1
|
Zhu J, Li M, Li J, Wu J. Sialic acid metabolism of oral bacteria and its potential role in colorectal cancer and Alzheimer's disease. Carbohydr Res 2024; 541:109172. [PMID: 38823062 DOI: 10.1016/j.carres.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinfang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Rutherford J, Avad K, Dureja C, Norseeda K, GC B, Wu C, Sun D, Hevener KE, Hurdle JG. Evaluation of Fusobacterium nucleatum Enoyl-ACP Reductase (FabK) as a Narrow-Spectrum Drug Target. ACS Infect Dis 2024; 10:1612-1623. [PMID: 38597503 PMCID: PMC11091888 DOI: 10.1021/acsinfecdis.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Fusobacterium nucleatum, a pathobiont inhabiting the oral cavity, contributes to opportunistic diseases, such as periodontal diseases and gastrointestinal cancers, which involve microbiota imbalance. Broad-spectrum antimicrobial agents, while effective against F. nucleatum infections, can exacerbate dysbiosis. This necessitates the discovery of more targeted narrow-spectrum antimicrobial agents. We therefore investigated the potential for the fusobacterial enoyl-ACP reductase II (ENR II) isoenzyme FnFabK (C4N14_ 04250) as a narrow-spectrum drug target. ENRs catalyze the rate-limiting step in the bacterial fatty acid synthesis pathway. Bioinformatics revealed that of the four distinct bacterial ENR isoforms, F. nucleatum specifically encodes FnFabK. Genetic studies revealed that fabK was indispensable for F. nucleatum growth, as the gene could not be deleted, and silencing of its mRNA inhibited growth under the test conditions. Remarkably, exogenous fatty acids failed to rescue growth inhibition caused by the silencing of fabK. Screening of synthetic phenylimidazole analogues of a known FabK inhibitor identified an inhibitor (i.e., 681) of FnFabK enzymatic activity and F. nucleatum growth, with an IC50 of 2.1 μM (1.0 μg/mL) and a MIC of 0.4 μg/mL, respectively. Exogenous fatty acids did not attenuate the activity of 681 against F. nucleatum. Furthermore, FnFabK was confirmed as the intracellular target of 681 based on the overexpression of FnFabK shifting MICs and 681-resistant mutants having amino acid substitutions in FnFabK or mutations in other genetic loci affecting fatty acid biosynthesis. 681 had minimal activity against a range of commensal flora, and it was less active against streptococci in physiologic fatty acids. Taken together, FnFabK is an essential enzyme that is amenable to drug targeting for the discovery and development of narrow-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Jacob
T. Rutherford
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Kristiana Avad
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chetna Dureja
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Krissada Norseeda
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Bibek GC
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Chenggang Wu
- Department
of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Dianqing Sun
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii 96720, United States
| | - Kirk E. Hevener
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Julian G. Hurdle
- Center
for Infectious and Inflammatory Diseases, Institute of Biosciences
and Technology, Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Krieger M, AbdelRahman YM, Choi D, Palmer EA, Yoo A, McGuire S, Kreth J, Merritt J. Stratification of Fusobacterium nucleatum by local health status in the oral cavity defines its subspecies disease association. Cell Host Microbe 2024; 32:479-488.e4. [PMID: 38479393 PMCID: PMC11018276 DOI: 10.1016/j.chom.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
The ubiquitous inflammophilic oral pathobiont Fusobacterium nucleatum (Fn) is widely recognized for its strong association with inflammatory dysbiotic diseases and cancer. Fn is subdivided into four subspecies, which are historically considered functionally interchangeable in the oral cavity. To test this assumption, we analyzed patient-matched dental plaque and odontogenic abscess clinical specimens and examined whether an inflammatory environment selects for/against particular Fn subspecies. Dental plaque harbored a greater diversity of fusobacteria, with Fn. polymorphum dominating, whereas odontogenic abscesses were exceptionally biased for the largely uncharacterized organism Fn. animalis. Comparative genomic analyses revealed significant genotypic distinctions among Fn subspecies that correlate with their preferred ecological niches and support a taxonomic reassignment of each as a distinct Fusobacterium species. Despite originating as a low-abundance organism in dental plaque, Fn. animalis typically outcompetes other oral fusobacteria within the inflammatory abscess environment, which may explain its prevalence in other oral and extraoral diseases.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Yasser M AbdelRahman
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Giza, Egypt; Predicine, Hayward, CA, USA
| | - Dongseok Choi
- Department of Community Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; School of Public Health, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Elizabeth A Palmer
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Anna Yoo
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Sean McGuire
- Division of Pediatric Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
4
|
Zafar H, Saier MH. Understanding the Relationship of the Human Bacteriome with COVID-19 Severity and Recovery. Cells 2023; 12:cells12091213. [PMID: 37174613 PMCID: PMC10177376 DOI: 10.3390/cells12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) first emerged in 2019 in China and has resulted in millions of human morbidities and mortalities across the globe. Evidence has been provided that this novel virus originated in animals, mutated, and made the cross-species jump to humans. At the time of this communication, the Coronavirus disease (COVID-19) may be on its way to an endemic form; however, the threat of the virus is more for susceptible (older and immunocompromised) people. The human body has millions of bacterial cells that influence health and disease. As a consequence, the bacteriomes in the human body substantially influence human health and disease. The bacteriomes in the body and the immune system seem to be in constant association during bacterial and viral infections. In this review, we identify various bacterial spp. In major bacteriomes (oral, nasal, lung, and gut) of the body in healthy humans and compare them with dysbiotic bacteriomes of COVID-19 patients. We try to identify key bacterial spp. That have a positive effect on the functionality of the immune system and human health. These select bacterial spp. Could be used as potential probiotics to counter or prevent COVID-19 infections. In addition, we try to identify key metabolites produced by probiotic bacterial spp. That could have potential anti-viral effects against SARS-CoV-2. These metabolites could be subject to future therapeutic trials to determine their anti-viral efficacies.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Milton H Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA 92093-0116, USA
| |
Collapse
|
5
|
He C, Liao Q, Fu P, Li J, Zhao X, Zhang Q, Gui Q. Microbiological characteristics of different tongue coatings in adults. BMC Microbiol 2022; 22:214. [PMID: 36085010 PMCID: PMC9461261 DOI: 10.1186/s12866-022-02626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tongue coating is an important health indicator in traditional Chinese medicine (TCM). The tongue coating microbiome can distinguish disease patients from healthy controls. To study the relationship between different types of tongue coatings and health, we analyzed the species composition of different types of tongue coatings and the co-occurrence relationships between microorganisms in Chinese adults.
From June 2019 to October 2020, 158 adults from Hangzhou and Shaoxing City, Zhejiang Province, were enrolled. We classified the TCM tongue coatings into four different types: thin white tongue fur (TWF), thin yellow tongue fur (TYF), white greasy tongue fur (WGF), and yellow greasy tongue fur (YGF). Tongue coating specimens were collected and used for 16S rRNA gene sequencing using the Illumina MiSeq system. Wilcoxon rank-sum and permutational multivariate analysis of variance tests were used to analyze the data. The microbial networks in the four types of tongue coatings were inferred independently using sparse inverse covariance estimation for ecological association inference.
Results
The microbial composition was similar among the different tongue coatings; however, the abundance of microorganisms differed. TWF had a higher abundance of Fusobacterium periodonticum and Neisseria mucosa, the highest α-diversity, and a highly connected community (average degree = 3.59, average closeness centrality = 0.33). TYF had the lowest α-diversity, but the most species in the co-occurrence network diagram (number of nodes = 88). The platelet-to-lymphocyte ratio (PLR) was associated with tongue coating (P = 0.035), and the YGF and TYF groups had higher PLR values. In the co-occurrence network, Aggregatibacter segnis was the “driver species” of the TWF and TYF groups and correlated with C-reactive protein (P < 0.05). Streptococcus anginosus was the “driver species” in the YGF and TWF groups and was positively correlated with body mass index and weight (P < 0.05).
Conclusion
Different tongue coatings have similar microbial compositions but different abundances of certain bacteria. The co-occurrence of microorganisms in the different tongue coatings also varies. The significance of different tongue coatings in TCM theory is consistent with the characteristics and roles of the corresponding tongue-coating microbes. This further supports considering tongue coating as a risk factor for disease.
Collapse
|
6
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol 2022; 12:736397. [PMID: 35433495 PMCID: PMC9009446 DOI: 10.3389/fcimb.2022.736397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease COVID-19 is caused by the highly contagious single-stranded RNA virus, SARS-coronavirus 2 (SARS-CoV-2), which has a high rate of evolution like other RNA viruses. The first genome sequences of SARS-CoV-2 were available in early 2020. Subsequent whole-genome sequencing revealed that the virus had accumulated several mutations in genes associated with viral replication and pathogenesis. These variants showed enhanced transmissibility and infectivity. Soon after the first outbreak due to the wild-type strain in December 2019, a genetic variant D614G emerged in late January to early February 2020 and became the dominant genotype worldwide. Thereafter, several variants emerged, which were found to harbor mutations in essential viral genes encoding proteins that could act as drug and vaccine targets. Numerous vaccines have been successfully developed to assuage the burden of COVID-19. These have different rates of efficacy, including, although rarely, a number of vaccinated individuals exhibiting side effects like thrombosis. However, the recent emergence of the Britain strain with 70% more transmissibility and South African variants with higher resistance to vaccines at a time when several countries have approved these for mass immunization has raised tremendous concern regarding the long-lasting impact of currently available prophylaxis. Apart from studies addressing the pathophysiology, pathogenesis, and therapeutic targets of SARS-CoV-2, analysis of the gut, oral, nasopharyngeal, and lung microbiome dysbiosis has also been undertaken to find a link between the microbiome and the pathogenesis of COVID-19. Therefore, in the current scenario of skepticism regarding vaccine efficacy and challenges over the direct effects of currently available drugs looming large, investigation of alternative therapeutic avenues based on the microbiome can be a rewarding finding. This review presents the currently available understanding of microbiome dysbiosis and its association with cause and consequence of COVID-19. Taking cues from other inflammatory diseases, we propose a hypothesis of how the microbiome may be influencing homeostasis, pro-inflammatory condition, and the onset of inflammation. This accentuates the importance of a healthy microbiome as a protective element to prevent the onset of COVID-19. Finally, the review attempts to identify areas where the application of microbiome research can help in reducing the burden of the disease.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| |
Collapse
|
8
|
Gryaznova MV, Dvoretskaya YD, Syromyatnikov MY, Shabunin SV, Parshin PA, Mikhaylov EV, Strelnikov NA, Popov VN. Changes in the Microbiome Profile in Different Parts of the Intestine in Piglets with Diarrhea. Animals (Basel) 2022; 12:ani12030320. [PMID: 35158643 PMCID: PMC8833389 DOI: 10.3390/ani12030320] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The most common genera in the piglet microbiome were Lactobacillus, Escherichia-Shigella, Enterococcus, Bacteroides, and Fusobacterium. Bacteria of the Lactobacillus genus dominated in healthy piglets. An increased number of Escherichia-Shigella and Enterococcus was detected in diarrheal pigs. This indicates an important role of these bacteria in the pathogenesis of diarrhea. A decreased number of Bacteroides was detected in diarrheal pigs. According to the assessment of the microbiome composition in different sections of the intestine, bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides were more common in the rectum. Our results show that the gut microbiome may make a significant contribution to the pathogenesis of diarrhea. Abstract Determining the taxonomic composition of microbial consortia of the piglet intestine is of great importance for pig production. However, knowledge on the variety of the intestinal microbiome in newborn piglets is limited. Piglet diarrhea is a serious gastrointestinal disease with a high morbidity and mortality that causes great economic damage to the pig industry. In this study, we investigated the microbiome of various sections of the piglet intestine and compared the microbiome composition of healthy and diarrheal piglets using high-throughput sequencing of the 16S rRNA gene. The results showed that bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides dominated in the rectum. Comparing the microbiome composition of healthy and diarrheal piglets revealed a reduced number of Lactobacillus bacteria as a hallmark of diarrhea, as did an increased content of representatives of the Escherichia-Shigella genus and a reduced number of Bacteroides, which indicates the contribution of these bacteria to the development of diarrhea in piglets. The relative abundance of Enterococcus bacteria was higher in the diarrhea group. Although some bacteria of this genus are commensals, a small number of species may be associated with the development of diarrhea in piglets. Therefore, our results indicate that the gut microbiome may be an important factor in the development of diarrhea in piglets.
Collapse
Affiliation(s)
- Mariya V. Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Yuliya D. Dvoretskaya
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mikhail Y. Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
- Correspondence: ; Tel.: +7-473-220-0876
| | - Sergey V. Shabunin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Pavel A. Parshin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Evgeniy V. Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Nikolay A. Strelnikov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Vasily N. Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
9
|
Severi E, Rudden M, Bell A, Palmer T, Juge N, Thomas GH. Multiple evolutionary origins reflect the importance of sialic acid transporters in the colonization potential of bacterial pathogens and commensals. Microb Genom 2021; 7. [PMID: 34184979 PMCID: PMC8461474 DOI: 10.1099/mgen.0.000614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Located at the tip of cell surface glycoconjugates, sialic acids are at the forefront of host-microbe interactions and, being easily liberated by sialidase enzymes, are used as metabolites by numerous bacteria, particularly by pathogens and commensals living on or near diverse mucosal surfaces. These bacteria rely on specific transporters for the acquisition of host-derived sialic acids. Here, we present the first comprehensive genomic and phylogenetic analysis of bacterial sialic acid transporters, leading to the identification of multiple new families and subfamilies. Our phylogenetic analysis suggests that sialic acid-specific transport has evolved independently at least eight times during the evolution of bacteria, from within four of the major families/superfamilies of bacterial transporters, and we propose a robust classification scheme to bring together a myriad of different nomenclatures that exist to date. The new transporters discovered occur in diverse bacteria, including Spirochaetes, Bacteroidetes, Planctomycetes and Verrucomicrobia, many of which are species that have not been previously recognized to have sialometabolic capacities. Two subfamilies of transporters stand out in being fused to the sialic acid mutarotase enzyme, NanM, and these transporter fusions are enriched in bacteria present in gut microbial communities. Our analysis supports the increasing experimental evidence that competition for host-derived sialic acid is a key phenotype for successful colonization of complex mucosal microbiomes, such that a strong evolutionary selection has occurred for the emergence of sialic acid specificity within existing transporter architectures.
Collapse
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, York, UK.,Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Andrew Bell
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Tracy Palmer
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
10
|
Agarwal K, Lewis AL. Vaginal sialoglycan foraging by Gardnerella vaginalis: mucus barriers as a meal for unwelcome guests? Glycobiology 2021; 31:667-680. [PMID: 33825850 DOI: 10.1093/glycob/cwab024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial vaginosis (BV) is a condition of the vaginal microbiome in which there are few lactobacilli and abundant anaerobic bacteria. Members of the genus Gardnerella are often one of the most abundant bacteria in BV. BV is associated with a wide variety of poor health outcomes for women. It has been recognized since the 1980s that women with BV have detectable and sometimes markedly elevated levels of sialidase activity in vaginal fluids and that bacteria associated with this condition produce this activity in culture. Mounting evidence collected using diverse methodologies points to the conclusion that BV is associated with a reduction in intact sialoglycans in cervicovaginal secretions. Here we review evidence for the contributions of vaginal bacteria, especially Gardnerella, in the processes of mucosal sialoglycan degradation, uptake, metabolism and depletion. Our understanding of the impacts of vaginal sialoglycan degradation is still limited. However, the potential implications of sialic acid depletion are discussed in light of our current understanding of the roles played by sialoglycans in vaginal physiology.
Collapse
Affiliation(s)
- Kavita Agarwal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| |
Collapse
|
11
|
Nardelli C, Gentile I, Setaro M, Di Domenico C, Pinchera B, Buonomo AR, Zappulo E, Scotto R, Scaglione GL, Castaldo G, Capoluongo E. Nasopharyngeal Microbiome Signature in COVID-19 Positive Patients: Can We Definitively Get a Role to Fusobacterium periodonticum? Front Cell Infect Microbiol 2021; 11:625581. [PMID: 33659220 PMCID: PMC7919745 DOI: 10.3389/fcimb.2021.625581] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the pandemic Coronavirus Disease 2019 (COVID-19). This virus is highly transmissible among individuals through both droplets and aerosol leading to determine severe pneumonia. Among the various factors that can influence both the onset of disease and the severity of its complications, the microbiome composition has also been investigated. Recent evidence showed the possible relationship between gut, lung, nasopharyngeal, or oral microbiome and COVID-19, but very little is known about it. Therefore, we aimed to verify the relationships between nasopharyngeal microbiome and the development of either COVID-19 or the severity of symptoms. To this purpose, we analyzed, by next generation sequencing, the hypervariable V1-V2-V3 regions of the bacterial 16S rRNA in nasopharyngeal swabs from SARS-CoV-2 infected patients (n=18) and control (CO) individuals (n=12) using Microbiota solution A (Arrow Diagnostics). We found a significant lower abundance of Proteobacteria and Fusobacteria in COVID-19 patients in respect to CO (p=0.003 and p<0.0001, respectively) from the phylum up to the genus (p<0.001). The Fusobacterium periodonticum (FP) resulted as the most significantly reduced species in COVID-19 patients respect to CO. FP is reported as being able to perform the surface sialylation. Noteworthy, some sialic acids residues on the cell surface could work as additional S protein of SARS-CoV-2 receptors. Consequently, SARS-CoV-2 could use sialic acids as receptors to bind to the epithelium of the respiratory tract, promoting its clustering and the disease development. We can therefore speculate that the significant reduction of FP in COVID-19 patients could be directly or indirectly linked to the modulation of sialic acid metabolism. Finally, viral or environmental factors capable of interfering with sialic metabolism could determine a fall in the individual protection from SARS-CoV-2. Further studies are necessary to clarify the precise role of FP in COVID-19.
Collapse
Affiliation(s)
- Carmela Nardelli
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate S.C.a R.L., Napoli, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Mario Setaro
- CEINGE Biotecnologie Avanzate S.C.a R.L., Napoli, Italy
| | | | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Riccardo Scotto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate S.C.a R.L., Napoli, Italy
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate S.C.a R.L., Napoli, Italy
| |
Collapse
|
12
|
Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. PLoS Biol 2020; 18:e3000788. [PMID: 32841232 PMCID: PMC7447053 DOI: 10.1371/journal.pbio.3000788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Women with bacterial vaginosis (BV), an imbalance of the vaginal microbiome, are more likely to be colonized by potential pathogens such as Fusobacterium nucleatum, a bacterium linked with intrauterine infection and preterm birth. However, the conditions and mechanisms supporting pathogen colonization during vaginal dysbiosis remain obscure. We demonstrate that sialidase activity, a diagnostic feature of BV, promoted F. nucleatum foraging and growth on mammalian sialoglycans, a nutrient resource that was otherwise inaccessible because of the lack of endogenous F. nucleatum sialidase. In mice with sialidase-producing vaginal microbiotas, mutant F. nucleatum unable to consume sialic acids was impaired in vaginal colonization. These experiments in mice also led to the discovery that F. nucleatum may also “give back” to the community by reinforcing sialidase activity, a biochemical feature of human dysbiosis. Using human vaginal bacterial communities, we show that F. nucleatum supported robust outgrowth of Gardnerella vaginalis, a major sialidase producer and one of the most abundant organisms in BV. These results illustrate that mutually beneficial relationships between vaginal bacteria support pathogen colonization and may help maintain features of dysbiosis. These findings challenge the simplistic dogma that the mere absence of “healthy” lactobacilli is the sole mechanism that creates a permissive environment for pathogens during vaginal dysbiosis. Given the ubiquity of F. nucleatum in the human mouth, these studies also suggest a possible mechanism underlying links between vaginal dysbiosis and oral sex. Bacterial mutualism involving the prominent oral bacterium Fusobacterium nucleatum may drive vaginal dysbiosis in women and could help to explain the clinical correlations between vaginal dysbiosis and oral sex.
Collapse
|
13
|
Kreth J, Abdelrahman YM, Merritt J. Multiplex Imaging of Polymicrobial Communities-Murine Models to Study Oral Microbiome Interactions. Methods Mol Biol 2020; 2081:107-126. [PMID: 31721121 PMCID: PMC7398006 DOI: 10.1007/978-1-4939-9940-8_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Similar to other mucosal surfaces of the body, the oral cavity hosts a diverse microbial flora that live in polymicrobial biofilm communities. It is the ecology of these communities that are the primary determinants of oral health (symbiosis) or disease (dysbiosis). As such, both symbiosis and dysbiosis are inherently polymicrobial phenomena. In an effort to facilitate studies of polymicrobial communities within rodent models, we developed a suite of synthetic luciferases suitable for multiplexed in situ analyses of microbial ecology and specific gene expression. Using this approach, it is feasible to noninvasively measure multiple luciferase signals in vivo with both spatial and temporal resolution. In the following chapter, we describe the relevant details and protocols used to establish a biophotonic imaging platform for the study of experimental polymicrobial oral biofilms and abscesses in mice. The protocols described here are specifically tailored for use with oral streptococci, but the general strategies are adaptable for a wide range of polymicrobial infection studies using other species.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Yasser M Abdelrahman
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
14
|
Tan Z, Dong W, Ding Y, Ding X, Zhang Q, Jiang L. Porcine Epidemic Diarrhea Altered Colonic Microbiota Communities in Suckling Piglets. Genes (Basel) 2019; 11:genes11010044. [PMID: 31905830 PMCID: PMC7016528 DOI: 10.3390/genes11010044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a major gastrointestinal disease afflicting suckling pigs that causes huge industrial economic losses. In this study, we investigated microbiota from the colonic mucosa and content in healthy and PED piglets. High-throughput 16S rRNA gene sequencing was performed to identify inter-group differences. Firmicutes, Fusobacteria, Proteobacteria, and Bacteroidetes were the top four affected phyla. The proportion of Proteobacteria was higher in infected than in healthy piglets, and the opposite was observed for Bacteroidetes (more than four-fold higher in the healthy group). In the infected group, Fusobacterium accounted for 36.56% and 21.61% in the colonic mucosa and contents, respectively, while in the healthy group, they comprised 22.53% and 12.67%, respectively. The percentage of Lactobacillus in healthy colons (15.63%) was considerably higher than that in the disease group (<10%). In both the colonic mucosa and contents, functional enrichment differed significantly between healthy and diseased groups. Overall, infection with the PED virus increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria in the colons of piglets. Targeting intestinal microbiota could be a promising method for PED prevention, thus opening new avenues for future research.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
- College of Animal Science and Technology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
| | - Yaqun Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.T.)
- Correspondence:
| |
Collapse
|
15
|
Tan Z, Dong W, Ding Y, Ding X, Zhang Q, Jiang L. Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus. PLoS One 2019; 14:e0219868. [PMID: 31310635 PMCID: PMC6634403 DOI: 10.1371/journal.pone.0219868] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Diarrhea, caused by porcine epidemic diarrhea virus (PEDV), is a catastrophic gastrointestinal disease among suckling piglets, with high infectivity, morbidity, and mortality, causing huge economic losses to the pig industry. In the present study, we investigated the different microbiota from the cecal mucosa and cecal contents between healthy and PEDV-infected piglets. High-throughput 16S rRNA gene sequencing was performed to explore differences. The results revealed that microbial dysbiosis by PEDV infection occurred in the cecal mucosa and contents of suckling piglets at each microbial taxonomic level. The abundance of pathogenic bacteria associated with diseases, including diarrhea, was increased. The abundance of Fusobacterium was 26.71% and 33.91% in cecal mucosa and contents of PEDV-infected group, respectively, whereas that in the healthy groups was 17.85% and 9.88%. The proportion of Proteobacteria in the infected groups was relatively high (24.67% and 22.79%, respectively), whereas that in the healthy group was 13.13% and 11.34% in the cecal mucosa and contents, respectively. Additionally, the proportion of Bacteroidetes in the healthy group (29.89%, 37.32%) was approximately twice that of the PEDV-infected group (15.50%, 15.39%). “Nitrate reduction”, “Human pathogens diarrhea”, “Human pathogens gastroenteritis”, “Nitrite respiration”, and “Nitrite ammonification” were the enriched functional annotation terms in the PEDV-infected groups. Porcine epidemic diarrhea virus infection increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria in the cecal mucosa and contents of suckling piglets. Our findings suggest that determining the intestinal microbiota might provide a promising method to prevent PEDV and open a new avenue for future research.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- College of Animal Science and Technology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, P.R. China
| | - Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yaqun Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
16
|
Manjunath L, Guntupalli SR, Currie MJ, North RA, Dobson RCJ, Nayak V, Subramanian R. Crystal structures and kinetic analyses of N-acetylmannosamine-6-phosphate 2-epimerases from Fusobacterium nucleatum and Vibrio cholerae. Acta Crystallogr F Struct Biol Commun 2018; 74:431-440. [PMID: 29969107 PMCID: PMC6038449 DOI: 10.1107/s2053230x18008543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/10/2018] [Indexed: 03/03/2023] Open
Abstract
Sialic acids are nine-carbon sugars that are found abundantly on the cell surfaces of mammals as glycoprotein or glycolipid complexes. Several Gram-negative and Gram-positive bacteria have the ability to scavenge and catabolize sialic acids to use as a carbon source. This gives them an advantage in colonizing sialic acid-rich environments. The genes of the sialic acid catabolic pathway are generally present as the operon nanAKE. The third gene in the operon encodes the enzyme N-acetylmannosamine-6-phosphate 2-epimerase (NanE), which catalyzes the conversion of N-acetylmannosamine 6-phosphate to N-acetylglucosamine 6-phosphate, thus committing it to enter glycolysis. The NanE enzyme belongs to the isomerase class of enzymes possessing the triose phosphate isomerase (TIM) barrel fold. Here, comparative structural and functional characterizations of the NanE epimerases from two pathogenic Gram-negative bacteria, Fusobacterium nucleatum (Fn) and Vibrio cholerae (Vc), have been carried out. Structures of NanE from Vc (VcNanE) with and without ligand bound have been determined to 1.7 and 2.7 Å resolution, respectively. The structure of NanE from Fn (FnNanE) has been determined to 2.2 Å resolution. The enzymes show kinetic parameters that are consistent with those of Clostridium perfringens NanE. These studies allowed an evaluation of whether NanE may be a good drug target against these pathogenic bacteria.
Collapse
Affiliation(s)
- Lavanyaa Manjunath
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
- Manipal Academy of Higher Education, Tiger Circle Road, Manipal, Karnataka 576 104, India
| | - Sai Rohit Guntupalli
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
- Manipal Academy of Higher Education, Tiger Circle Road, Manipal, Karnataka 576 104, India
| | - Michael J. Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vinod Nayak
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
| |
Collapse
|
17
|
Ruscitto A, Sharma A. Peptidoglycan synthesis in Tannerella forsythia: Scavenging is the modus operandi. Mol Oral Microbiol 2018; 33:125-132. [PMID: 29247483 DOI: 10.1111/omi.12210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
Tannerella forsythia is a Gram-negative oral pathogen strongly associated with periodontitis. This bacterium has an absolute requirement for exogenous N-acetylmuramic acid (MurNAc), an amino sugar that forms the repeating disaccharide unit with amino sugar N-acetylglucosamine (GlcNAc) of the peptidoglycan backbone. In silico genome analysis indicates that T. forsythia lacks the key biosynthetic enzymes needed for the de novo synthesis of MurNAc, and so relies on alternative ways to meet its requirement for peptidoglycan biosynthesis. In the subgingival niche, the bacterium can acquire MurNAc and peptidoglycan fragments (muropeptides) released by the cohabiting bacteria during their cell wall breakdown associated with cell division. Tannerella forsythia is able to also use host sialic acid (Neu5Ac) in lieu of MurNAc or muropeptides for its survival during the biofilm growth. Evidence suggests that the bacterium might be able to shunt sialic acid into a metabolic pathway leading to peptidoglycan synthesis. In this review, we explore the mechanisms by which T. forsythia is able to scavenge MurNAc, muropeptide and sialic acid for its peptidoglycan synthesis, and the impact of these scavenging activities on pathogenesis.
Collapse
Affiliation(s)
| | - A Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
18
|
Song D, Peng Q, Chen Y, Zhou X, Zhang F, Li A, Huang D, Wu Q, Ye Y, He H, Wang L, Tang Y. Altered Gut Microbiota Profiles in Sows and Neonatal Piglets Associated with Porcine Epidemic Diarrhea Virus Infection. Sci Rep 2017; 7:17439. [PMID: 29234140 PMCID: PMC5727058 DOI: 10.1038/s41598-017-17830-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a devastating cause of diarrhea in pigs worldwide. Most of studies have focused on molecular and pathogenic characterization of PEDV, whereas there were limited studies in understanding the role of gut microbiota (GM) in viral-associated diarrhea. Here, using the Illumina MiSeq platform, we examined and compared the impact of PEDV infection on the GM of sows and their piglets less than 10 days old. Our results showed that PEDV caused alternations in the structure and abundance of GM from levels of phylum to genus, and even species. For sows, a significant decrease of observed species was found in diarrheal sows than that in healthy sows (p < 0.05). The unweighted and weighted UniFrac distances also revealed considerable segregations of GM structure among healthy, asymptomatic, and diarrheal sows. For piglets, Bacteroidetes, the dominant bacteria in healthy piglets, were replaced by Firmicutes in asymptomatic and diarrheal piglets. The abundances of Fusobacteria and Proteobacteria were also remarkably increased in asymptomatic piglets and diarrheal piglets when compared to those of the healthy piglets. Our findings demonstrated that PEDV infection caused severe perturbations of GM, reduced probiotic bacteria, and enriched pathogenic bacteria.
Collapse
Affiliation(s)
- Deping Song
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Qi Peng
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Yanjun Chen
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Xinrong Zhou
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Fanfan Zhang
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Anqi Li
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Dongyan Huang
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Qiong Wu
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Yu Ye
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Houjun He
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61802, USA.
| | - Yuxin Tang
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China.
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
| |
Collapse
|
19
|
Lewis AL, Robinson LS, Agarwal K, Lewis WG. Discovery and characterization of de novo sialic acid biosynthesis in the phylum Fusobacterium. Glycobiology 2016; 26:1107-1119. [PMID: 27613803 DOI: 10.1093/glycob/cww068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022] Open
Abstract
Sialic acids are nine-carbon backbone carbohydrates found in prominent outermost positions of glycosylated molecules in mammals. Mimicry of sialic acid (N-acetylneuraminic acid, Neu5Ac) enables some pathogenic bacteria to evade host defenses. Fusobacterium nucleatum is a ubiquitous oral bacterium also linked with invasive infections throughout the body. We employed multidisciplinary approaches to test predictions that F. nucleatum engages in de novo synthesis of sialic acids. Here we show that F. nucleatum sbsp. polymorphum ATCC10953 NeuB (putative Neu5Ac synthase) restores Neu5Ac synthesis to an Escherichia coli neuB mutant. Moreover, purified F. nucleatum NeuB participated in synthesis of Neu5Ac from N-acetylmannosamine and phosphoenolpyruvate in vitro Further studies support the interpretation that F. nucleatum ATCC10953 NeuA encodes a functional CMP-sialic acid synthetase and suggest that it may also contain a C-terminal sialic acid O-acetylesterase. We also performed BLAST queries of F. nucleatum genomes, revealing that only 4/31 strains encode a complete pathway for de novo Neu5Ac synthesis. Biochemical studies including mass spectrometry were consistent with the bioinformatic predictions, showing that F. nucleatum ATCC10953 synthesizes high levels of Neu5Ac, whereas ATCC23726 and ATCC25586 do not express detectable levels above background. While there are a number of examples of sialic acid mimicry in other phyla, these experiments provide the first biochemical and genetic evidence that a member of the phylum Fusobacterium can engage in de novo Neu5Ac synthesis.
Collapse
Affiliation(s)
- Amanda L Lewis
- Department of Molecular Microbiology .,Department of Obstetrics and Gynecology
| | | | | | - Warren G Lewis
- Department of Medicine, Center for Women's Infectious Disease Research, 660 South Euclid Ave, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Liu S, Zhao L, Zhai Z, Zhao W, Ding J, Dai R, Sun T, Meng H. Porcine Epidemic Diarrhea Virus Infection Induced the Unbalance of Gut Microbiota in Piglets. Curr Microbiol 2015; 71:643-9. [PMID: 26319658 DOI: 10.1007/s00284-015-0895-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine epidemic diarrhea (PED) is a devastating disease in livestock industry. Most of the previous studies related to the PED were focused on the pathology and etiology of porcine epidemic diarrhea virus (PEDV). A little was known regarding the status of gut microbiota after piglets infected by PEDV. In this study, aided by metagenome sequencing technology, gut microbiota profiles in feces of viral diarrhea (VD) and viral control (VC) piglets were investigated. The results showed that the abundance of four dominant phyla (Fusobacteria, Actinobacteria, Verrucomicrobia, and Proteobacteria) in feces was affected greatly by porcine epidemic diarrhea. Especially, the abundance of Fusobacteria was higher in VD piglets (36%) than in VC piglets (5%). On the contrary, the Verrucomicrobia was detected in lower distribution proportion in VD piglets (around 0%) than in VC piglets (20%). Furthermore, 25 genera were significantly different between VC and VD piglets at the genus level. Among the 25 genera, Leptotrichia belonging to Fusobacteria was remarkably lower in VC piglets than in VD piglets. Akkermansia belonging to Verrucomicrobia was higher in VC piglets than in VD piglets. Our findings implicated that the gut microbiota associated with PED significantly provided an insight into the pathology and physiology of PED.
Collapse
Affiliation(s)
- Shuyun Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Lele Zhao
- Shanghai Animal Disease Control Center, Shanghai, 201103, People's Republic of China
| | - Zhengxiao Zhai
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wenjing Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ronghua Dai
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Tao Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
21
|
Honma K, Ruscitto A, Frey AM, Stafford GP, Sharma A. Sialic acid transporter NanT participates in Tannerella forsythia biofilm formation and survival on epithelial cells. Microb Pathog 2015; 94:12-20. [PMID: 26318875 DOI: 10.1016/j.micpath.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo.
Collapse
Affiliation(s)
- Kiyonobu Honma
- Dept. of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Angela Ruscitto
- Dept. of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Andrew M Frey
- Oral & Maxillofacial Pathology, The University of Sheffield, Sheffield, United Kingdom
| | - Graham P Stafford
- Oral & Maxillofacial Pathology, The University of Sheffield, Sheffield, United Kingdom
| | - Ashu Sharma
- Dept. of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
22
|
Doron L, Coppenhagen-Glazer S, Ibrahim Y, Eini A, Naor R, Rosen G, Bachrach G. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease. PLoS One 2014; 9:e111329. [PMID: 25357190 PMCID: PMC4214739 DOI: 10.1371/journal.pone.0111329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/11/2014] [Indexed: 12/30/2022] Open
Abstract
Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61–65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55–101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF) with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96–113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55–65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.
Collapse
Affiliation(s)
- Lior Doron
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Yara Ibrahim
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Amir Eini
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ronit Naor
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Graciela Rosen
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Gilad Bachrach
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|