1
|
Kim HJ, Son HY, Park P, Yun JM, Kwon H, Cho B, Kim JI, Park JH. A genome-wide by PM 10 exposure interaction study for blood pressure in Korean adults. Sci Rep 2023; 13:13060. [PMID: 37567956 PMCID: PMC10421905 DOI: 10.1038/s41598-023-40155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Blood pressure (BP) is a typical complex trait, and the genetic susceptibility of individuals to changes in BP induced by air pollution exposure is different. Although interactions of exposure to air pollutants with several candidate genes have been identified, genome-wide interaction studies (GWISs) are needed to understand the association between them with BP. Therefore, we aimed to discover the unique genetic loci for BP that interact with exposure to air pollutants in Korean adults. We ultimately included 1868 participants in the discovery step and classified them into groups of those with low-to-moderate exposure and high exposure to average annual concentration of particulate matter with an aerodynamic diameter ≤ 10 μm (PM10). Because none of the single nucleotide polymorphisms (SNPs) achieved a genome-wide level of significance of pint < 5 × 10-8 for either systolic BP (SBP) or diastolic BP (DBP), we considered the top 10 ranking SNPs for each BP trait. To validate these suggestive SNPs, we finally selected six genetic variants for SBP and five variants for DBP, respectively. In a replication result for SBP, only one SNP (rs12914147) located in an intergenic region of the NR2F2 showed a significant interaction. We also identified several genetic susceptibility loci (e.g., CHST11, TEK, and ITGA1) implicated in candidate mechanisms such as inflammation and oxidative stress in the discovery step, although their interaction effects were not replicated. Our study reports the first GWIS finding to our knowledge, and the association between exposure to PM10 and BP levels may be determined in part by several newly discovered genetic suggestive loci, including NR2F2.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Philiip Park
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Family Medicine, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea.
- Department of Family Medicine, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea.
| |
Collapse
|
2
|
Downward GS, Vermeulen R. Ambient Air Pollution and All-Cause and Cause-Specific Mortality in an Analysis of Asian Cohorts. Res Rep Health Eff Inst 2023; 2016:1-53. [PMID: 37424069 PMCID: PMC7266370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Much of what is currently known about the adverse effects of ambient air pollution comes from studies conducted in high-income regions, with relatively low air pollution levels. The aim of the current project is to examine the relationship between exposure to ambient air pollution (as predicted from satellite-based models) and all-cause and cause-specific mortality in several Asian cohorts. METHODS Cohorts were recruited from the Asia Cohort Consortium (ACC). The geocoded residences of participants were assigned levels of ambient particulate material with aerodynamic diameter of 2.5 μm or less (PM2.5) and nitrogen dioxide (NO2) utilizing global satellite-derived models and assigned for the year of enrollment (or closest available year). The association between ambient exposure and mortality was established with Cox proportional hazard models, after adjustment for common confounders. Both single- and two-pollutant models were generated. Model robustness was evaluated, and hazard ratios were calculated for each cohort separately and combined via random effect meta-analysis for pooled risk estimates. RESULTS Six cohort studies from the ACC participated: the Community-based Cancer Screening Program (CBCSCP, Taiwan), the Golestan Cohort Study (Iran), the Health Effects for Arsenic Longitudinal Study (HEALS, Bangladesh), the Japan Public Health Center-based Prospective Study (JPHC), the Korean Multi-center Cancer Cohort Study (KMCC), and the Mumbai Cohort Study (MCS, India). The cohorts represented over 340,000 participants. Mean exposures to PM2.5 ranged from 8 to 58 μg/m3. Mean exposures to NO2 ranged from 7 to 23 ppb. For PM2.5, a positive, borderline nonsignificant relationship was observed between PM2.5 and cardiovascular mortality. Other relationships with PM2.5 tended toward the null in meta-analysis. For NO2, an overall positive relationship was observed between exposure to NO2 and all cancers and lung cancer. A borderline association between NO2 and nonmalignant lung disease was also observed. The findings within individual cohorts remained consistent across a variety of subgroups and alternative analyses, including two-pollutant models. CONCLUSIONS In a pooled examination of cohort studies across Asia, ambient PM2.5 exposure appears to be associated with an increased risk of cardiovascular mortality and ambient NO2 exposure is associated with an increased cancer (and lung cancer) mortality. This project has shown that satellite-derived models of pollution can be used in examinations of mortality risk in areas with either incomplete or missing air pollution monitoring.
Collapse
Affiliation(s)
- G S Downward
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - R Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
3
|
Li J, Liang F, Liu F, Li J, Huang K, Yang X, Chen S, Cao J, Shen C, Zhao L, Li Y, Hu D, Wang W, Wu J, Huang J, Lu X, Gu D. Genetic risk modifies the effect of long-term fine particulate matter exposure on coronary artery disease. ENVIRONMENT INTERNATIONAL 2022; 170:107624. [PMID: 36402033 DOI: 10.1016/j.envint.2022.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although both environmental and genetic factors were linked to coronary artery disease (CAD), the extent to which the association of air pollution exposure with CAD can be influenced by genetic risk was not well understood. METHODS A total of 41,149 participants recruited from the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) were included. Genetic risk scores of CAD were constructed based on 540 genetic variants. Long-term PM2.5 exposures were assessed by adopting satellite-based PM2.5 estimations at 1-km resolution. We used stratified Cox proportional hazards regression model to examine the impact of PM2.5 exposure and genetic risk on CAD risk, and further analyzed modification effect of genetic predisposition on association between PM2.5 exposure and CAD risk. RESULTS During a median of 13.01 years of follow-up, 1,373 incident CAD events were observed. Long-term PM2.5 exposure significantly increased CAD risk, and the hazard ratios (HRs) [95% confidence intervals (CIs)] were 1.27 (1.05-1.54) and 1.95 (1.57-2.42) among intermediate and high PM2.5 exposure groups compared to low PM2.5 exposure group. The relative risks of CAD were 40% (HR: 1.40, 95%CI: 1.18-1.66) and 133% (HR: 2.33, 95%CI: 1.94-2.79) higher among individuals at intermediate and high genetic risk than those at low genetic risk. Compared with individuals with both low genetic risk and low PM2.5 exposure, those with high genetic risk and high PM2.5 exposure had highest CAD risk, with HR of 4.37 (95%CI: 3.13-6.11). We observed significant multiplicative (P < 0.001) and additive interaction [relative excess risk due to interaction (95%CI): 2.75 (1.32-4.20); attributable proportion due to interaction (95%CI): 0.56 (0.42-0.70)] between genetic risk and PM2.5 exposure on CAD. CONCLUSION This study provided evidence that long-term PM2.5 exposure might increase CAD risk, especially among people at high genetic risk. Our findings highlighted the importance of taking strategies on air quality improvement to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300203, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liancheng Zhao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Ying Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Wending Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbin Wu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
4
|
Song J, An Z, Zhu J, Li J, Qu R, Tian G, Wang G, Zhang Y, Li H, Jiang J, Wu H, Wang Y, Wu W. Subclinical cardiovascular outcomes of acute exposure to fine particulate matter and its constituents: A glutathione S-transferase polymorphism-based longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157469. [PMID: 35868381 DOI: 10.1016/j.scitotenv.2022.157469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
To explore the acute subclinical cardiovascular effects of fine particulate matter (PM2.5) and its constituents, a longitudinal study with 61 healthy young volunteers was conducted in Xinxiang, China. Linear mixed-effect models were used to analyze the association of PM2.5 and its constituents with cardiovascular outcomes, respectively, including blood pressure (BP), heart rate (HR), serum levels of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA). Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were examined. A 10 μg/m3 increase in PM2.5 was associated with -1.04 (95 % CI: -1.86 to -0.22) mmHg and -0.90 (95 % CI: -1.69 to -0.11) mmHg decreases in diastolic BP (DBP) and mean arterial BP (MABP) along with 1.83 % (95 % CI: 0.59-3.08 %), 5.93 % (95 % CI: 0.70-11.16 %) increases in 8-OHdG and hs-CRP, respectively. Ni content was positively associated with the 8-OHdG levels whereas several other metals presented negative association with 8-OHdG and HR. Intriguingly, GSTT1+/GSTTM1+ subjects showed higher susceptibility to PM2.5-induced alterations of DBP and PMA, and GSTT1-/GSTM1+ subjects showed higher alteration on t-PA. Taken together, our findings indicated that short-term PM2.5 exposure induced oxidative stress, systemic inflammation, autonomic alterations, and fibrinolysis in healthy young subjects. Among multiple examined metal components Ni appeared to positively associated with systematic oxidative stress. In addition, GST-sufficient subjects might be more prone to PM2.5-induced autonomic alterations.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
5
|
Sanaa N, Habbal R, Kassogue Y, Kaltoum ABO, Farah K, Majda H, Rhizlane AE, Nadifi S, Dehbi H. Analysis of the influence of glutathione S-transferase ( GSTM1 and GSTT1) genes on the risk of essential hypertension. Ann Hum Biol 2022; 48:585-589. [PMID: 35132887 DOI: 10.1080/03014460.2022.2039291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Essential hypertension (EH) results from a complex interaction between environmental factors and an individual's genetic background. AIM To assess the relationship between polymorphisms in GSTM1 and GSTT1 and the risk of EH. SUBJECTS AND METHODS A multiplex-PCR was used to identify the genotypic profiles of GSTM1 and GSTT1 in 160 patients and 210 controls. RESULTS The frequency of GSTM1-null genotype was higher in patients younger than 61 years when compared to those over 61 years. Interestingly, GSTT1-null was significantly associated with the risk of EH (OR 4; 95% CI 2.6-6.3; p < 0.0001). While GSTM1-null showed no trend (OR 0.7; 95% CI 0.5-1.1, p = 0.12). Individuals carrying the combined GSTT1-null/GSTM1-null were 2.4 times more at risk for hypertension compared to those harbouring the combined GSTT1-present/GSTM1-present genotype (OR 2.4; 95% CI 1.3-4.4; p = 0.005). Additionally, the presence of the combined GSTT1-null/GSTM1-present was associated with an increased risk of EH compared to GSTT1-present/GSTM1-present carriers (OR 6.75; 95% CI 3.4-13.2; p < 0.0001). CONCLUSION This study showed that the GSTT1-null alone or in interaction with GSTM1-present or GSTM1-null was associated with higher risk of hypertension. Moreover, the GSTM1-null seems to be associated with the age of onset of hypertension.
Collapse
Affiliation(s)
- Nassereddine Sanaa
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Laboratory of Cytogenetics, Pasteur Institute, Casablanca, Morocco
| | - Rachida Habbal
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Department of Cardiology, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Yaya Kassogue
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Faculty of Medicine and OdontoStomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Ait Boujmia Oum Kaltoum
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco
| | - Korchi Farah
- Department of Cardiology, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Haraka Majda
- Medical Genetics Unit, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Abou Elfath Rhizlane
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco
| | - Sellama Nadifi
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Medical Genetics Unit, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Medical Genetics Unit, University Hospital Ibn Rochd, Casablanca, Morocco
| |
Collapse
|
6
|
Honkova K, Rossnerova A, Chvojkova I, Milcova A, Margaryan H, Pastorkova A, Ambroz A, Rossner P, Jirik V, Rubes J, Sram RJ, Topinka J. Genome-Wide DNA Methylation in Policemen Working in Cities Differing by Major Sources of Air Pollution. Int J Mol Sci 2022; 23:ijms23031666. [PMID: 35163587 PMCID: PMC8915177 DOI: 10.3390/ijms23031666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = −1.92, p = 8.30 × 10−4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
Collapse
Affiliation(s)
- Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
- Correspondence: ; Tel.: +420-775-406-170
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Hasmik Margaryan
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Anna Pastorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Vitezslav Jirik
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| | - Jiri Rubes
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Radim J. Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| |
Collapse
|
7
|
Qin P, Luo X, Zeng Y, Zhang Y, Li Y, Wu Y, Han M, Qie R, Wu X, Liu D, Huang S, Zhao Y, Feng Y, Yang X, Hu F, Sun X, Hu D, Zhang M. Long-term association of ambient air pollution and hypertension in adults and in children: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148620. [PMID: 34274662 DOI: 10.1016/j.scitotenv.2021.148620] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
AIMS The association of long-term ambient air pollution and hypertension has been inconsistently reported. We performed an updated systematic review and meta-analysis to assess the association between long-term exposure to ambient air pollution and risk of hypertension in adults and in children. METHODS PubMed, EMBASE, and Web of Science were searched up to August 7, 2020 for published articles examining the association of long-term exposure to ambient air pollution, including particulate matter (PM; ultrafine particles, PM1, PM1-2.5, PM2.5, PM2.5-10 and PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO) and hypertension. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for hypertension with each 10-μg/m3 increase in air pollutants were calculated by random-effects models. RESULTS We included 57 studies (53 of adults and 4 of children) in the meta-analysis. Risk of hypertension was significantly increased in adults with each 10-μg/m3 increase in exposure to PM2.5 (OR 1.10, 95% CI 1.07-1.14; I2 = 93.1%; n = 37), PM10 (1.04, 1.02-1.07; I2 = 44.8%; n = 22), and SO2 (1.21, 1.08-1.36; I2 = 96.6%; n = 3). Hypertension was not significantly associated with PM1 (n = 2), PM2.5-10 (n = 16), NO2 (n = 27), or NOx (n = 17). In children, the summary ORs (95% CIs) for each 10-μg/m3 increase in PM2.5, PM10, SO2 and O3 were 2.82 (0.51-15.68; I2 = 83.8%; n = 2), 1.15 (1.01-1.32; I2 = 0; n = 2), 8.57 (0.13-575.58; I2 = 94.2%; n = 2), and 1.26 (0.81-1.09, I2 = 91.6%; n = 2), respectively. CONCLUSIONS Long-term ambient air pollution is a potential risk factor for hypertension in adults. More studies are needed to explore the effects of long-term air pollution on hypertension in children.
Collapse
Affiliation(s)
- Pei Qin
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xinping Luo
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yunhong Zeng
- Department of Health Management, Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yang Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China; The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Minghui Han
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Ranran Qie
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Xiaoyan Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China; Department of Health Management, Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, China
| | - Dechen Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Shengbing Huang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Yifei Feng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Xingjin Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xizhuo Sun
- The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China; The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
de Oliveira MAA, Mallmann NH, de Souza GKBB, de Jesus Bacha T, Lima ES, de Lima DSN, de Souza Passos LF, de Souza Gonçalves M, de Moura Neto JP. Glutathione S-transferase, catalase, and mitochondrial superoxide dismutase gene polymorphisms modulate redox potential in systemic lupus erythematosus patients from Manaus, Amazonas, Brazil. Clin Rheumatol 2021; 40:3639-3649. [PMID: 33745084 DOI: 10.1007/s10067-021-05680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the frequency of glutathione S-transferase (GST), catalase, and SOD2 genetic polymorphisms and their correlation with SLE. METHODS A total of 290 females (patients = 151; controls= 139) were recruited. Multiplex PCR was performed for genotyping GSTM1 and GSTT1 genes, whereas real-time qPCR was used for determination of SNPs: CAT C262T, SOD2 C47T, GSTP1 A313G and GSTP1 IVS6 -C16T. RESULTS Thiol levels are decreased in SLE patients (p<0.001), while MDA levels were significantly higher (p<0.001) and those carrying the polymorphisms had higher rates of oxidative stress. Patients with double null deletion GSTT1null/GSTM1null had a frequency almost five times higher than the controls (p<0.001, OR 4.81, CI 1.98-12.11). SLE patients had a lower wild-type frequency of SOD2CC allele compared to controls (12.4% vs 27.3%). Statistical significances were observed on the association between the GSTT1null and GSTM1null with SOD2mut (p<0.001, OR 0.15, CI 0.05-0.47), with GSTP1 A303G (p=0.012, OR 0.19, CI 0.05-0.69), and with GSTP1 IVS6 (p=0.008, OR 0.14, CI 0.03-0.63). The same was observed between SOD2 C47T with GSTP1 A303G (p=0.09, OR 0.27, CI 0.09-0.74) and GSTP1 IVS6 (p=0.036, OR 0.41, CI 0.18-0.92). CONCLUSIONS The deletion GSTT1null/GSTM1null may contribute to the increased of the oxidative stress in SLE patients. Isolated GSTP1 and CAT polymorphisms do not seem to influence the increased oxidative stress, neither SLE clinical manifestations. SOD2 47CT/TT allele may have greater oxidative stress due to structural change in the protein and decreased H2O2 production. The combination of polymorphic genes may be involved in the pathogenesis of the disease. Key points • Major question of our paper: Many studies have shown that the antioxidant status levels are decreased in patients with SLE, especially in severe stages of disease. We believe that this paper will be of interest to the readership of your journal had the involvement of polymorphisms and mutations in several genes that contribute to the genetic etiology of SLE, suggesting that these may influence the mechanisms of disease. • Our results. Thiol level was significantly (p<.001) lower and MDA level significantly increased (p<.001) among SLE patients. Those carrying the polymorphisms had higher rates of oxidative stress. SLE Patients had a frequency almost five times higher of double null deletion GSTT1null/GSTM1null than the controls. SLE Patients had a lower wild type frequency of SOD2CC allele compared to controls (12.4% vs 27.3%). We believed the deletion GSTT1null/GSTM1null may contribute to the increased of the oxidative stress in SLE patients while carriers of the mutant SOD2 47CT/TT allele may have greater oxidative stress due to structural change in the protein and decreased H2O2 production. The combination of polymorphic genes may be involved in the pathogenesis of the disease. • Implications of our results: Evidence for the involvement of genetic factors in severe clinical to lupus is compelling. This manuscript shows genetic insights in pathogenic pathways that may lead to severe clinical implications to LES. Therefore, it is necessary to understand their impact on overall disease pathogenesis and prognosis in these patients. We understand from general consensus about environmental factors can modify disease, however, maybe just in individuals who have a permissive genetic background. Even that no single gene predisposes some individuals to LES, we believe the genetic factors described in this manuscript are important elements in susceptibility to severe clinical to LES.
Collapse
Affiliation(s)
- Marco Aurélio Almeida de Oliveira
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Neila Hiraishi Mallmann
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Giselle Katiane Bonfim Bacellar de Souza
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Thiago de Jesus Bacha
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | - Emerson Silva Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos 6200 - Coroado, Manaus - AM, CEP: 69067-005, Brazil
| | | | | | | | | |
Collapse
|
9
|
Ribeiro MH, Grossi A, Caixeta A, Franken M, Katz M, Seleme V, Ribeiro E, Pesaro AE, Fabri J, Mehta S, Campos CM. Cluster of climatic and pollutant characteristics increases admissions for acute myocardial infarction: Analysis of 30,423 patients in the metropolitan area of Sao Paulo. Heart Lung 2020; 50:161-165. [PMID: 33227571 DOI: 10.1016/j.hrtlng.2020.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The impact of simultaneous adverse climate conditions in the risk of myocardial infarction (MI) was not tested before. The aim of the present study was to investigate the impact of the combination of climate and air pollution features in the number of admissions and mortality due to acute myocardial infarction in 39 municipalities of São Paulo from 2012 to 2015. METHODS Data about MI admissions were obtained from the Brazilian public health system (DataSUS). Daily information on weather were accessed from the Meteorological Database for Teaching and Research. Additionally, daily information on air pollution were obtained from the Environmental Company of the State of São Paulo. A hierarchical cluster analysis was applied for temperature, rainfall patterns, relative air humidity, nitrogen dioxide, particulate matter 2.5 and particulate matter 10. MI admissions and in-hospital mortality were compared among the clusters. RESULTS Data analysis produced 3 clusters: High temperature variation-Low humidity-high pollution (n=218 days); Intermediate temperature variation/high humidity/intermediate pollution (n=751 days) and low temperature variation/intermediate humidity-low pollution (n=123 days). All environmental variables were significantly different among clusters. The combination of high temperature variation, dry weather and high pollution resulted in a significant 9% increase in hospital admissions for MI [30.5 (IQR 25.0-36.0)]; patients/day; P<0.01). The differences in weather and pollution did not have impact on in-hospital mortality (P=0.88). CONCLUSION The combination of atmospheric conditions with high temperature variation, lower temperature, dryer weather and increased inhalable particles was associated with a marked increase of hospital admissions due to MI.
Collapse
Affiliation(s)
- Marcelo H Ribeiro
- Heart Institute (InCor) - University of São Paulo Medical School, São Paulo, Brazil; SOS Cárdio Hospital, Florianópolis, Brazil
| | - André Grossi
- Heart Institute (InCor) - University of São Paulo Medical School, São Paulo, Brazil
| | - Adriano Caixeta
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 672/701, Morumbi, SP, Brazil
| | - Marcelo Franken
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 672/701, Morumbi, SP, Brazil
| | - Marcelo Katz
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 672/701, Morumbi, SP, Brazil
| | - Vinicius Seleme
- Heart Institute (InCor) - University of São Paulo Medical School, São Paulo, Brazil
| | - Expedito Ribeiro
- Heart Institute (InCor) - University of São Paulo Medical School, São Paulo, Brazil
| | | | - Jose Fabri
- Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Sameer Mehta
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos M Campos
- Heart Institute (InCor) - University of São Paulo Medical School, São Paulo, Brazil; Insituto Prevent Senior, São Paulo, Brazil.
| |
Collapse
|
10
|
Carlsen HK, Nyberg F, Torén K, Segersson D, Olin AC. Exposure to traffic-related particle matter and effects on lung function and potential interactions in a cross-sectional analysis of a cohort study in west Sweden. BMJ Open 2020; 10:e034136. [PMID: 33077557 PMCID: PMC7574932 DOI: 10.1136/bmjopen-2019-034136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To investigate the long-term effects of source-specific particle matter (PM) on lung function, effects of Surfactant Protein A (SP-A) and glutathione S-transferase (GST) genes GSTP1 and GSTT1 gene variants and effect modification by single-nucleotide polymorphism (SNP) genotype. DESIGN Cohort study with address-based annual PM exposure assigned from annual estimates of size (PM10, PM2.5 and PMBC) and source-specific (traffic, industry, marine traffic and wood burning) dispersion modelling. SETTING Gothenburg, Sweden. PARTICIPANTS The ADult-Onset asthma and NItric oXide Study had 6685 participants recruited from the general population, of which 5216 (78%) were included in the current study with information on all variables of interest. Mean age at the time of enrolment was 51.4 years (range 24-76) and 2427 (46.5%) were men. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Secondary outcome measures were effects and gene-environment interactions of SP-A and GSTT1 and GSTP1 genotypes. RESULTS Exposure to traffic-related PM10 and PM2.5 was associated with decreases in percent-predicted (% predicted) FEV1 by -0.48% (95% CI -0.89% to -0.07%) and -0.47% (95% CI -0.88% to -0.07%) per IQR 3.05 and 2.47 µg/m3, respectively, and with decreases in % predicted FVC by -0.46% (95% CI -0.83% to -0.08%) and -0.47% (95% CI -0.83% to -0.10%). Total and traffic-related PMBC was strongly associated with both FEV1 and FVC by -0.53 (95% CI -0.94 to -0.13%) and -0.43% (95% CI -0.77 to -0.09%) per IQR, respectively, for FVC, and similarly for FEV1. Minor allele carrier status for two GSTP1 SNPs and the GSTT1 null genotype were associated with decreases in % predicted lung function. Three SP-A SNPs showed effect modification with exposure to PM2.5 from industry and marine traffic. CONCLUSIONS PM exposure, specifically traffic related, was associated with FVC and FEV1 reductions and not modified by genotype. Genetic effect modification was suggested for industry and marine traffic PM2.5.
Collapse
Affiliation(s)
- Hanne Krage Carlsen
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Nyberg
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Register Epidemiology, School of Public Health and Community Medicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
13
|
Fuertes E, van der Plaat DA, Minelli C. Antioxidant genes and susceptibility to air pollution for respiratory and cardiovascular health. Free Radic Biol Med 2020; 151:88-98. [PMID: 32007521 DOI: 10.1016/j.freeradbiomed.2020.01.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Oxidative stress occurs when antioxidant defences, which are regulated by a complex network of genes, are insufficient to maintain the level of reactive oxygen species below a toxic threshold. Outdoor air pollution has long been known to adversely affect health and one prominent mechanism of action common to all pollutants is the induction of oxidative stress. An individual's susceptibility to the effects of air pollution partly depends on variation in their antioxidant genes. Thus, understanding antioxidant gene-pollution interactions has significant potential clinical and public health impacts, including the development of targeted and cost-effective preventive measures, such as setting appropriate standards which protect all members of the population. In this review, we aimed to summarize the latest epidemiological evidence on interactions between antioxidant genes and outdoor air pollution, in the context of respiratory and cardiovascular health. The evidence supporting the existence of interactions between antioxidant genes and outdoor air pollution is strongest for childhood asthma and wheeze, especially for interactions with GSTT1, GSTM1 and GSTP1, for lung function in both children and adults for several antioxidant genes (GSTT1, GSTM1, GSTP1, HMOX1, NQO1, and SOD2) and, to a more limited extent, for heart rate variability in adults for GSTM1 and HMOX1. Methodological challenges hampering a clear interpretation of these findings and understanding of true potential heterogeneity are discussed.
Collapse
Affiliation(s)
- Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Brucker N, do Nascimento SN, Bernardini L, Charão MF, Garcia SC. Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic-related air pollution: A review. J Appl Toxicol 2020; 40:722-736. [PMID: 31960485 DOI: 10.1002/jat.3940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Abstract
There is a well-recognized association between environmental air pollution exposure and several human diseases. However, the relationship between diseases related to occupational air pollution exposure on roads and high levels of traffic-related air pollutants (TRAPs) is less substantiated. Biomarkers are essential tools in environmental and occupational toxicology, and studies on new biomarkers are increasingly relevant due to the need to determine early biomarkers to be assessed in exposure conditions. This review aimed to investigate the main advances in the biomonitoring of subjects occupationally exposed to air pollution, as well as to summarize the biomarkers of exposure, effect, and susceptibility. Furthermore, we discuss how biomarkers could be used to complement the current application of methods used to assess occupational exposures to xenobiotics present in air pollution. The databases used in the preparation of this review were PubMed, Scopus, and Science Direct. Considering the significant deleterious effects on health associated with chronic occupational exposure to xenobiotics, this topic deserves attention. As it is difficult to avoid occupational exposure to TRAPs, biomonitoring should be applied as a strategy to reduce the toxic effects of workplace exposure.
Collapse
Affiliation(s)
- Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Nunes do Nascimento
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Bai L, Shin S, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, Goldberg MS, Lavigne E, Copes R, Martin RV, Kopp A, Chen H. Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: A population-based study of 5.1 million Canadian adults living in Ontario. ENVIRONMENT INTERNATIONAL 2019; 132:105004. [PMID: 31387019 DOI: 10.1016/j.envint.2019.105004] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 05/23/2023]
Abstract
Long-term exposure to ambient air pollution has been linked to cardiovascular mortality, but the associations with incidence of major cardiovascular diseases are not fully understood, especially at low concentrations. We aimed to investigate the associations between exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), ozone (O3), redox-weighted average of NO2 and O3 (Ox) and incidence of congestive heart failure (CHF) and acute myocardial infarction (AMI). Our study population included all long-term residents aged 35-85 years who lived in Ontario, Canada, from 2001 to 2015 (~5.1 million). Incidence of CHF and AMI were ascertained from validated registries. We assigned estimates of annual concentrations of pollutants to the residential postal codes of subjects for each year during follow-up. We estimated hazard ratios (HRs) and 95% CIs for each pollutant separately using Cox proportional hazards models. We examined the shape of concentration-response associations using shape-constrained health impact functions. From 2001 to 2015, there were 422,625 and 197,628 incident cases of CHF and AMI, respectively. In the fully adjusted analyses, the HRs of CHF corresponding to each interquartile range increase in exposure were 1.05 (95% CI: 1.04-1.05) for PM2.5, 1.02 (95% CI: 1.01-1.04) for NO2, 1.03 (95% CI: 1.02-1.03) for O3, and 1.02 (95% CI: 1.02-1.03) for Ox, respectively. Similarly, exposure to PM2.5, O3, and Ox were positively associated with AMI. The concentration-response relationships were different for individual pollutant and outcome combinations (e.g., for PM2.5 the relationship was supralinear with CHF, and linear with AMI).
Collapse
Affiliation(s)
- Li Bai
- ICES, Toronto, ON, Canada.
| | - Saeha Shin
- Public Health Ontario, Toronto, ON, Canada
| | - Richard T Burnett
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jeffrey C Kwong
- ICES, Toronto, ON, Canada; Public Health Ontario, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, ON, Canada
| | - Perry Hystad
- College of Public Health and Human Studies, Oregon State University, Oregon, USA
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, QC, Canada; Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Eric Lavigne
- Air Health Effects Division, Health Canada, Ottawa, ON, Canada; School of Epidemiology & Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Ray Copes
- Public Health Ontario, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | | | - Hong Chen
- ICES, Toronto, ON, Canada; Public Health Ontario, Toronto, ON, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Combes A, Franchineau G. Fine particle environmental pollution and cardiovascular diseases. Metabolism 2019; 100S:153944. [PMID: 31610849 DOI: 10.1016/j.metabol.2019.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/06/2019] [Indexed: 01/24/2023]
Abstract
Air pollution affects 90% of the world's population and has caused 9 million deaths in 2015, becoming the most important cause of premature deaths in the world. Exposure to fine particulate matter, a major component of urban air pollution, has been associated with an increase in cardiovascular risk and associated mortality. Impact of fine particles on the cardiovascular system includes inflammation, activation of prothrombotic pathways, oxidative stress, vascular dysfunction and remodeling, and neurological dysfunction. Genetic and epigenetic factors might also increase the susceptibility to air pollution. Consequently, epidemiologic studies have identified correlations between air particulate matter concentrations and acute coronary events, ischemic cardiomyopathy, acute heart failure, and stroke. Interestingly, these effects are present even for fine particulate matter concentrations below current US and EU regulatory standards, and seems to be more harmful in the most fragile population such as low-income or elderly subjects, or patients with previous cardiovascular disease. This review aims to summarize recent data on the pathophysiology and epidemiology of cardiovascular disease after particulate matter exposure. It will also discuss potential strategies to reduce the impact of air pollution on current and future populations' health.
Collapse
Affiliation(s)
- Alain Combes
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, F-75013 Paris, France; Service de médecine intensive-réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, F-75013 Paris, France.
| | - Guillaume Franchineau
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, F-75013 Paris, France; Service de médecine intensive-réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
17
|
Liu B, Henry AP, Azimi S, Miller S, Lee FK, Lee JC, Probert K, Kotlikoff MI, Sayers I, Hall IP. Exposure to lipopolysaccharide (LPS) reduces contractile response of small airways from GSTCD-/- mice. PLoS One 2019; 14:e0221899. [PMID: 31513609 PMCID: PMC6742219 DOI: 10.1371/journal.pone.0221899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction Genome-Wide Association Studies suggest glutathione S transferase C terminal domain (GSTCD) may play a role in development of Chronic Obstructive Pulmonary Disease. We aimed to define the potential role of GSTCD in airway inflammation and contraction using precision cut lung slice (PCLS) from wild-type (GSTCD+/+) and GSTCD knockout mice (GSTCD-/-). Methods PCLS from age and gender matched GSTCD+/+ and GSTCD-/- mice were prepared using a microtome. Contraction was studied after applying either a single dose of Methacholine (Mch) (1 μM) or different doses of Mch (0.001 to 100 μM). Each slice was then treated with lipopolysaccharide (LPS) or vehicle (PBS) for 24 hours. PCLS contraction in the same airway was repeated before and after stimulation. Levels of TNFα production was also measured. Results There were no differences in contraction of PCLS from GSTCD+/+ and GSTCD-/- mice in response to Mch (EC50 of GSTCD+/+ vs GSTCD-/- animals: 100.0±20.7 vs 107.7±24.5 nM, p = 0.855, n = 6 animals/group). However, after LPS treatment, there was a 31.6% reduction in contraction in the GSTCD-/- group (p = 0.023, n = 6 animals). There was no significant difference between PBS and LPS treatment groups in GSTCD+/+ animals. We observed a significant increase in TNFα production induced by LPS in GSTCD-/- lung slices compared to the GSTCD+/+ LPS treated slices. Conclusion GSTCD knockout mice showed an increased responsiveness to LPS (as determined by TNFα production) that was accompanied by a reduced contraction of small airways in PCLS. These data highlight an unrecognised potential function of GSTCD in mediating inflammatory signals that affect airway responses.
Collapse
Affiliation(s)
- Bo Liu
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Amanda P. Henry
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
- * E-mail:
| | - Sheyda Azimi
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Suzanne Miller
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Frank K. Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jane C. Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kelly Probert
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Michael I. Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ian Sayers
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, & National Institute for Health Medicine, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England, United Kingdom
| |
Collapse
|
18
|
Ward-Caviness CK. A review of gene-by-air pollution interactions for cardiovascular disease, risk factors, and biomarkers. Hum Genet 2019; 138:547-561. [DOI: 10.1007/s00439-019-02004-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
19
|
Kim HJ, Seo YS, Sung J, Son HY, Yun JM, Kwon H, Cho B, Kim JI, Park JH. Interactions of CDH13 gene polymorphisms and ambient PM 10 air pollution exposure with blood pressure and hypertension in Korean men. CHEMOSPHERE 2019; 218:292-298. [PMID: 30476760 DOI: 10.1016/j.chemosphere.2018.11.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Associations between air pollution and blood pressure (BP) traits can be modified by several candidate genes, which might explain differences in individual genetic susceptibility. Based on recent evidence hypothesized to link air pollution and BP traits, we examined whether the polymorphisms of CDH13-a candidate gene-would modify the relationship between them in adult Korean men. A total of 1816 subjects were included. We divided them into two groups of high or low to moderate exposure using the annual average concentration of particulate matter with an aerodynamic diameter ≤10 μm (PM10). We conducted an interaction analysis of PM10 exposure using 200 single-nucleotide polymorphisms (SNPs), located within CDH13, in subjects with regard to BP traits and hypertension. The rs7500599 intronic SNP of CDH13 had the strongest signals for all BP traits including systolic blood pressure (SBP), diastolic blood pressure, and hypertension, by interacting with PM10 exposure. An additional stratified analysis showed that the effects of PM10 exposure on elevated BP and hypertension increased gradually in proportion to the number of minor alleles in this SNP. In addition, PM10 exposure in the TT or GT genotype groups did not show significant associations with BP traits, whereas in a homozygous risk allele (GG) group, PM10 exposure was significantly associated with BP traits and hypertension. For SBP, these patterns were reproducible at two independent sampling sites. This CDH13 polymorphism amplifies the negative associations of PM10 exposure and elevated BP or hypertension in Korean men.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Yong-Seok Seo
- Disaster Management Research Center, Seoul, South Korea
| | - Joohon Sung
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Ho-Young Son
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
20
|
Rong SL, Zhou XD, Wang ZK, Wang XL, Wang YC, Xue CS, Li B. Glutathione S-Transferase M1 and T1 polymorphisms and hypertension risk: an updated meta-analysis. J Hum Hypertens 2018; 33:454-465. [PMID: 30420646 DOI: 10.1038/s41371-018-0133-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023]
Abstract
Recently, Glutathione S-transferase M1 (GSTM1), glutathione S-transferase T1 (GSTT1), and their interaction with hypertension risk have been focused on. However, the results of previous studies have been inconsistent. Hence, the present meta-analysis was performed to explore the association. Twenty-two case-control studies met the inclusion criteria for GSTM1 (including 3577 hypertension cases and 3784 controls), twenty-two for GSTT1 (including 3741 cases and 4444 controls), and nine for their combined effects (including 1073 cases and 781 controls). Pooled analyses on the association between GSTM1 present/null polymorphism and hypertension risk were observed to be insignificant in overall and subgroup analyses. The individual who carries the GSTT1 null-genotype had a statistically significant overall population (OR = 1.28, 95% CI: 1.03, 1.60), Indians (OR = 2.45, 95% CI: 1.08, 5.59), and hospital-based controls (OR = 1.53, 95% CI: 1.21, 1.94). For the GSTM1-GSTT1 interaction, we found that the GSTM1/GSTT1 double-null-genotype was significantly associated with hypertension risks (double-null vs. double-present: OR = 2.68, 95% CI: 1.06, 6.81). To summarize, this meta-analysis indicates that Indians with the GSTT1 null-genotype has a raised hypertension risks; the GSTM1 null/GSTT1 null-genotype is association with raised hypertension risks, while the GSTM1 null-genotype is not associated with hypertension risks. In addition, I2 > 75% cannot be eliminated for GSTM1 in Indians or Asians, hence, it will be very important to explore the GSTM1 null-genotype and hypertension susceptibility in Indians and Asians for a large new sample, on population-based control study.
Collapse
Affiliation(s)
- Shu-Ling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ze-Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiao-Lin Wang
- Department of Pediatrics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China.
| | - Yu-Chuan Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Cun-Shui Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China.
| |
Collapse
|
21
|
Adar SD, Chen YH, D'Souza JC, O'Neill MS, Szpiro AA, Auchincloss AH, Park SK, Daviglus ML, Diez Roux AV, Kaufman JD. Longitudinal Analysis of Long-Term Air Pollution Levels and Blood Pressure: A Cautionary Tale from the Multi-Ethnic Study of Atherosclerosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:107003. [PMID: 30392401 PMCID: PMC6371645 DOI: 10.1289/ehp2966] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Air pollution exposures are hypothesized to impact blood pressure, yet few longitudinal studies exist, their findings are inconsistent, and different adjustments have been made for potentially distinct confounding by calendar time and age. OBJECTIVE We aimed to investigate the associations of long- and short-term [Formula: see text] and [Formula: see text] concentrations with systolic and diastolic blood pressures and incident hypertension while also accounting for potential confounding by age and time. METHODS Between 2000 and 2012, Multi-Ethnic Study of Atherosclerosis participants were measured for systolic and diastolic blood pressure at five exams. We estimated annual average and daily [Formula: see text] and [Formula: see text] concentrations for 6,569 participants using spatiotemporal models and measurements, respectively. Associations of exposures with blood pressure corrected for medication were studied using mixed-effects models. Incident hypertension was examined with Cox regression. We adjusted all models for sex, race/ethnicity, socioeconomic status, smoking, physical activity, diet, season, and site. We compared associations from models adjusting for time-varying age with those that adjusted for both time-varying age and calendar time. RESULTS We observed decreases in pollution and blood pressures (adjusted for age and medication) over time. Strong, positive associations of long- and short-term exposures with blood pressure were found only in models with adjustment for time-varying age but not adjustment for both time-varying age and calendar time. For example, [Formula: see text] higher annual average [Formula: see text] concentrations were associated with 2.7 (95% CI: 1.5, 4.0) and [Formula: see text] (95% CI: [Formula: see text] 1.0) mmHg in systolic blood pressure with and without additional adjustment for time, respectively. Associations with incident hypertension were similarly weakened by additional adjustment for time. Sensitivity analyses indicated that air pollution did not likely cause the temporal trends in blood pressure. CONCLUSIONS In contrast to experimental evidence, we found no associations between long- or short-term exposures to air pollution and blood pressure after accounting for both time-varying age and calendar time. This research suggests that careful consideration of both age and time is needed in longitudinal studies with trending exposures. https://doi.org/10.1289/EHP2966.
Collapse
Affiliation(s)
- Sara D Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yeh-Hsin Chen
- Harris County Public and Environmental Services, Houston, Texas, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jennifer C D'Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Marie S O'Neill
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington School of Public Health, Seattle, Washington, USA
| | - Amy H Auchincloss
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Martha L Daviglus
- Institute of Minority Health Research, University of Illinois College of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ana V Diez Roux
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
22
|
Mehlig K, Berg C, Björck L, Nyberg F, Olin AC, Rosengren A, Strandhagen E, Torén K, Thelle DS, Lissner L. Cohort Profile: The INTERGENE Study. Int J Epidemiol 2018; 46:1742-1743h. [PMID: 28186561 DOI: 10.1093/ije/dyw332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kirsten Mehlig
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Berg
- Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björck
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Nyberg
- Section for Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Medical Evidence and Observational Research Centre, Global Medical Affairs, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Anna-Carin Olin
- Section for Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Rosengren
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Strandhagen
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Torén
- Section for Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dag S Thelle
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lauren Lissner
- Section for Epidemiology and Social Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Hüls A, Klümper C, MacIntyre EA, Brauer M, Melén E, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Fuertes E, Gehring U, Gref A, Heinrich J, Standl M, Lehmann I, Kerkhof M, Koppelman GH, Kozyrskyj AL, Pershagen G, Carlsten C, Krämer U, Schikowski T. Atopic dermatitis: Interaction between genetic variants of GSTP1, TNF, TLR2, and TLR4 and air pollution in early life. Pediatr Allergy Immunol 2018; 29:596-605. [PMID: 29624745 DOI: 10.1111/pai.12903] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Associations between traffic-related air pollution (TRAP) and childhood atopic dermatitis (AD) remain inconsistent, possibly due to unexplored gene-environment interactions. The aim of this study was to examine whether a potential effect of TRAP on AD prevalence in children is modified by selected single nucleotide polymorphisms (SNPs) related to oxidative stress and inflammation. METHODS Doctor-diagnosed AD up to age 2 years and at 7-8 years, as well as AD symptoms up to age 2 years, was assessed using parental-reported questionnaires in six birth cohorts (N = 5685). Associations of nitrogen dioxide (NO2 ) estimated at the home address of each child at birth and nine SNPs within the GSTP1, TNF, TLR2, or TLR4 genes with AD were examined. Weighted genetic risk scores (GRS) were calculated from the above SNPs and used to estimate combined marginal genetic effects of oxidative stress and inflammation on AD and its interaction with TRAP. RESULTS GRS was associated with childhood AD and modified the association between NO2 and doctor-diagnosed AD up to the age of 2 years (P(interaction) = .029). This interaction was mainly driven by a higher susceptibility to air pollution in TNF rs1800629 minor allele (A) carriers. TRAP was not associated with the prevalence of AD in the general population. CONCLUSIONS The marginal genetic association of a weighted GRS from GSTP1, TNF, TLR2, and TLR4SNPs and its interaction with air pollution supports the role of oxidative stress and inflammation in AD.
Collapse
Affiliation(s)
- Anke Hüls
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Claudia Klümper
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Hochschule Hamm-Lippstadt, Hamm, Germany
| | - Elaina A MacIntyre
- Environmental and Occupational Health, Public Health Ontario, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,Sachs Children's Hospital, Stockholm, Sweden
| | - Mario Bauer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Dietrich Berdel
- Department of Pediatrics, Marien-Hospital Wesel, Research Institute, Wesel, Germany
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moira Chan-Yeung
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elaine Fuertes
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Gref
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich (LMU), Munich, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Irina Lehmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Marjan Kerkhof
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Observational and Pragmatic Research Institute, Singapore
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anita L Kozyrskyj
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Christopher Carlsten
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Institute for Heart and Lung Health, Vancouver, BC, Canada
| | - Ursula Krämer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
24
|
Yang BY, Qian Z, Howard SW, Vaughn MG, Fan SJ, Liu KK, Dong GH. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:576-588. [PMID: 29331891 DOI: 10.1016/j.envpol.2018.01.001] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Accepted: 01/01/2018] [Indexed: 05/21/2023]
Abstract
Although numerous studies have investigated the association of ambient air pollution with hypertension and blood pressure (BP), the results were inconsistent. We performed a comprehensive systematic review and meta-analysis of these studies. Seven international and Chinese databases were searched for studies examining the associations of particulate (diameter<2.5 μm (PM2.5), 2.5-10 μm (PM2.5-10) or >10 μm (PM10)) and gaseous (sulfur dioxide (SO2), nitrogen dioxide (NO2), nitrogen oxides (NOx), ozone (O3), carbon monoxide (CO)) air pollutants with hypertension or BP. Odds ratios (OR), regression coefficients (β) and their 95% confidence intervals were calculated to evaluate the strength of the associations. Subgroup analysis, sensitivity analysis, and meta-regression analysis were also conducted. The overall meta-analysis showed significant associations of long-term exposures to PM2.5 with hypertension (OR = 1.05), and of PM10, PM2.5, and NO2 with DBP (β values: 0.47-0.86 mmHg). In addition, short-term exposures to four (PM10, PM2.5, SO2, NO2), two (PM2.5 and SO2), and four air pollutants (PM10, PM2.5, SO2, and NO2), were significantly associated with hypertension (ORs: 1.05-1.10), SBP (β values: 0.53-0.75 mmHg) and DBP (β values: 0.15-0.64 mmHg), respectively. Stratified analyses showed a generally stronger relationship among studies of men, Asians, North Americans, and areas with higher air pollutant levels. In conclusion, our study indicates a positive association between ambient air pollution and increased BP and hypertension. Geographical and socio-demographic factors may modify the pro-hypertensive effects of air pollutants.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Steven W Howard
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Shu-Jun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Kang-Kang Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
25
|
Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal 2018; 28:797-818. [PMID: 29084451 PMCID: PMC5831906 DOI: 10.1089/ars.2017.7394] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Particulate matter (PM) air pollution is a leading cause of global cardiovascular morbidity and mortality. Understanding the biological action of PM is of particular importance in improvement of public health. Recent Advances: Both fine (PM <2.5 μM) and ultrafine particles (<0.1 μM) are widely believed to mediate their effects through redox regulated pathways. A rather simplistic graded ramp model of redox stress has been replaced by a more sophisticated understanding of the role of oxidative stress in signaling, and the realization that many of the observed effects may involve disruption and/or enhancement of normal endogenous redox signaling and induction of a potent immune-mediated response, through entrainment of multiple reactive oxygen species (ROS). CRITICAL ISSUES The molecular events by which pulmonary oxidative stress in response to inhalational exposure to air pollution triggers inflammation, major ROS (e.g., superoxide, hydroxyl radical, nitric oxide, and peroxynitrite) generated in air pollution exposure, types of oxidative tissue damage in target organs, contributions of nonimmune and immune cells in inflammation, and the role of protective proteins (e.g., surfactant, proteins, and antioxidants) are highly complex and may differ depending on models and concomitant disease states. FUTURE DIRECTIONS While the role of oxidative stress in the lung has been well demonstrated, the role of oxidative stress in mediating systemic effects especially in inflammation and injury processes needs further work. The role of antioxidant defenses with chronic exposure will also need further exploration. Antioxid. Redox Signal. 28, 797-818.
Collapse
Affiliation(s)
- Xiaoquan Rao
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Jixin Zhong
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Robert D Brook
- 2 Department of Medicine, Division of Cardiovascular Medicine, University of Michigan , Ann Arbor, Michigan
| | - Sanjay Rajagopalan
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
26
|
Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110:345-367. [PMID: 28669628 DOI: 10.1016/j.freeradbiomed.2017.06.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
27
|
Villamil-Ramírez H, León-Mimila P, Macias-Kauffer LR, Canizalez-Román A, Villalobos-Comparán M, León-Sicairos N, Vega-Badillo J, Sánchez-Muñoz F, López-Contreras B, Morán-Ramos S, Villarreal-Molina T, Zurita LC, Campos-Pérez F, Huertas-Vazquez A, Bojalil R, Romero-Hidalgo S, Aguilar-Salinas CA, Canizales-Quinteros S. A combined linkage and association strategy identifies a variant near the GSTP1 gene associated with BMI in the Mexican population. J Hum Genet 2016; 62:413-418. [PMID: 27881840 DOI: 10.1038/jhg.2016.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022]
Abstract
Obesity is a major public health concern in Mexico and worldwide. Although the estimated heritability is high, common variants identified by genome-wide association studies explain only a small proportion of this heritability. A combination of linkage and association strategies could be a more robust and powerful approach to identify other obesity-susceptibility variants. We thus sought to identify novel genetic variants associated with obesity-related traits in the Mexican population by combining these methods. We performed a genome-wide linkage scan for body mass index (BMI) and other obesity-related phenotypes in 16 Mexican families using the Sequential Oligogenic Linkage Analysis Routines Program. Associated single-nucleotide polymorphisms (SNPs) were tested for associations in an independent cohort. Two suggestive BMI-linkage peaks (logarithm of odds ⩾1.5) were observed at chromosomal regions 11q13 and 13q22. Only rs614080 in the 11q13 region was significantly associated with BMI and related traits in these families. This association was also significant in an independent cohort of Mexican adults. Moreover, this variant was significantly associated with GSTP1 gene expression levels in adipose tissue. In conclusion, the rs614080 SNP near the GSTP1 gene was significantly associated with BMI and GSTP1 expression levels in the Mexican population.
Collapse
Affiliation(s)
- Hugo Villamil-Ramírez
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, México City, México.,Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Paola León-Mimila
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Luis R Macias-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | | | | | | | - Joel Vega-Badillo
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez (INCICh), México City, México
| | - Blanca López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Sofía Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | | | - Luis C Zurita
- Clínica Integral de Cirugía para la Obesidad y Enfermedades Metabólicas, Hospital General 'Dr Rubén Leñero', México City, México
| | - Francisco Campos-Pérez
- Clínica Integral de Cirugía para la Obesidad y Enfermedades Metabólicas, Hospital General 'Dr Rubén Leñero', México City, México
| | | | - Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez (INCICh), México City, México.,Departmento de Atención a la salud, Universidad Autónoma Metropolitana-Xochimilco, México City, México
| | | | - Carlos A Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| |
Collapse
|
28
|
Glutathione S-Transferase T1 (GSTT1) Null Polymorphism, Smoking, and Their Interaction in Coronary Heart Disease: A Comprehensive Meta-Analysis. Heart Lung Circ 2016; 26:362-370. [PMID: 27686690 DOI: 10.1016/j.hlc.2016.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/30/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The association between glutathione S-transferase T1 (GSTT1) null polymorphism and coronary heart disease (CHD) is inconsistent among studies, and data on the GSTT1 null genotype-smoking interplay in CHD is lacking. We conducted this meta-analysis to investigate the relationship between GSTT1 null polymorphism and CHD and to assess the potential interaction between GSTT1 null genotype and smoking. METHODS PubMed and EMBASE databases were searched up to 27 January 2016 using the appropriate terms. Odds ratios were pooled using either fixed-effects or random-effects models. RESULTS Twenty-nine articles including 31 studies with 15,004 cases and 35,597 controls were eligible. The random-effects model showed that the GSTT1 null genotype was associated with increased CHD risk (OR=1.213, 95%CI: 1.004-1.467; I2=90.4%). After excluding 10 studies detected by Galbraith plot, the fixed effects summary estimate also showed an increased risk of CHD (OR=1.14, 95% CI: 1.06-1.22; I2=27.7%). A case-only analysis including eight studies showed a statistically significant positive interaction between GSTT1 null polymorphism and smoking status on CHD (OR=1.34, 95% CI: 1.09-1.64; I2=0%). Sensitivity analyses further supported the associations. No publication bias was observed. CONCLUSIONS This meta-analysis suggests that GSTT1 null polymorphism is associated with the risk of CHD. To our knowledge, this is the first meta-analysis to prove a positive effect of the interaction between GSTT1 null genotype and smoking status on the risk of CHD. Future studies with detailed individual information are needed to confirm our findings.
Collapse
|
29
|
Cai Y, Zhang B, Ke W, Feng B, Lin H, Xiao J, Zeng W, Li X, Tao J, Yang Z, Ma W, Liu T. Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension. Hypertension 2016; 68:62-70. [DOI: 10.1161/hypertensionaha.116.07218] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023]
Abstract
Hypertension is a major disease of burden worldwide. Previous studies have indicated that air pollution might be a risk factor for hypertension, but the results were controversial. To fill this gap, we performed a meta-analysis of epidemiological studies to investigate the associations of short-term and long-term exposure to ambient air pollutants with hypertension. We searched all of the studies published before September 1, 2015, on the associations of ozone (O
3
), carbon monoxide (CO), nitrogen oxide (NO
2
and NO
X
), sulfur dioxide (SO
2
), and particulate matter (PM
10
and PM
2.5
) with hypertension in the English electronic databases. A pooled odds ratio (OR) for hypertension in association with each 10 μg/m
3
increase in air pollutant was calculated by a random-effects model (for studies with significant heterogeneity) or a fixed-effect model (for studies without significant heterogeneity). A total of 17 studies examining the effects of short-term (n=6) and long-term exposure (n=11) to air pollutants were identified. Short-term exposure to SO
2
(OR=1.046, 95% confidence interval [CI]: 1.012–1.081), PM
2.5
(OR=1.069, 95% CI: 1.003–1.141), and PM
10
(OR=1.024, 95% CI: 1.016–1.032) were significantly associated with hypertension. Long-term exposure (a 10 μg/m
3
increase) to NO
2
(OR=1.034, 95% CI: 1.005–1.063) and PM
10
(OR=1.054, 95% CI: 1.036–1.072) had significant associations with hypertension. Exposure to other ambient air pollutants (short-term exposure to NO
2
, O
3
, and CO and long-term exposure to NO
x
, PM
2.5
, and SO
2
) also had positive relationships with hypertension, but lacked statistical significance. Our results suggest that short-term or long-term exposure to some air pollutants may increase the risk of hypertension.
Collapse
Affiliation(s)
- Yuanyuan Cai
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Bo Zhang
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Weixia Ke
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Baixiang Feng
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Hualiang Lin
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Jianpeng Xiao
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Weilin Zeng
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Xing Li
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Jun Tao
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Zuyao Yang
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Wenjun Ma
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Tao Liu
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| |
Collapse
|
30
|
Hollman AL, Tchounwou PB, Huang HC. The Association between Gene-Environment Interactions and Diseases Involving the Human GST Superfamily with SNP Variants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:379. [PMID: 27043589 PMCID: PMC4847041 DOI: 10.3390/ijerph13040379] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
Exposure to environmental hazards has been associated with diseases in humans. The identification of single nucleotide polymorphisms (SNPs) in human populations exposed to different environmental hazards, is vital for detecting the genetic risks of some important human diseases. Several studies in this field have been conducted on glutathione S-transferases (GSTs), a phase II detoxification superfamily, to investigate its role in the occurrence of diseases. Human GSTs consist of cytosolic and microsomal superfamilies that are further divided into subfamilies. Based on scientific search engines and a review of the literature, we have found a large amount of published articles on human GST super- and subfamilies that have greatly assisted in our efforts to examine their role in health and disease. Because of its polymorphic variations in relation to environmental hazards such as air pollutants, cigarette smoke, pesticides, heavy metals, carcinogens, pharmaceutical drugs, and xenobiotics, GST is considered as a significant biomarker. This review examines the studies on gene-environment interactions related to various diseases with respect to single nucleotide polymorphisms (SNPs) found in the GST superfamily. Overall, it can be concluded that interactions between GST genes and environmental factors play an important role in human diseases.
Collapse
Affiliation(s)
- Antoinesha L Hollman
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology (CSET), Jackson State University, Jackson, MS 39217, USA.
| | - Paul B Tchounwou
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology (CSET), Jackson State University, Jackson, MS 39217, USA.
- Department of Biology, CSET, Jackson State University, Jackson, MS 39217, USA.
| | - Hung-Chung Huang
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology (CSET), Jackson State University, Jackson, MS 39217, USA.
- Department of Biology, CSET, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
31
|
Kim KN, Kim JH, Jung K, Hong YC. Associations of air pollution exposure with blood pressure and heart rate variability are modified by oxidative stress genes: A repeated-measures panel among elderly urban residents. Environ Health 2016; 15:47. [PMID: 27015811 PMCID: PMC4807581 DOI: 10.1186/s12940-016-0130-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Oxidative stress has been suggested as a major cause of elevated blood pressure (BP) and reduced heart rate variability (HRV) due to air pollution. We hypothesized that the associations of air pollution exposure with BP and HRV are modified by oxidative stress gene polymorphisms. METHODS Between 2008 and 2010, we conducted up to 5 surveys of 547 elderly participants, measured their BP and HRV, and genotyped 47 single nucleotide polymorphisms (SNPs) in 18 oxidative stress genes. Linear mixed models were constructed to evaluate the associations of particulate matter ≤10 μm, nitrogen dioxide, and sulfur dioxide with BP and HRV, as well as the modifications of these associations by the genotyped SNPs. RESULTS Single-SNP analyses revealed interactions between air pollution and 15 SNPs (for BP) and 33 SNPs (for HRV) (all, P for interaction < 0.05). When we generated genetic risk scores for BP and HRV, using the SNPs with interactions in the single-SNP models, we found that associations of air pollution exposure with BP and HRV were modified by the genetic risk scores (P for interaction < 0.05). CONCLUSIONS These results strongly suggest that the associations of air pollution with BP and HRV are mediated by oxidative stress pathways.
Collapse
Affiliation(s)
- Kyoung-Nam Kim
- />Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Hee Kim
- />Department of Bioscience and Bioengineering, Sejong University, Seoul, Republic of Korea
| | - Kweon Jung
- />Seoul Metropolitan Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Yun-Chul Hong
- />Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- />Institute of Environmental Medicine, Medical Research Center, Seoul, Republic of Korea
- />Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Wang X, Kindzierski W, Kaul P. Air Pollution and Acute Myocardial Infarction Hospital Admission in Alberta, Canada: A Three-Step Procedure Case-Crossover Study. PLoS One 2015; 10:e0132769. [PMID: 26167938 PMCID: PMC4500548 DOI: 10.1371/journal.pone.0132769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/18/2015] [Indexed: 01/26/2023] Open
Abstract
Adverse associations between air pollution and myocardial infarction (MI) are widely reported in medical literature. However, inconsistency and sensitivity of the findings are still big concerns. An exploratory investigation was undertaken to examine associations between air pollutants and risk of acute MI (AMI) hospitalization in Alberta, Canada. A time stratified case-crossover design was used to assess the transient effect of five air pollutants (carbon monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3) and particulate matter with an aerodynamic diameter ≤2.5 (PM2.5)) on the risk of AMI hospitalization over the period 1999–2009. Subgroups were predefined to see if any susceptible group of individuals existed. A three-step procedure, including univariate analysis, multivariate analysis, and bootstrap model averaging, was used. The multivariate analysis was used in an effort to address adjustment uncertainty; whereas the bootstrap technique was used as a way to account for regression model uncertainty. There were 25,894 AMI hospital admissions during the 11-year period. Estimating health effects that are properly adjusted for all possible confounding factors and accounting for model uncertainty are important for making interpretations of air pollution–health effect associations. The most robust findings included: (1) only 1-day lag NO2 concentrations (6-, 12- or 24-hour average), but not those of CO, NO, O3 or PM2.5, were associated with an elevated risk of AMI hospitalization; (2) evidence was suggested for an effect of elevated risk of hospitalization for NSTEMI (Non-ST Segment Elevation Myocardial Infarction), but not for STEMI (ST segment elevation myocardial infarction); and (3) susceptible subgroups included elders (age ≥65) and elders with hypertension. As this was only an exploratory study there is a need to replicate these findings with other methodologies and datasets.
Collapse
Affiliation(s)
- Xiaoming Wang
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Warren Kindzierski
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| | - Padma Kaul
- Canadian Vigour Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|