848103 DOI: 10.3389/fpls.2020.622513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 05/30/2023]
Abstract
The small brown planthopper (Laodelphax striatellus; SBPH) is a piercing-sucking insect that secretes salivary proteins into its plant host during feeding. However, the mechanisms by which these salivary proteins regulate plant defense responses remain poorly understood. Here, we identified the disulfide isomerase (LsPDI1) in the SBPH salivary proteome. LsPDI1 was highly expressed in the SBPH salivary glands and secreted into rice plants during feeding. Transient in planta LsPDI1 expression in the absence of signal peptide induced reactive oxygen species (ROS) burst, cell death, callose deposition, and jasmonic acid (JA) signaling pathway. Deletion mutant analysis revealed that either the a-b-b' or the b-b'-a' domains in LsPDI1 are required to induce cell death in plants. LsPDI1 and its orthologs were highly conserved among various planthopper species and strongly induced ROS burst and cell death in plants. Transient in Nicotiana benthamiana LsPDI1 expression impaired the performance of Spodoptera frugiperda and Myzus persicae on host plants. Hence, LsPDI1 is an important salivary elicitor that enhances plant resistance to insects by inducing the calcium, ROS, and JA signaling pathways. The findings of this study provide novel insights into the molecular mechanisms underlying plant-insect interactions.
Collapse
Affiliation(s)
- Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Champeyroux C, Stoof C, Rodriguez-Villalon A. Signaling phospholipids in plant development: small couriers determining cell fate. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:61-71. [PMID: 32771964 DOI: 10.1016/j.pbi.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 05/23/2020] [Indexed: 05/25/2023]
Abstract
The survival of plants hinges on their ability to perceive various environmental stimuli and translate them into appropriate biochemical responses. Phospholipids, a class of membrane lipid compounds that are asymmetrically distributed within plant cells, stand out among signal transmitters for their diversity of mechanisms by which they modulate stress and developmental processes. By modifying the chemo-physical properties of the plasma membrane (PM) as well as vesicle trafficking, phospholipids contribute to changes in the protein membrane landscape, and hence, signaling responses. In this article, we review the distinct signaling mechanisms phospholipids are involved in, with a special focus on the nuclear role of these compounds. Additionally, we summarize exemplary developmental processes greatly influenced by phospholipids.
Collapse
Affiliation(s)
- Chloe Champeyroux
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Claudia Stoof
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
8
|
Kiba A, Fukui K, Mitani M, Galis I, Hojo Y, Shinya T, Ohnishi K, Hikichi Y. Silencing of phosphoinositide dependent protein kinase orthologs reduces hypersensitive cell death in Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:363-367. [PMID: 33088202 PMCID: PMC7557664 DOI: 10.5511/plantbiotechnology.20.0511b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Phosphatidic acid plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here we focused on phosphoinositide dependent protein kinases (PDKs) as a candidate required for phosphatidic acid signaling. Based on Arabidopsis PDK sequences, we identified four putative PDK orthologs in N. benthamiana genome. To address the role of PDKs in plant defense responses, we created all four NbPDKs-silenced plants by virus-induced gene silencing. the NbPDKs-silenced plants showed a moderately reduced growth phenotype. Induction of hypersensitive cell death was compromised in the NbPDKs-silenced plants challenged with Ralstonia solanacearum. The hypersensitive cell death induced by bacterial effectors was also reduced in the NbPDKs-silenced plants. the NbPDKs-silenced plants showed decreased production of salicylic acid, jasmonic acid and jasmonoyl-L-isoleucine, as well as hydrogen peroxide after inoculation with R. solanacearum. These results suggest that NbPDKs might have an important role in the regulation of the hypersensitive cell death via plant hormone signaling and oxidative burst.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kotoko Fukui
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Maki Mitani
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
9
|
Kiba A, Nakano M, Hosokawa M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y. Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5027-5038. [PMID: 32412590 PMCID: PMC7410187 DOI: 10.1093/jxb/eraa233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here, we isolated two phospholipase C2 (PLC2) orthologs in the N. benthamiana genome, designated as PLC2-1 and 2-2. Both NbPLC2-1 and NbPLC2-2 were expressed in most tissues and were induced by infiltration with bacteria and flg22. NbPLC2-1 and NbPLC2-2 (NbPLC2s) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in NbPLC2s-silenced plants when they were challenged with a virulent strain of Ralstonia solanacearum that was compatible with N. benthamiana. NbPLC2s-silenced plants showed reduced expression levels of NbPR-4, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with R. solanacearum. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in NbPLC2s-silenced plants after infiltration with R. solanacearum or Pseudomonas fluorescens. Accordingly, the resistance induced by flg22 was compromised in NbPLC2s-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, NbPLC2s might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, 7549–1 Kibichuo-cho, Kaga-gun, Okayama, Japan
| | - Miki Hosokawa
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Hiroko Nakatani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
10
|
Zhang R, Liu C, Song X, Sun F, Xiao D, Wei Y, Hou X, Zhang C. Genome-wide association study of turnip mosaic virus resistance in non-heading Chinese cabbage. 3 Biotech 2020; 10:363. [PMID: 32832324 DOI: 10.1007/s13205-020-02344-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/30/2020] [Indexed: 10/23/2022] Open
Abstract
A genome-wide association study (GWAS) using 83 diverse non-heading Chinese cabbage (NHCC) accessions identified 42,526 high-quality single nucleotide polymorphism markers associated with turnip mosaic virus (TuMV) resistance. Seventeen associated loci were identified, along with the related genes that were differentially expressed between resistant and susceptible varieties, suggesting that they may be candidate genes for TuMV tolerance. Nine mutant genes of Arabidopsis were selected for inoculation with TuMV-GFP (green fluorescence protein) to further confirm the disease resistance of these genes. Quantitative polymerase chain reaction (qPCR) analysis showed that the virus content in the Arabidopsis mutants with the homologous genes of cell wall-associated proteins, pectin methyl-esterase (PME), transcription factors (TFs), resistance gene (R), VAN3/SFC protein and F-box gene were significantly higher than that in the mutants with the homologous genes of methylation and J protein. Our results provide the basis of further study of the potential function of these candidate TuMV resistance genes and demonstrate that the described diverse NHCC can be efficiently used for GWAS of various quantitative traits. Taken together, the findings of this study will be useful to improve TuMV resistance in NHCC breeding and to discover new genes related to TuMV resistance.
Collapse
Affiliation(s)
- Rujia Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China
| | - Chang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China
| | - Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China
| | - Feifei Sun
- Nanjing Vegetable Science Research Institute, Nanjing, 210042 Jiangsu People's Republic of China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China
| | - Yanping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China
| |
Collapse
|
11
|
Huang J, Zhang N, Shan J, Peng Y, Guo J, Zhou C, Shi S, Zheng X, Wu D, Guan W, Yang K, Du B, Zhu L, Yuan L, He G, Chen R. Salivary Protein 1 of Brown Planthopper Is Required for Survival and Induces Immunity Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:571280. [PMID: 32973857 PMCID: PMC7481525 DOI: 10.3389/fpls.2020.571280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 05/13/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål, is one of the major pests of rice. It uses its stylet to penetrate rice phloem, feeding on rice sap and causing direct damage to rice or even plant death. During the feeding process, BPHs secrete saliva into plant tissues, which plays crucial roles in the plant-insect interactions. However, little is known about how the salivary proteins secreted by BPH affect feeding ability and how they induce plant immune responses. Here, we identified an N. lugens Salivary Protein 1 (NlSP1) by screening salivary proteome and characterized its functions in BPH and plants. NlSP1 induces cell death, H2O2 accumulation, the expression of defense-related genes, and callose deposition in planta. The active region of NlSP1 that induces plant cell death is located in its N-terminal region. Inhibition of NlSP1 expression in BPHs reduced their feeding ability and had a lethal effect on them. Most importantly, we demonstrated that NlSP1 was able to be secreted into rice plant during feeding process and form a complex with certain interacting partner of rice. These results provide a detailed characterization of a salivary protein from BPHs and offers new insights into our understanding of rice-BPH interaction.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ning Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junhan Shan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yaxin Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Rongzhi Chen,
| |
Collapse
|
12
|
Hua-Ying M, Wen-Ju W, Wei-Hua S, Ya-Chun S, Feng L, Cong-Na L, Ling W, Xu Z, Li-Ping X, You-Xiong Q. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. PLANT CELL REPORTS 2019; 38:637-655. [PMID: 30747272 DOI: 10.1007/s00299-019-02394-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Six Sec14-like PITP genes from sugarcane were identified, two of them were cloned, and their biological functions were characterized indicating their involvement in plant defense against biotic and abiotic stresses. Sec14, a phosphatidylinositol transfer protein (PITP) is widely present in eukaryotes. In this study, the structure and expression patterns of six Sec14-like PITP genes (ScSEC14-1, ScSEC14p, ScSFH1, ScSFH2, ScPATL1, and ScPATL2) from sugarcane were analyzed, and two of them (ScSEC14-1 and ScSEC14p) were cloned and functionally verified. Phylogenetic analysis divided these genes into four groups, including group I (ScSFH1 and ScSFH2), group II (ScPATL1 and ScPATL2), Group III (ScSEC14p), and group V (ScSEC14-1). qRT-PCR analysis showed tissue-specific expression of these genes, primarily in the root, leaf, and bud tissues. They responded differently to SA, MeJA, and ABA stresses. ScSEC14-1, ScSEC14p, and ScSFH2 were upregulated by CuCl2 and CdCl2, while ScSEC14-1, ScSFH1, ScSFH2, and ScPATL1 were upregulated by PEG and NaCl. When infected by Sporisorium scitamineum, the transcripts of ScSFH1, ScSFH2, ScPATL1, and ScPATL2 were upregulated in the resistant genotype Yacheng 05-179, while those of ScSEC14-1 and ScSEC14p were upregulated in the susceptible genotype ROC22. Subcellular localization showed that ScSEC14-1 and ScSEC14p were mainly localized in the plasma membrane and cytoplasm. Enhanced growth of Escherichia coli BL21 cells expressing ScSEC14-1 and ScSEC14p showed high tolerance to NaCl and mannitol stresses. The transient overexpression of ScSEC14-1 and ScSEC14p in Nicotiana benthamiana leaves enhanced its resistance to the infection of tobacco pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. We can conclude the involvement of ScSEC14-1 and ScSEC14p in the defense against biotic and abiotic stresses, which should facilitate further research on Sec14-like PITP gene family, especially its regulatory mechanisms in sugarcane.
Collapse
Affiliation(s)
- Mao Hua-Ying
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Wen-Ju
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Su Wei-Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Su Ya-Chun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liu Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Cong-Na
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhang Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Li-Ping
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Que You-Xiong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Hayashi K, Kai K, Mori Y, Ishikawa S, Ujita Y, Ohnishi K, Kiba A, Hikichi Y. Contribution of a lectin, LecM, to the quorum sensing signalling pathway of Ralstonia solanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2019; 20:334-345. [PMID: 30312504 PMCID: PMC6637872 DOI: 10.1111/mpp.12757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The soil-borne bacterium Ralstonia solanacearum invades the roots and colonizes the intercellular spaces and then the xylem. The expression of lecM, encoding a lectin LecM, is induced by an OmpR family response regulator HrpG in R. solanacearum strain OE1-1. LecM contributes to the attachment of strain OE1-1 to the host cells of intercellular spaces. OE1-1 produces methyl 3-hydroxymyristate (3-OH MAME) through a methyltransferase (PhcB) and extracellularly secretes the chemical as a quorum sensing (QS) signal, which activates QS. The expression of lecM is also induced by the PhcA virulence regulator functioning through QS, and the resulting LecM is implicated in the QS-dependent production of major exopolysaccharide EPS I and the aggregation of OE1-1 cells. To investigate the function of LecM in QS, we analysed the transcriptome of R. solanacearum strains generated by RNA sequencing technology. In the lecM mutant, the expression of positively QS-regulated genes and negatively QS-regulated genes was down-regulated (by >90%) and up-regulated (by ~60%), respectively. However, phcB and phcA in the lecM mutant were expressed at levels similar to those in strain OE1-1. The lecM mutant produced significantly less ralfuranone and exhibited a significantly greater swimming motility, which were positively and negatively regulated by QS, respectively. In addition, the extracellular 3-OH MAME content of the lecM mutant was significantly lower than that of OE1-1. The application of 3-OH MAME more strongly increased EPS I production in the phcB-deleted mutant and strain OE1-1 than in the lecM mutant. Thus, the QS-dependent production of LecM contributes to the QS signalling pathway.
Collapse
Affiliation(s)
- Kazusa Hayashi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Yuka Mori
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Yumeto Ujita
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsaka599‐8531Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityNankokuKochi783‐8502Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityNankokuKochi783‐8502Japan
| |
Collapse
|
14
|
Kiba A, Nakano M, Ohnishi K, Hikichi Y. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:212-218. [PMID: 29475087 DOI: 10.1016/j.plaphy.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
We previously revealed that the SEC14 phospholipid transfer protein from Nicotiana benthamiana (NbSEC14) has a role in plant immune responses against phytopathogenic bacteria in a hypersensitive response-independent manner. To characterize the role of NbSEC14 on plant immunity, we analyzed the relationship between NbSEC14 and pathogen-associated molecular pattern-triggered immunity (PTI). NbSEC14-silenced plants exhibited down-regulated expression of PTI marker genes (NbAcre31 and NbPti5) after being inoculated with Pseudomonas syringae pv. tabaci. Additionally, we observed accelerated bacterial growth and inhibited expression of PTI marker genes in NbSEC14-silenced plants infected with the hrp-deficient P. syringae pv. tabaci mutant. We used Pseudomonas fluorescens and flg22 as PTI inducers to further examine the association between NbSEC14 and the induction of PTI. The expression of PTI marker genes was compromised in NbSEC14-silenced plants infiltrated with P. fluorescens and flg22. Meanwhile, a cell death-based PTI assay indicated NbSEC14 was required for PTI. Furthermore, callose deposition and disease resistance induced by flg22 were compromised in NbSEC14-silenced plants. These results suggest that NbSEC14 may help regulate the induction of PTI.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan; Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
15
|
Hu Y, Ren J, Peng Z, Umana AA, Le H, Danilova T, Fu J, Wang H, Robertson A, Hulbert SH, White FF, Liu S. Analysis of Extreme Phenotype Bulk Copy Number Variation (XP-CNV) Identified the Association of rp1 with Resistance to Goss's Wilt of Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:110. [PMID: 29479358 PMCID: PMC5812337 DOI: 10.3389/fpls.2018.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 05/19/2023]
Abstract
Goss's wilt (GW) of maize is caused by the Gram-positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn) and has spread in recent years throughout the Great Plains, posing a threat to production. The genetic basis of plant resistance is unknown. Here, a simple method for quantifying disease symptoms was developed and used to select cohorts of highly resistant and highly susceptible lines known as extreme phenotypes (XP). Copy number variation (CNV) analyses using whole genome sequences of bulked XP revealed 141 genes containing CNV between the two XP groups. The CNV genes include the previously identified common rust resistant locus rp1. Multiple Rp1 accessions with distinct rp1 haplotypes in an otherwise susceptible accession exhibited hypersensitive responses upon inoculation. GW provides an excellent system for the genetic dissection of diseases caused by closely related subspecies of C. michiganesis. Further work will facilitate breeding strategies to control GW and provide needed insight into the resistance mechanism of important related diseases such as bacterial canker of tomato and bacterial ring rot of potato.
Collapse
Affiliation(s)
- Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Jie Ren
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Arnoldo A. Umana
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Ha Le
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Tatiana Danilova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Junjie Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan Wang
- Department of Statistics, Kansas State University, Manhattan, KS, United States
| | - Alison Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
16
|
Shangguan X, Zhang J, Liu B, Zhao Y, Wang H, Wang Z, Guo J, Rao W, Jing S, Guan W, Ma Y, Wu Y, Hu L, Chen R, Du B, Zhu L, Yu D, He G. A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants. PLANT PHYSIOLOGY 2018; 176:552-565. [PMID: 29133370 PMCID: PMC5761773 DOI: 10.1104/pp.17.00755] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/09/2017] [Indexed: 05/20/2023]
Abstract
The brown planthopper, Nilaparvata lugens, is a pest that threatens rice (Oryza sativa) production worldwide. While feeding on rice plants, planthoppers secrete saliva, which plays crucial roles in nutrient ingestion and modulating plant defense responses, although the specific functions of salivary proteins remain largely unknown. We identified an N. lugens-secreted mucin-like protein (NlMLP) by transcriptome and proteome analyses and characterized its function, both in brown planthopper and in plants. NlMLP is highly expressed in salivary glands and is secreted into rice during feeding. Inhibition of NlMLP expression in planthoppers disturbs the formation of salivary sheaths, thereby reducing their performance. In plants, NlMLP induces cell death, the expression of defense-related genes, and callose deposition. These defense responses are related to Ca2+ mobilization and the MEK2 MAP kinase and jasmonic acid signaling pathways. The active region of NlMLP that elicits plant responses is located in its carboxyl terminus. Our work provides a detailed characterization of a salivary protein from a piercing-sucking insect other than aphids. Our finding that the protein functions in plant immune responses offers new insights into the mechanism underlying interactions between plants and herbivorous insects.
Collapse
Affiliation(s)
- Xinxin Shangguan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Bingfang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Zhizheng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Weiwei Rao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Shengli Jing
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Liang Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Dazhao Yu
- Institute for Plant Protection and Soil Sciences, Hubei Academy of Agricultural Sciences, 430064 Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
17
|
Blüher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Wörner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U. A 1-phytase type III effector interferes with plant hormone signaling. Nat Commun 2017; 8:2159. [PMID: 29255246 PMCID: PMC5735085 DOI: 10.1038/s41467-017-02195-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
Most Gram-negative phytopathogenic bacteria inject type III effector (T3E) proteins into plant cells to manipulate signaling pathways to the pathogen's benefit. In resistant plants, specialized immune receptors recognize single T3Es or their biochemical activities, thus halting pathogen ingress. However, molecular function and mode of recognition for most T3Es remains elusive. Here, we show that the Xanthomonas T3E XopH possesses phytase activity, i.e., dephosphorylates phytate (myo-inositol-hexakisphosphate, InsP6), the major phosphate storage compound in plants, which is also involved in pathogen defense. A combination of biochemical approaches, including a new NMR-based method to discriminate inositol polyphosphate enantiomers, identifies XopH as a naturally occurring 1-phytase that dephosphorylates InsP6 at C1. Infection of Nicotiana benthamiana and pepper by Xanthomonas results in a XopH-dependent conversion of InsP6 to InsP5. 1-phytase activity is required for XopH-mediated immunity of plants carrying the Bs7 resistance gene, and for induction of jasmonate- and ethylene-responsive genes in N. benthamiana.
Collapse
Affiliation(s)
- Doreen Blüher
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Debabrata Laha
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Sabine Thieme
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Alexandre Hofer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Antonia Masch
- Institute for Biochemistry and Biotechnology, Department of Enzymology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle (Saale), Germany
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Igor Pavlovic
- Institute of Organic Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Oliver Nagel
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Antje Schonsky
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Rahel Hinkelmann
- Institute of Organic Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Jakob Wörner
- Institute of Physical Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Nargis Parvin
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max-Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Mike Schutkowski
- Institute for Biochemistry and Biotechnology, Department of Enzymology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle (Saale), Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Henning Jessen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Organic Chemistry, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany.
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ulla Bonas
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany.
| |
Collapse
|
18
|
Sumida S, Ito M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y, Kiba A. Phosphoinositide 3-kinase participates in l-methionine sulfoximine-induced cell death via salicylic acid mediated signaling in Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:167-170. [PMID: 28866325 DOI: 10.1016/j.jplph.2017.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Pseudomonas syringae pv. tabaci causes wildfire disease by the action of tabtoxinine-β-lactam (TβL), a non-specific bacterial toxin. To better understand the molecular mechanisms of wildfire disease and its development, we focused on the phosphoinositide 3-kinase in Nicotiana benthamiana (NbPI3K) and its potential role in the disease outbreak, using l-methionine sulfoximine (MSX) as an easily accessible mimic of the TβL action. The NbPI3K-silenced plants showed accelerated induction of cell death and necrotic lesion formation by MSX, and the expression of hin1, marker gene for the programmed cell death, was strongly induced in the plants. However, the accumulation of ammonium ions, caused by MSX inhibition of glutamine sythetase activity, was not affected by the NbPI3K-silencing. Interestingly, the expression of PR-1a, a marker gene for salicylic acid (SA) innate immunity signaling, and accumulation of SA were both enhanced in the NbPI3K-silenced plants. Accordingly, the acceleration of MSX-induced cell death by NbPI3K-silencing was reduced in NahG plants, and by double silencing of NbPI3K together with the NbICS1 encoding a SA-biosynthetic enzyme. As silencing of NbPI3K accelerated the TβL-induced necrotic lesions, and lesions of wildfire disease caused by P. syringae pv. tabaci, these results suggest that the NbPI3K-related pathway might act as a negative regulator of cell death during development of wildfire disease that involves SA-dependent signaling pathway downstream of TβL action in N. benthamiana.
Collapse
Affiliation(s)
- Sayuri Sumida
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Makoto Ito
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Hiroko Nakatani
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan.
| |
Collapse
|
19
|
Hikichi Y, Mori Y, Ishikawa S, Hayashi K, Ohnishi K, Kiba A, Kai K. Regulation Involved in Colonization of Intercellular Spaces of Host Plants in Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2017; 8:967. [PMID: 28642776 PMCID: PMC5462968 DOI: 10.3389/fpls.2017.00967] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/23/2017] [Indexed: 05/25/2023]
Abstract
A soil-borne bacterium Ralstonia solanacearum invading plant roots first colonizes the intercellular spaces of the root, and eventually enters xylem vessels, where it replicates at high levels leading to wilting symptoms. After invasion into intercellular spaces, R. solanacearum strain OE1-1 attaches to host cells and expression of the hrp genes encoding components of the type III secretion system (T3SS). OE1-1 then constructs T3SS and secrets effectors into host cells, inducing expression of the host gene encoding phosphatidic acid phosphatase. This leads to suppressing plant innate immunity. Then, OE1-1 grows on host cells, inducing quorum sensing (QS). The QS contributes to regulation of OE1-1 colonization of intercellular spaces including mushroom-type biofilm formation on host cells, leading to its virulence. R. solanacearum strains AW1 and K60 produce methyl 3-hydroxypalmitate (3-OH PAME) as a QS signal. The methyltransferase PhcB synthesizes 3-OH PAME. When 3-OH PAME reaches a threshold level, it increases the ability of the histidine kinase PhcS to phosphorylate the response regulator PhcR. This results in elevated levels of functional PhcA, the global virulence regulator. On the other hand, strains OE1-1 and GMI1000 produce methyl 3-hydroxymyristate (3-OH MAME) as a QS signal. Among R. solanacearum strains, the deduced PhcB and PhcS amino acid sequences are related to the production of QS signals. R. solanacearum produces aryl-furanone secondary metabolites, ralfuranones, which are extracellularly secreted and required for its virulence, dependent on the QS. Interestingly, ralfuranones affect the QS feedback loop. Taken together, integrated signaling via ralfuranones influences the QS, contributing to pathogen virulence.
Collapse
Affiliation(s)
- Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Yuka Mori
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Shiho Ishikawa
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kazusa Hayashi
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityKochi, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversityOsaka, Japan
| |
Collapse
|
20
|
Wang X, Shan X, Xue C, Wu Y, Su S, Li S, Liu H, Jiang Y, Zhang Y, Yuan Y. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). PLANT CELL REPORTS 2016; 35:1671-86. [PMID: 27061906 DOI: 10.1007/s00299-016-1980-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
A Sec14-like protein, ZmSEC14p , from maize was structurally analyzed and functionally tested. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. Sec14-like proteins are involved in essential biological processes, such as phospholipid metabolism, signal transduction, membrane trafficking, and stress response. Here, we reported a phosphatidylinositol transfer-associated protein, ZmSEC14p (accession no. KT932998), isolated from a cold-tolerant maize inbred line using the cDNA-AFLP approach and RACE-PCR method. Full-length cDNA that consisted of a single open reading frame (ORF) encoded a putative polypeptide of 295 amino acids. The ZmSEC14p protein was mainly localized in the nucleus, and its transcript was induced by cold, salt stresses, and abscisic acid (ABA) treatment in maize leaves and roots. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. This tolerance was primarily displayed by the increased germination rate, root length, plant survival rate, accumulation of proline, activities of antioxidant enzymes, and the reduction of oxidative damage by reactive oxygen species (ROS). ZmSEC14p overexpression regulated the expression of phosphoinositide-specific phospholipase C, which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) and generates second messengers (inositol 1,4,5-trisphosphate and 1,2-diacylglycerol) in the phosphoinositide signal transduction pathways. Moreover, up-regulation of some stress-responsive genes such as CBF3, COR6.6, and RD29B in transgenic plants under cold stress could be a possible mechanism for enhancing cold tolerance. Taken together, this study strongly suggests that ZmSEC14p plays an important role in plant tolerance to cold stress.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunmei Xue
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ying Wu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yuan Jiang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yanfei Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
21
|
Suzuki T, Matsushima C, Nishimura S, Higashiyama T, Sasabe M, Machida Y. Identification of Phosphoinositide-Binding Protein PATELLIN2 as a Substrate of Arabidopsis MPK4 MAP Kinase during Septum Formation in Cytokinesis. PLANT & CELL PHYSIOLOGY 2016; 57:1744-55. [PMID: 27335345 PMCID: PMC4970614 DOI: 10.1093/pcp/pcw098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
The phosphorylation of proteins by protein kinases controls many cellular and physiological processes, which include intracellular signal transduction. However, the underlying molecular mechanisms of such controls and numerous substrates of protein kinases remain to be characterized. The mitogen-activated protein kinase (MAPK) cascade is of particular importance in a variety of extracellular and intracellular signaling processes. In plant cells, the progression of cytokinesis is an excellent example of an intracellular phenomenon that requires the MAPK cascade. However, the way in which MAPKs control downstream processes during cytokinesis in plant cells remains to be fully determined. We show here that comparisons, by two-dimensional difference gel electrophoresis, of phosphorylated proteins from wild-type Arabidopsis thaliana and mutant plants defective in a MAPK cascade allow identification of substrates of a specific MAPK. Using this method, we identified the PATELLIN2 (PATL2) protein, which has a SEC14 domain, as a substrate of MPK4 MAP kinase. PATL2 was concentrated at the cell division plane, as is MPK4, and had binding affinity for phosphoinositides. This binding affinity was altered after phosphorylation of PATL2 by MPK4, suggesting a role for the MAPK cascade in the formation of cell plates via regeneration of membranes during cytokinesis.
Collapse
Affiliation(s)
- Takamasa Suzuki
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Present address: College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Chiyuki Matsushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Shingo Nishimura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Tetsuya Higashiyama
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561 Japan
| | - Yasunori Machida
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| |
Collapse
|
22
|
Mori Y, Inoue K, Ikeda K, Nakayashiki H, Higashimoto C, Ohnishi K, Kiba A, Hikichi Y. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. MOLECULAR PLANT PATHOLOGY 2016; 17:890-902. [PMID: 26609568 PMCID: PMC6638453 DOI: 10.1111/mpp.12335] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence.
Collapse
Affiliation(s)
- Yuka Mori
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kenichi Ikeda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hitoshi Nakayashiki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chikaki Higashimoto
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
23
|
Villarroel CA, Jonckheere W, Alba JM, Glas JJ, Dermauw W, Haring MA, Van Leeuwen T, Schuurink RC, Kant MR. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:119-31. [PMID: 26946468 DOI: 10.1111/tpj.13152] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/29/2016] [Accepted: 02/19/2016] [Indexed: 05/03/2023]
Abstract
Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two-spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector-like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage-specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant-eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.
Collapse
Affiliation(s)
- Carlos A Villarroel
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Wim Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Joris J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Huang J, Ghosh R, Bankaitis VA. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1352-1364. [PMID: 27038688 DOI: 10.1016/j.bbalip.2016.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023]
Abstract
Phosphoinositides and soluble inositol phosphates are essential components of a complex intracellular chemical code that regulates major aspects of lipid signaling in eukaryotes. These involvements span a broad array of biological outcomes and activities, and cells are faced with the problem of how to compartmentalize and organize these various signaling events into a coherent scheme. It is in the arena of how phosphoinositide signaling circuits are integrated and, and how phosphoinositide pools are functionally defined and channeled to privileged effectors, that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as critical players. As plant systems offer some unique advantages and opportunities for study of these proteins, we discuss herein our perspectives regarding the progress made in plant systems regarding PITP function. We also suggest interesting prospects that plant systems hold for interrogating how PITPs work, particularly in multi-domain contexts, to diversify the biological outcomes for phosphoinositide signaling. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Jin Huang
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114 USA.
| | - Ratna Ghosh
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114 USA
| | - Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114 USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-1114 USA; Department of Chemistry, Texas A&M University, College Station, TX 77843-1114 USA.
| |
Collapse
|
25
|
Singh A, Bhatnagar N, Pandey A, Pandey GK. Plant phospholipase C family: Regulation and functional role in lipid signaling. Cell Calcium 2015; 58:139-46. [DOI: 10.1016/j.ceca.2015.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 01/03/2023]
|
26
|
Nakano M, Yoshioka H, Ohnishi K, Hikichi Y, Kiba A. Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2015; 184:15-9. [PMID: 26188395 DOI: 10.1016/j.jplph.2015.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 05/20/2023]
Abstract
We previously identified DS1 plants that showed resistance to compatible Ralstonia solanacearum with accelerated defense responses. Here, we describe activation mechanisms of defense responses in DS1 plants. After inoculation with incompatible R. solanacearum 8107, DS1 plants showed hyperinduction of hypersensitive response (HR) and reactive oxygen species (ROS) generation. Transient expression of PopP1 and AvrA induced hyperinduction of HR and ROS generation. Furthermore, Pseudomonas cichorii (Pc) and a type III secretion system (TTSS)-deficient mutant of P. cichorii showed accelerated induction of HR and ROS generation. Chitin and flg22 did not induce either HR or ROS hyperaccumulation; however, INF1 accelerated HR and ROS in DS1 plants. Activation of these defense responses was closely associated with increased phosphatidic acid (PA) content. Our results show that DS1 plants exhibit PA-mediated sensitization of plant defenses and that cell death-inducing stress is required to achieve full activation of defense responses.
Collapse
Affiliation(s)
- Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan.
| |
Collapse
|