1
|
Hwang SH, Yang Y, Jung JH, Kim JW, Kim Y. Stearoyl-CoA desaturase in CD4 + T cells suppresses tumor growth through activation of the CXCR3/CXCL11 axis in CD8 + T cells. Cell Biosci 2024; 14:137. [PMID: 39543650 PMCID: PMC11566202 DOI: 10.1186/s13578-024-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Within the tumor microenvironment, altered lipid metabolism promotes cancer cell malignancy by activating oncogenic cascades; however, impact of lipid metabolism in CD4+ tumor-infiltrating lymphocytes (TILs) remains poorly understood. Here, we elucidated that role of stearoyl-CoA desaturase (SCD) increased by treatment with cancer-associated fibroblast (CAF) supernatant in CD4+ T cells on their subset differentiation and activity of CD8+ T cells. RESULTS In our study, we observed that CD4+ TILs had higher lipid droplet content than CD4+ splenic T cells. In tumor tissue, CAF-derived supernatant provided fatty acids to CD4+ TILs, which increased the expression of SCD and oleic acid (OA) content. Increased SCD expression by OA treatment enhanced the levels of Th1 cell markers TBX21, interleukin-2, and interferon-γ. However, SCD inhibition upregulated the expression of regulatory T (Treg) cell markers, FOXP3 and transforming growth factor-β. Comparative fatty acid analysis of genetically engineered Jurkat cells revealed that OA level was significantly higher in SCD-overexpressing cells. Overexpression of SCD increased expression of Th1 cell markers, while treatment with OA enhanced the transcriptional level of TBX21 in Jurkat cells. In contrast, palmitic acid which is higher in SCD-KO cells than other subclones enhanced the expression of Treg cell markers through upregulation of mitochondrial superoxide. Furthermore, SCD increased the secretion of the C-X-C motif chemokine ligand 11 (CXCL11) from CD4+ T cells. The binding of CXCL11 to CXCR3 on CD8+ T cells augmented their cytotoxic activity. In a mouse tumor model, the suppressive effect of CD8+ T cells on tumor growth was dependent on CXCR3 expression. CONCLUSION These findings illustrate that SCD not only orchestrates the differentiation of T helper cells, but also promotes the antitumor activity of CD8+ T cells, suggesting its function in adverse tumor microenvironments.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- BK21 Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jae-Ha Jung
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Hong K, Hun M, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Xie H, Tian J, Wen C. Association between Omega-3 fatty acids and autoimmune disease: Evidence from the umbrella review and Mendelian randomization analysis. Autoimmun Rev 2024; 23:103651. [PMID: 39357585 DOI: 10.1016/j.autrev.2024.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Autoimmune diseases are a group of disorders characterized by abnormal immune responses that mistakenly target and attack healthy cells, tissues, and organs, resulting in inflammation and tissue damage. Omega-3 fatty acids possess anti-inflammatory activities and may decrease abnormal immune activity. However, the role of omega-3 fatty acids in various autoimmune diseases is still unclear. This umbrella review and Mendelian randomization (MR) study aims to summarize the highest available evidence on omega-3 fatty acids and autoimmune disease. METHODS We conducted an umbrella review by searching electronic databases to identify systematic reviews and meta-analyses. The selection criteria included systematic reviews with or without meta-analysis, which evaluated omega-3 fatty acids as the exposure and autoimmune disease as the outcome variable. Two authors independently assessed the overlapping and quality of the reviews using the AMSTAR-2 tool. We also performed MR studies to investigate the potential causal effect of fatty acids on the risk of various autoimmune diseases, utilizing data from the meta-analysis of the UKB-TOPMed and FinnGen cohorts. RESULT The umbrella review identified 21 studies (8 systematic reviews and 13 meta-analyses) on 9 autoimmune diseases and 30 diseases in the MR study. AMSTAR 2 categorized the quality of evidence in six studies as critically low, six studies as low, eight studies as moderate, and one as high-quality evidence. The consistent result between the review and the MR study demonstrated the benefit of omega-3 fatty acids on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Additionally, in our summary review, omega-3 fatty acids can improve disease activity and inflammation biomarkers; however, MR studies provided no consistent evidence for the causal effects of omega-3 fatty acids on psoriasis, multiple sclerosis (MS), type 1 diabetes (T1D), IgA nephropathy (IgAN), juvenile idiopathic arthritis (JIA), Crohn's disease (CD), and ulcerative colitis (UC). CONCLUSION The current study presented solid evidence highlighting the advantageous impact of omega-3 fatty acids on SLE and RA. This was achieved through the reduction of disease risk, the decrease of disease activity, and the mitigation of inflammatory biomarkers. To stratify another autoimmune illness, it is necessary to carry out rigorous evaluations to surpass the existing findings and enhance understanding in this domain.
Collapse
Affiliation(s)
- Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Marady Hun
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, 410013 Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Jidong Tian
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, 410011 Changsha, China.
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
3
|
Sánchez-Rosales AI, Posadas-Calleja JG, Serralde-Zúñiga AE, Quiroz-Olguín G. Nutritional interventions as modulators of the disease activity for idiopathic inflammatory myopathies: a scoping review. J Hum Nutr Diet 2024; 37:772-787. [PMID: 38324396 DOI: 10.1111/jhn.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Idiopathic inflammatory myopathies (IIMs) are chronic, autoimmune connective tissue diseases associated with significant morbidity and disability. Nutrients can activate the immune system and contribute to chronic low-grade inflammation (LGI). Chronic muscle inflammation leads to imbalanced pro-inflammatory and anti-inflammatory cytokines, causing inadequate nutrition, weight loss and muscle weakness during a negative cycle. Owing to its potential to modulate LGI in various diseases, the Mediterranean diet (Med Diet) has been extensively studied. This scoping review explores the nutritional implications and recommendations of the Med Diet as a treatment for immune-mediated diseases, focusing on the gaps in IIM nutritional interventions. A comprehensive literature search of the MEDLINE and EBSCO databases between September 2018 and December 2022 was performed. We identified that the Med Diet and its specific components, such as omega-3 (nω3) fatty acids, vitamin D and antioxidants, play a role in the dietary treatment of connective tissue-related autoimmune diseases. Nutritional interventions have demonstrated potential for modulating disease activity and warrant further exploration of IIMs through experimental studies. This review introduces a dietary therapeutic approach using the Med Diet and related compounds to regulate chronic inflammatory processes in IIMs. However, further clinical studies are required to evaluate the efficacy of the Med Diet in patients with IIMs. Emphasising a clinical-nutritional approach, this study encourages future research on the anti-inflammatory effects of the Med Diet on IIMs. This review highlights potential insights for managing and treating these conditions using a holistic approach.
Collapse
Affiliation(s)
- Abril I Sánchez-Rosales
- School of Public Health, Instituto Nacional de Salud Pública, Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, Cuernavaca, Morelos, Mexico
| | | | - Aurora E Serralde-Zúñiga
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Quiroz-Olguín
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| |
Collapse
|
4
|
Lupu VV, Lupu A, Jechel E, Starcea IM, Stoleriu G, Ioniuc I, Azoicai A, Danielescu C, Knieling A, Borka-Balas R, Salaru DL, Revenco N, Fotea S. The role of vitamin D in pediatric systemic lupus erythematosus - a double pawn in the immune and microbial balance. Front Immunol 2024; 15:1373904. [PMID: 38715605 PMCID: PMC11074404 DOI: 10.3389/fimmu.2024.1373904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Having increased popularity during the Covid-19 pandemic, vitamin D3 is currently impressing thanks to the numerous researches aimed at its interactions with the body's homeostasis. At the same time, there is a peak in terms of recommendations for supplementation with it. Some of the studies focus on the link between autoimmune diseases and nutritional deficiencies, especially vitamin D3. Since the specialized literature aimed at children (patients between 0-18 years old) is far from equal to the informational diversity of the adult-centered branch, this review aims to bring up to date the relationship between the microbial and nutritional balance and the activity of pediatric systemic lupus erythematosus (pSLE). The desired practical purpose resides in a better understanding and an adequate, individualized management of the affected persons to reduce morbidity. The center of the summary is to establish the impact of hypovitaminosis D in the development and evolution of pediatric lupus erythematosus. We will address aspects related to the two entities of the impact played by vitamin D3 in the pathophysiological cascade of lupus, but also the risk of toxicity and its effects when the deficiency is over supplemented (hypervitaminosis D). We will debate the relationship of hypovitaminosis D with the modulation of immune function, the potentiation of inflammatory processes, the increase of oxidative stress, the perfusion of cognitive brain areas, the seasonal incidence of SLE and its severity. Finally, we review current knowledge, post-pandemic, regarding the hypovitaminosis D - pSLE relationship.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Gabriela Stoleriu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati, Romania
| | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Reka Borka-Balas
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Galati, Romania
| |
Collapse
|
5
|
Stubbs A, Clauw DJ. Nutrients and Nocioception: Diet in the management of pain. Best Pract Res Clin Rheumatol 2024; 38:101963. [PMID: 38918099 DOI: 10.1016/j.berh.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Nutrition can play a pivotal role in the management of pain associated with chronic rheumatic diseases. There is a growing body of research linking certain nutrients from the diet to inflammation. Certain nutrients have been shown to improve pain associated with inflammation. Furthermore, certain dietary patterns have been shown to improve pain across multiple rheumatic conditions. Finally, maintaining a low body mass is associated with improved pain associated with chronic rheumatic diseases.
Collapse
Affiliation(s)
- Aaron Stubbs
- Department of Rheumatology, Michigan Medicine, United States.
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, United States
| |
Collapse
|
6
|
Heine LK, Scarlett T, Wagner JG, Lewandowski RP, Benninghoff AD, Tindle AN, Skedel AE, Harkema JR, Pestka JJ. Crystalline silica-induced pulmonary inflammation and autoimmunity in mature adult NZBW/f1 mice: age-related sensitivity and impact of omega-3 fatty acid intervention. Inhal Toxicol 2024; 36:106-123. [PMID: 38477125 PMCID: PMC11378324 DOI: 10.1080/08958378.2024.2318378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Occupational exposure to respirable crystalline silica (cSiO2) has been linked to lupus development. Previous studies in young lupus-prone mice revealed that intranasal cSiO2 exposure triggered autoimmunity, preventable with docosahexaenoic acid (DHA). This study explores cSiO2 and DHA effects in mature lupus-prone adult mice, more representative of cSiO2-exposed worker age. METHODS Female NZBWF1 mice (14-week old) were fed control (CON) or DHA-supplemented diets. After two weeks, mice were intranasally instilled saline (VEH) or 1 mg cSiO2 weekly for four weeks. Cohorts were then analyzed 1- and 5-weeks postinstillation for lung inflammation, cell counts, chemokines, histopathology, B- and T-cell infiltration, autoantibodies, and gene signatures, with results correlated to autoimmune glomerulonephritis onset. RESULTS VEH/CON mice showed no pathology. cSiO2/CON mice displayed significant ectopic lymphoid tissue formation in lungs at 1 week, increasing by 5 weeks. cSiO2/CON lungs exhibited elevated cellularity, chemokines, CD3+ T-cells, CD45R + B-cells, IgG + plasma cells, gene expression, IgG autoantibodies, and glomerular hypertrophy. DHA supplementation mitigated all these effects. DISCUSSION The mature adult NZBWF1 mouse used here represents a life-stage coincident with immunological tolerance breach and one that more appropriately represents the age (20-30 yr) of cSiO2-exposed workers. cSiO2-induced robust pulmonary inflammation, autoantibody responses, and glomerulonephritis in mature adult mice, surpassing effects observed previously in young adults. DHA at a human-equivalent dosage effectively countered cSiO2-induced inflammation/autoimmunity in mature mice, mirroring protective effects in young mice. CONCLUSION These results highlight life-stage significance in this preclinical lupus model and underscore omega-3 fatty acids' therapeutic potential against toxicant-triggered autoimmune responses.
Collapse
Affiliation(s)
- Lauren K Heine
- Department of Pharmacology and Toxicology, MI State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Tasha Scarlett
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ryan P Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, UT State University, Logan, UT, USA
| | - Ashleigh N Tindle
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Anna E Skedel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Jack R Harkema
- Department of Pharmacology and Toxicology, MI State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - James J Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Białek M, Białek A, Wojtak W, Czauderna M. Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil. Animals (Basel) 2023; 14:133. [PMID: 38200864 PMCID: PMC10778479 DOI: 10.3390/ani14010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of our study was to investigate the effect of 0.35 mg Se/kg basal diet (BD) (Se as sodium selenate (Se6) and yeast rich in seleno-methionine (SeYe)) and 0.1% carnosic acid (CA) supplementation to the diet containing 1% fish oil (F-O) and 2% rapeseed oil (R-O) on the contents of fatty acids (FA), malondialdehyde (MDA), tocopherols (Ts), and total cholesterol (TCh) in lambs' spleens. A total of 24 male lambs (4 groups per 6 animals) have been fed: the control diet-the basal diet (BD) enriched in F-O and R-O; the CA diet-BD enriched in F-O, R-O, and CA; the SeYeCA diet-BD enriched in F-O, R-O, CA, and SeYe; the Se6CA diet-BD enriched in F-O, R-O, CA, and Se6. Dietary modifications affected the profiles of saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids in spleens. The SeYeCA and Se6CA diets increased the docosapentaenoic acid preference in Δ4-desaturase; hence, a higher content of docosahexaenoic acid was found in the spleens of SeYe- or Se6-treated lambs than in spleens of animals receiving the CA and control diets. The SeYeCA and Se6CA diets increased the concentration ratio of n-3long-chain PUFA (n-3LPUFA) to FA (n-3LPUFA/FA) in spleens compared to the control and CA diets. The content of n-3PUFA was higher in the spleens of Se6 treated lambs than in spleens of animals receiving the SeYeCA, CA, and control diets. The Se6CA diet increased the content of c9t11CLA in the spleen compared to the control, CA, and SeYeCA diets. Experimental diets reduced the level of atherogenic FA, the content ratios of n-6PUFA/n-3PUFA and n-6LPUFA/n-3LPUFA, and improved the content ratio of MUFA/FA and the value of the hypocholesterolemic/hypercholesterolemic FA ratio in the spleen in comparison with the control diet. The experimental diets supplemented with SeYe or Se6 increased levels of TCh and Ts in spleens in comparison with the CA and control CA diets. The present studies documented that Se6, SeYe, and CA influenced the metabolism of FA, Ts, and cholesterol in spleens.
Collapse
Affiliation(s)
- Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
| | - Agnieszka Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
| |
Collapse
|
8
|
Ji X, Wu L, Marion T, Luo Y. Lipid metabolism in regulation of B cell development and autoimmunity. Cytokine Growth Factor Rev 2023; 73:40-51. [PMID: 37419766 DOI: 10.1016/j.cytogfr.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
B cells play an important role in adaptive immunity and participate in the process of humoral immunity mainly by secreting antibodies. The entire development and differentiation process of B cells occurs in multiple microenvironments and is regulated by a variety of environmental factors and immune signals. Differentiation biases or disfunction of B cells participate in the process of many autoimmune diseases. Emerging studies report the impact of altered metabolism in B cell biology, including lipid metabolism. Here, we discuss how extracellular lipid environment and metabolites, membrane lipid-related components, and lipid synthesis and catabolism programs coordinate B cell biology and describe the crosstalk of lipid metabolic programs with signal transduction pathways and transcription factors. We conclude with a summary of therapeutic targets for B cell lipid metabolism and signaling in autoimmune diseases and discuss important future directions.
Collapse
Affiliation(s)
- Xing Ji
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Wu
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yubin Luo
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
10
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
11
|
Favor OK, Chauhan PS, Pourmand E, Edwards AM, Wagner JG, Lewandowski RP, Heine LK, Harkema JR, Lee KSS, Pestka JJ. Lipidome modulation by dietary omega-3 polyunsaturated fatty acid supplementation or selective soluble epoxide hydrolase inhibition suppresses rough LPS-accelerated glomerulonephritis in lupus-prone mice. Front Immunol 2023; 14:1124910. [PMID: 36875087 PMCID: PMC9978350 DOI: 10.3389/fimmu.2023.1124910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Lipopolysaccharide (LPS)-accelerated autoimmune glomerulonephritis (GN) in NZBWF1 mice is a preclinical model potentially applicable for investigating lipidome-modulating interventions against lupus. LPS can be expressed as one of two chemotypes: smooth LPS (S-LPS) or rough LPS (R-LPS) which is devoid of O-antigen polysaccharide sidechain. Since these chemotypes differentially affect toll-like receptor 4 (TLR4)-mediated immune cell responses, these differences may influence GN induction. Methods We initially compared the effects of subchronic intraperitoneal (i.p.) injection for 5 wk with 1) Salmonella S-LPS, 2) Salmonella R-LPS, or 3) saline vehicle (VEH) (Study 1) in female NZBWF1 mice. Based on the efficacy of R-LPS in inducing GN, we next used it to compare the impact of two lipidome-modulating interventions, ω-3 polyunsaturated fatty acid (PUFA) supplementation and soluble epoxide hydrolase (sEH) inhibition, on GN (Study 2). Specifically, effects of consuming ω-3 docosahexaenoic acid (DHA) (10 g/kg diet) and/or the sEH inhibitor 1-(4-trifluoro-methoxy-phenyl)-3-(1-propionylpiperidin-4-yl) urea (TPPU) (22.5 mg/kg diet ≈ 3 mg/kg/day) on R-LPS triggering were compared. Results In Study 1, R-LPS induced robust elevations in blood urea nitrogen, proteinuria, and hematuria that were not evident in VEH- or S-LPS-treated mice. R-LPS-treated mice further exhibited kidney histopathology including robust hypertrophy, hyperplasia, thickened membranes, lymphocytic accumulation containing B and T cells, and glomerular IgG deposition consistent with GN that was not evident in VEH- or SLPS-treated groups. R-LPS but not S-LPS induced spleen enlargement with lymphoid hyperplasia and inflammatory cell recruitment in the liver. In Study 2, resultant blood fatty acid profiles and epoxy fatty acid concentrations reflected the anticipated DHA- and TPPU-mediated lipidome changes, respectively. The relative rank order of R-LPS-induced GN severity among groups fed experimental diets based on proteinuria, hematuria, histopathologic scoring, and glomerular IgG deposition was: VEH/CON< R-LPS/DHA ≈ R-LPS/TPPU<<< R-LPS/TPPU+DHA ≈ R-LPS/CON. In contrast, these interventions had modest-to- negligible effects on R-LPS-induced splenomegaly, plasma antibody responses, liver inflammation, and inflammation-associated kidney gene expression. Discussion We show for the first time that absence of O-antigenic polysaccharide in R-LPS is critical to accelerated GN in lupus-prone mice. Furthermore, intervention by lipidome modulation through DHA feeding or sEH inhibition suppressed R-LPS-induced GN; however, these ameliorative effects were greatly diminished upon combining the treatments.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Preeti S. Chauhan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Angel M. Edwards
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Lauren K. Heine
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jack R. Harkema
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Salek M, Hosseini Hooshiar S, Salek M, Poorebrahimi M, Jafarnejad S. Omega-3 fatty acids: Current insights into mechanisms of action in systemic lupus erythematosus. Lupus 2023; 32:7-22. [PMID: 36433776 DOI: 10.1177/09612033221140724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is one of the autoimmune diseases characterized by the lack of self-tolerance and the formation of immune complexes and nuclear autoantigens resulting in inflammation in multiple organs. Nowadays, the major aim of SLE therapy is the control of disease activity. However, the biological heterogeneity between patients and the absence of safe and specific targeted treatments complicate the lupus management. Therefore, the potential prophylactic effects of natural therapy considering the potential side effects of classical pharmacology, also the role of diet therapy in decreasing co-morbidities and improving quality of life in SLE patients could be a promising approach to SLE disease. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) are one of the agents that are considered for their preventive and therapeutic properties in disease activity of SLE and the related complications. The intake of omega-3 PUFAs likely has a direct relationship with improvements in inflammatory, cardiovascular, depressive, and neuromotor symptoms of the patients. The current review summarizes clinical and preclinical studies with comprehensive insights into the mechanisms of action of omega-3 fatty acids (omega-3 FAs) in Systemic Lupus Erythematosus to provide an update on the negative and positive aspects of the intake of omega-3 FAs in SLE patients.
Collapse
Affiliation(s)
- Mina Salek
- Department of Nutrition, School of Public Health, 440827Iran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Mahsa Salek
- Department of Medicine, 201564Islamic Azad University Najafabad Branch, Najafabad, Iran
| | - Mohsen Poorebrahimi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, 48462Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Chen J, Liao S, Pang W, Guo F, Yang L, Liu HF, Pan Q. Life factors acting on systemic lupus erythematosus. Front Immunol 2022; 13:986239. [PMID: 36189303 PMCID: PMC9521426 DOI: 10.3389/fimmu.2022.986239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that primarily affects women. Currently, in the search for the mechanisms of SLE pathogenesis, the association of lifestyle factors such as diet, cigarette smoking, ultraviolet radiation exposure, alcohol and caffeine-rich beverage consumption with SLE susceptibility has been systematically investigated. The cellular and molecular mechanisms mediating lifestyle effects on SLE occurrence, including interactions between genetic risk loci and environment, epigenetic changes, immune dysfunction, hyper-inflammatory response, and cytotoxicity, have been proposed. In the present review of the reports published in reputable peer-reviewed journals and government websites, we consider the current knowledge about the relationships between lifestyle factors and SLE incidence and outline directions of future research in this area. Formulation of practical measures with regard to the lifestyle in the future will benefit SLE patients and may provide potential therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
14
|
Wang P, Xiang K, Xu YY, He YS, Hu YQ, Ni J, Pan HF. Genetically Predicted Circulating Omega-3 Fatty Acids Levels Are Causally Associated With Increased Risk for Systemic Lupus Erythematosus. Front Nutr 2022; 9:783338. [PMID: 35223943 PMCID: PMC8864316 DOI: 10.3389/fnut.2022.783338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background Accumulating evidence has demonstrated the associations of omega-3 or omega-6 polyunsaturated fatty acids (PUFAs) with the disease activity and inflammatory mediators of systemic lupus erythematosus (SLE), but the evidence of causal links of omega-3 or omega-6 PUFAs on the risk for SLE remains inconclusive. Objectives This study was conducted to evaluate the causal relationships between omega-3/omega-6 PUFAs and SLE by performing the Mendelian randomization (MR) analysis. Methods Genome-wide significant single-nucleotide polymorphisms (SNPs) were obtained from genome-wide association studies (GWASs) of circulating omega-3/omega-6 levels (n = up to 13,544) and GWAS meta-analyses of SLE (n = 14,267), respectively. The bidirectional two-sample MR (TSMR) analysis was conducted to infer the causality. Results The inverse-variance weighted (IVW) method revealed that genetically determined per SD increase in omega-3 levels were causally associated with an increased risk for SLE (odds ratios [ORs] = 1.49, 95% CI: 1.07, 2.08, p = 0.021), but no causal effect of omega-6 on the risk SLE was observed (IVW OR = 1.06, 95% CI: 0.72, 1.57, p = 0.759). In addition, there were no significantly causal associations in genetic predisposition to SLE with the changes of omega-3 and omega-6 levels, respectively (IVW beta for omega-3: 0.007, 95% CI: −0.006, 0.022, p = 0.299; IVW beta for omega-6: −0.008, 95% CI: −0.023, 0.006, p = 0.255). Conclusion The present study revealed the possible causal role of omega-3 on increasing the risk for SLE, it could be the potential implications for dietary recommendations.
Collapse
Affiliation(s)
- Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Kun Xiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuan-Yuan Xu
- Department of Outpatient Wound Care Center, 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, China
| | - Yi-Sheng He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Qian Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jing Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Jing Ni
| | - Hai-Feng Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- *Correspondence: Hai-Feng Pan ;
| |
Collapse
|
15
|
Rajasinghe LD, Bates MA, Benninghoff AD, Wierenga KA, Harkema JR, Pestka JJ. Silica Induction of Diverse Inflammatory Proteome in Lungs of Lupus-Prone Mice Quelled by Dietary Docosahexaenoic Acid Supplementation. Front Immunol 2022; 12:781446. [PMID: 35126352 PMCID: PMC8813772 DOI: 10.3389/fimmu.2021.781446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Repeated short-term intranasal instillation of lupus-prone mice with crystalline silica (cSiO2) induces inflammatory gene expression and ectopic lymphoid neogenesis in the lung, leading to early onset of systemic autoimmunity and rapid progression to glomerulonephritis. These responses are suppressed by dietary supplementation with the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA). Here, we tested the hypothesis that dietary DHA supplementation suppresses cSiO2-induced inflammatory proteins in bronchoalveolar alveolar lavage fluid (BALF) and plasma of lupus-prone mice. Archived tissue fluid samples were used from a prior investigation in which 6 wk-old lupus-prone female NZBWF1 mice were fed isocaloric diets containing 0 or 10 g/kg DHA for 2 wks and then intranasally instilled with 1 mg cSiO2 or vehicle once weekly for 4 wks. Cohorts were terminated at 1, 5, 9 or 13 wk post-instillation (PI). BALF and plasma from each cohort were analyzed by high density multiplex array profiling of 200 inflammatory proteins. cSiO2 time-dependently induced increases in the BALF protein signatures that were highly reflective of unresolved lung inflammation, although responses in the plasma were much less robust. Induced proteins in BALF included chemokines (e.g., MIP-2, MCP-5), enzymes (e.g., MMP-10, granzyme B), adhesion molecules (e.g., sE-selectin, sVCAM-1), co-stimulatory molecules (e.g., sCD40L, sCD48), TNF superfamily proteins (e.g., sTNFRI, sBAFF-R), growth factors (e.g., IGF-1, IGFBP-3), and signal transduction proteins (e.g., MFG-E8, FcgRIIB), many of which were blocked or delayed by DHA supplementation. The BALF inflammatory proteome correlated positively with prior measurements of gene expression, pulmonary ectopic lymphoid tissue neogenesis, and induction of autoantibodies in the lungs of the control and treatment groups. Ingenuity Pathway Analysis (IPA) revealed that IL-1β, TNF-α, and IL-6 were among the top upstream regulators of the cSiO2-induced protein response. Furthermore, DHA's effects were associated with downregulation of cSiO2-induced pathways involving i) inhibition of ARE-mediated mRNA decay, ii) bacterial and viral pattern recognition receptor activation, or iii) TREM1, STAT3, NF-κB, and VEGF signaling and with upregulation of PPAR, LXR/RXR and PPARα/RXRα signaling. Altogether, these preclinical findings further support the contention that dietary DHA supplementation could be applicable as an intervention against inflammation-driven autoimmune triggering by cSiO2 or potentially other environmental agents.
Collapse
Affiliation(s)
- Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Kathryn A. Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Jack R. Harkema
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Lotfi K, Salari-Moghaddam A, Yousefinia M, Larijani B, Esmaillzadeh A. Dietary intakes of monounsaturated fatty acids and risk of mortality from all causes, cardiovascular disease and cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Ageing Res Rev 2021; 72:101467. [PMID: 34560281 DOI: 10.1016/j.arr.2021.101467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/08/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Findings on the link between dietary intakes of monounsaturated fatty acids (MUFA) and risk of mortality are conflicting. This study aimed to summarize existing literature regarding the association between MUFA intake and risk of mortality from all causes, cardiovascular diseases (CVDs), and cancer. METHODS PubMed, Scopus, and ISI Web of Science was systematically searched up to December 2020. Prospective cohort studies which investigated MUFA intake in relation to mortality from all causes, CVD, or cancer were eligible for this systematic review. Publications that had reported risk ratios (RRs) or hazard ratios (HRs) and 95% confidence intervals (CIs) as effect size, were considered. RESULTS A total of 17 prospective cohort studies were included. These studies included 1022,321 participants aged ≥ 20 years in total, and 191,283 all-cause deaths, 55,437 CVD deaths, and 64,448 cancer deaths were totally reported. Combining 15 effect sizes from 11 studies, MUFA intake was inversely associated with risk of all-cause mortality (RR: 0.94; 95% CI: 0.90, 0.98; I2 =55.5; P = 0.005). Based on 17 effect sizes from 11 studies, we found no significant association between MUFA intake and risk of CVD mortality (RR: 0.95; 95% CI: 0.89, 1.01; I2 =37.0; P = 0.06). Combining 10 effect sizes from 6 studies, MUFA intake was not significantly associated with cancer mortality (RR: 0.99; 95% CI: 0.96, 1.03, I2 =13.3%, P = 0.32). Also, an additional 5% of energy from MUFA was associated with a 3% reduced risk of all-cause mortality (RR: 0.97; 95%CI: 0.96, 0.98), but not with CVD (RR: 0.98; 95%CI: 0.95, 1.01) and cancer mortality (RR: 0.99; 95%CI: 0.97, 1.01). CONCLUSIONS MUFA intake was found to be inversely associated with risk of all-cause mortality. However, no link was found between MUFA consumption and mortality from CVD or cancer.
Collapse
Affiliation(s)
- Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Salari-Moghaddam
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Yousefinia
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Gorczyca D, Szponar B, Paściak M, Czajkowska A, Szmyrka M. Serum levels of n-3 and n-6 polyunsaturated fatty acids in patients with systemic lupus erythematosus and their association with disease activity: a pilot study. Scand J Rheumatol 2021; 51:230-236. [PMID: 34169789 DOI: 10.1080/03009742.2021.1923183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: Polyunsaturated fatty acids (PUFAs) may modulate the inflammatory process in systemic autoimmune diseases, including systemic lupus erythematosus (SLE). The aim of this study was to assess the serum concentrations of essential 18-carbon PUFAs and their long-chain derivatives in patients with SLE and healthy controls, and to analyse their associations with laboratory and clinical features of the disease.Method: n-6 and n-3 PUFA composition was assessed in the sera of 30 SLE patients and 20 healthy controls using gas chromatography-mass spectrometry. We investigated the associations between PUFAs and disease activity measured with Systemic Lupus Erythematosus Activity Index (SLEDAI) scores, erythrocyte sedimentation rate, C-reactive protein, complement C3 and C4 concentrations, anti-nuclear antibody (ANA) titre, anti-double-stranded DNA (anti-dsDNA) antibody concentration, and medications.Results: Serum linoleic acid (LA) and α-linolenic acid concentrations were significantly higher in SLE patients compared with healthy controls. LA concentration correlated positively with the ANA titre and corticosteroid doses; eicosapentaenoic acid (EPA) and docosahexaenoic acid correlated inversely with anti-dsDNA antibody concentration. Patients treated with immunosuppressants had significantly lower concentrations of LA, arachidonic acid, and EPA.Conclusion: Both n-6 and n-3 PUFA precursors can participate in the inflammatory process in SLE patients. The mechanism of the PUFA metabolism disturbance needs further exploration.
Collapse
Affiliation(s)
- D Gorczyca
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland
| | - B Szponar
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Paściak
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - A Czajkowska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Szmyrka
- Department of Rheumatology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
20
|
Pestka JJ, Akbari P, Wierenga KA, Bates MA, Gilley KN, Wagner JG, Lewandowski RP, Rajasinghe LD, Chauhan PS, Lock AL, Li QZ, Harkema JR. Omega-3 Polyunsaturated Fatty Acid Intervention Against Established Autoimmunity in a Murine Model of Toxicant-Triggered Lupus. Front Immunol 2021; 12:653464. [PMID: 33897700 PMCID: PMC8058219 DOI: 10.3389/fimmu.2021.653464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/08/2021] [Indexed: 01/15/2023] Open
Abstract
Workplace exposure to respirable crystalline silica dust (cSiO2) has been etiologically linked to the development of lupus and other human autoimmune diseases. Lupus triggering can be recapitulated in female NZBWF1 mice by four weekly intranasal instillations with 1 mg cSiO2. This elicits inflammatory/autoimmune gene expression and ectopic lymphoid structure (ELS) development in the lung within 1 week, ultimately driving early onset of systemic autoimmunity and glomerulonephritis. Intriguingly, dietary supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA) found in fish oil, beginning 2 week prior to cSiO2 challenge, prevented inflammation and autoimmune flaring in this novel model. However, it is not yet known how ω-3 PUFA intervention influences established autoimmunity in this murine model of toxicant-triggered lupus. Here we tested the hypothesis that DHA intervention after cSiO2-initiated intrapulmonary autoimmunity will suppress lupus progression in the NZBWF1 mouse. Six-week old NZWBF1 female mice were fed purified isocaloric diet for 2 weeks and then intranasally instilled with 1 mg cSiO2 or saline vehicle weekly for 4 consecutive weeks. One week after the final instillation, which marks onset of ELS formation, mice were fed diets supplemented with 0, 4, or 10 g/kg DHA. One cohort of mice (n = 8/group) was terminated 13 weeks after the last cSiO2 instillation and assessed for autoimmune hallmarks. A second cohort of mice (n = 8/group) remained on experimental diets and was monitored for proteinuria and moribund criteria to ascertain progression of glomerulonephritis and survival, respectively. DHA consumption dose-dependently increased ω-3 PUFA content in the plasma, lung, and kidney at the expense of the ω-6 PUFA arachidonic acid. Dietary intervention with high but not low DHA after cSiO2 treatment suppressed or delayed: (i) recruitment of T cells and B cells to the lung, (ii) development of pulmonary ELS, (iii) elevation of a wide spectrum of plasma autoantibodies associated with lupus and other autoimmune diseases, (iv) initiation and progression of glomerulonephritis, and (v) onset of the moribund state. Taken together, these preclinical findings suggest that DHA supplementation at a human caloric equivalent of 5 g/d was an effective therapeutic regimen for slowing progression of established autoimmunity triggered by the environmental toxicant cSiO2.
Collapse
Affiliation(s)
- James J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Peyman Akbari
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Kristen. N. Gilley
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Preeti S. Chauhan
- Department of Food Science and Human Nutrition, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Rajasinghe LD, Li QZ, Zhu C, Yan M, Chauhan PS, Wierenga KA, Bates MA, Harkema JR, Benninghoff AD, Pestka JJ. Omega-3 fatty acid intake suppresses induction of diverse autoantibody repertoire by crystalline silica in lupus-prone mice. Autoimmunity 2020; 53:415-433. [PMID: 32903098 PMCID: PMC8020726 DOI: 10.1080/08916934.2020.1801651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
Inhalation of crystalline silica (cSiO2) in the workplace is etiologically linked to lupus and other autoimmune diseases. Exposing lupus-prone NZBWF1 mice to respirable cSiO2 unleashes a vicious cycle of inflammation and cell death in the lung that triggers interferon-regulated gene expression, ectopic lymphoid structure (ELS) development, elevation of local and systemic autoantibodies (AAbs), and glomerulonephritis. However, cSiO2-induced inflammation and onset of autoimmunity can be prevented by inclusion of the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) into the diet of these mice. Since cSiO2 both causes cell death and interferes with efferocytosis, secondary necrosis of residual cell corpses might provide a rich and varied autoantigen (AAg) source in the lung. While it is known that the particle induces anti-nuclear and anti-dsDNA AAbs in NZBWF1 mice, the full extent of the cSiO2-induced AAb response relative to specificity and isotype is not yet understood. The purpose of this study was to test the hypotheses that cSiO2 exposure induces a wide spectrum of AAbs in the pulmonary and systemic compartments, and that dietary DHA intervention prevents these changes. Archived tissue fluid samples were obtained from a prior study in which NZBWF1 mice were fed purified isocaloric diets containing no DHA (control) or DHA corresponding calorically to human doses of 2 and 5 g/day. Mice were intranasally instilled with 1 mg cSiO2 or saline vehicle weekly for 4 weeks, then groups euthanized 1, 5, 9, or 13 weeks post-instillation (PI) of the last cSiO2 dose. Bronchoalveolar lavage fluid (BALF) and plasma from each time point were subjected to AAb profiling using a microarray containing 122 AAgs. cSiO2 triggered robust IgG and IgM AAb responses against lupus-associated AAgs, including DNA, histones, ribonucleoprotein, Smith antigen, Ro/SSA, La/SSB, and complement as early as 1 week PI in BALF and 5 weeks PI in plasma, peaking at 9 and 13 weeks PI, respectively. Importantly, cSiO2 also induced AAbs to AAgs associated with rheumatoid arthritis (collagen II, fibrinogen IV, fibrinogen S, fibronectin, and vimentin), Sjögren's syndrome (α-fodrin), systemic sclerosis (topoisomerase I), vasculitis (MPO and PR3), myositis (Mi-2, TIF1-γ, MDA5), autoimmune hepatitis (LC-1), and celiac disease (TTG). cSiO2 elicited comparable but more modest IgA AAb responses in BALF and plasma. cSiO2-induced AAb production was strongly associated with time dependent inflammatory/autoimmune gene expression, ELS development, and glomerulonephritis. AAb responses were dose-dependently suppressed by DHA supplementation and negatively correlated with the ω-3 index, an erythrocyte biomarker of ω-3 content in tissue phospholipids. Taken together, these findings suggest that cSiO2 exposure elicits a diverse multi-isotype repertoire of AAbs, many of which have been reported in individuals with lupus and other autoimmune diseases. Furthermore, induction of this broad AAb spectrum could be impeded by increasing ω-3 tissue content via dietary DHA supplementation.
Collapse
Affiliation(s)
- Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S
| | - Chengsong Zhu
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S
| | - Mei Yan
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S
| | - Preeti S. Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, U.S
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, U.S
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences and the School of Veterinary Medicine, Utah State University, Logan UT 84322, U.S
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, U.S
| |
Collapse
|
22
|
Charoenwoodhipong P, Harlow SD, Marder W, Hassett AL, McCune WJ, Gordon C, Helmick CG, Barbour KE, Wang L, Mancuso P, Somers EC, Zick SM. Dietary Omega Polyunsaturated Fatty Acid Intake and Patient-Reported Outcomes in Systemic Lupus Erythematosus: The Michigan Lupus Epidemiology and Surveillance Program. Arthritis Care Res (Hoboken) 2020; 72:874-881. [PMID: 31074595 PMCID: PMC6842394 DOI: 10.1002/acr.23925] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To examine associations between dietary intake of omega-3 (n-3; generally antiinflammatory) and omega-6 (n-6; generally proinflammatory) fatty acids and patient-reported outcomes in systemic lupus erythematosus (SLE). METHODS This study was based on the population-based Michigan Lupus Epidemiology and Surveillance cohort. Estimates of n-3 and n-6 intake were derived from Diet History Questionnaire II items (past year with portion size version). Patient-reported outcomes included self-reported lupus activity (Systemic Lupus Activity Questionnaire [SLAQ]). Multivariable regression, adjusted for age, sex, race, and body mass index, was used to assess associations between absolute intake of n-3 and n-6, as well as the n-6:n-3 ratio, and patient-reported outcomes. RESULTS Among 456 SLE cases, 425 (93.2%) were female, 207 (45.4%) were African American, and the mean ± SD age was 52.9 ± 12.3 years. Controlling for potential confounders, the average SLAQ score was significantly higher by 0.3 points (95% confidence interval [95% CI] 0.1, 0.6; P = 0.013) with each unit increase of the n-6:n-3 ratio. Both lupus activity and Patient-Reported Outcomes Measurement Information System (PROMIS) sleep disturbance scores were lower with each 1-gram/1,000 kcal increase of n-3 fatty acids (SLAQ regression coefficient β = -0.8 [95% CI -1.6, 0.0]; P = 0.055; PROMIS sleep β = -1.1 [95% CI -2.0, -0.2]; P = 0.017). Higher n-3 intakes were nonsignificantly associated with lower levels of depressive symptoms and comorbid fibromyalgia, and with higher quality of life, whereas results for the n6:n3 ratio trended in the opposite direction. CONCLUSION This population-based study suggests that higher dietary intake of n-3 fatty acids and lower n-6:n-3 ratios are favorably associated with patient-reported outcomes in SLE, particularly self-reported lupus activity and sleep quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lu Wang
- University of MichiganAnn Arbor
| | | | | | | |
Collapse
|
23
|
Wierenga KA, Strakovsky RS, Benninghoff AD, Rajasinghe LD, Lock AL, Harkema JR, Pestka JJ. Requisite Omega-3 HUFA Biomarker Thresholds for Preventing Murine Lupus Flaring. Front Immunol 2020; 11:1796. [PMID: 32973753 PMCID: PMC7473030 DOI: 10.3389/fimmu.2020.01796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Lupus is a systemic autoimmune disease typified by uncontrolled inflammation, disruption of immune tolerance, and intermittent flaring - events triggerable by environmental factors. Preclinical and clinical studies reveal that consumption of the marine ω-3 highly unsaturated fatty acids (HUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) might be used as a precision nutrition intervention to lessen lupus symptoms. The anti-inflammatory and pro-resolving effects of ω-3 HUFAs are inextricably linked to their presence in membrane phospholipids. The ω-3 HUFA score, calculated as [100 × (ω-3 HUFAs/(ω-3 HUFAs + ω-6 HUFAs))] in red blood cells (RBCs), and the Omega-3 Index (O3I), calculated as [100 × ((DHA+EPA)/total fatty acids)] in RBCs, are two biomarkers potentially amenable to relating tissue HUFA balance to clinical outcomes in individuals with lupus. Using data from three prior preclinical DHA supplementation studies, we tested the hypothesis that the ω-3 HUFA score and the O3I inversely correlate with indicators of autoimmune pathogenesis in the cSiO2-triggered lupus flaring model. The three studies employed both low and high fat rodent diets, as well as more complex diets emulating the U.S. dietary pattern. The ω-3 HUFA scores in RBCs were comparatively more robust than the O3I at predicting HUFA balances in the kidney, liver, spleen, and lung. Importantly, increases in both the ω-3 HUFA score (>40%) and the O3I (>10%) were strongly associated with suppression of cSiO2-triggered (1) expression of interferon-regulated genes, proinflammatory cytokine production, leukocyte infiltration, and ectopic lymphoid structure development in the lung, (2) pulmonary and systemic autoantibody production, and (3) glomerulonephritis. Collectively, these findings identify achievable ω-3 HUFA scores and O3I thresholds that could be targeted in future human intervention studies querying how ω-3 HUFA consumption influences lupus and other autoimmune diseases.
Collapse
MESH Headings
- Animal Feed
- Animals
- Autoimmunity
- Biomarkers/blood
- Bronchoalveolar Lavage Fluid/immunology
- Cytokines/metabolism
- Diet
- Disease Models, Animal
- Erythrocytes/metabolism
- Fatty Acids, Omega-3/administration & dosage
- Fatty Acids, Omega-3/blood
- Fatty Acids, Omega-6/administration & dosage
- Fatty Acids, Omega-6/blood
- Female
- Inflammation Mediators/metabolism
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/diagnosis
- Lupus Erythematosus, Systemic/diet therapy
- Lupus Erythematosus, Systemic/immunology
- Mice, Inbred NZB
- Predictive Value of Tests
- Symptom Flare Up
Collapse
Affiliation(s)
- Kathryn A. Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Rita S. Strakovsky
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences and USTAR Applied Nutrition Research, Utah State University, Logan, UT, United States
| | - Lichchavi D. Rajasinghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Front Immunol 2020; 11:1477. [PMID: 32793202 PMCID: PMC7387408 DOI: 10.3389/fimmu.2020.01477] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
Collapse
Affiliation(s)
- Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Przemysław J Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
25
|
Gilley KN, Wierenga KA, Chauhuan PS, Wagner JG, Lewandowski RP, Ross EA, Lock AL, Harkema JR, Benninghoff AD, Pestka JJ. Influence of total western diet on docosahexaenoic acid suppression of silica-triggered lupus flaring in NZBWF1 mice. PLoS One 2020; 15:e0233183. [PMID: 32413078 PMCID: PMC7228097 DOI: 10.1371/journal.pone.0233183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG) expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). A limitation of previous studies was the use of purified diet that, although optimized for rodent health, does not reflect the high American intake of saturated fatty acid (SFA), ω-6 PUFAs, and total fat. To address this, we employed here a modified Total Western Diet (mTWD) emulating the 50th percentile U.S. macronutrient distribution to discern how DHA supplementation and/or SFA and ω-6 reduction influences cSiO2-triggered lupus flaring in female NZBWF1 mice. Six-week-old mice were fed isocaloric experimental diets for 2 wks, intranasally instilled with cSiO2 or saline vehicle weekly for 4 wks, and tissues assessed for lupus endpoints 11 wks following cSiO2 instillation. In mice fed basal mTWD, cSiO2 induced robust IRG expression, proinflammatory cytokine and chemokine elevation, leukocyte infiltration, ELS neogenesis, and autoantibody production in the lung, as well as early kidney nephritis onset compared to vehicle-treated mice fed mTWD. Consumption of mTWD containing DHA at the caloric equivalent to a human dose of 5 g/day dramatically suppressed induction of all lupus-associated endpoints. While decreasing SFA and ω-6 in mTWD modestly inhibited some disease markers, DHA addition to this diet was required for maximal protection against lupus development. Taken together, DHA supplementation at a translationally relevant dose was highly effective in preventing cSiO2-triggered lupus flaring in NZBWF1 mice, even against the background of a typical Western diet.
Collapse
Affiliation(s)
- Kristen N. Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Kathryn A. Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Preeti S. Chauhuan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizbeth A. Ross
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - A. L. Lock
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, Utah, United States of America
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, East Lansing, Michigan, United States of America
| |
Collapse
|
26
|
Omega-3 Polyunsaturated Fatty Acid Supplementation for Reducing Muscle Soreness after Eccentric Exercise: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8062017. [PMID: 32382573 PMCID: PMC7195643 DOI: 10.1155/2020/8062017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023]
Abstract
Purpose This systematic review and meta-analysis was performed to determine the effectiveness of Omega-3 polyunsaturated fatty acid (n‐3 PUFA) supplement on muscle soreness after eccentric exercise. Methods PubMed, EMBASE, CENTRAL, and ISI Web of Science were searched to identify randomized controlled trials (RCTs) that assessed the efficacy of n‐3 PUFA on muscle soreness after eccentric exercise. Mean difference (MD) and the associated 95% confidence interval (95% CI) were calculated by RevMan 5.3 to indicate delayed onset muscle soreness (DOMS) that measured two days after eccentric trainings. Subgroup analyses according to duration and daily dosage of n‐3 PUFA supplements before eccentric exercises were performed to determine whether these factors will influence the overall effect size. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach was used to evaluate the certainty of evidence. The protocol of this systematic review and meta-analysis was registered at PROSPERO (CRD42018085869). Results 12 RCTs containing 145 subjects and 156 controls were included in this study. Meta-analysis revealed a significantly decreased DOMS (MD -0.93; 95% CI -1.44, -0.42; P = 0.0004) in n‐3 PUFA supplement groups, while no significant differences in isometric muscle strength and range of motion (ROM) were detected. However, the pooled effect size for DOMS was lower than the minimal clinically important difference (MCID) of 1.4 on the 10-unit VAS, suggesting that the effect size of less muscle soreness with n‐3 PUFA supplements did not appear to be clinically relevant. Conclusion There is low-quality evidence that n‐3 PUFA supplementation does not result in a clinically important reduction of muscle soreness after eccentric exercise. Isometric muscle soreness and range of motion were not improved by n‐3 PUFA supplementation either (low-quality evidence). To further elucidate the overall role of n‐3 PUFA on muscle damage in this area, large-scale RCTs are still needed.
Collapse
|
27
|
Giannoni P, Claeysen S, Noe F, Marchi N. Peripheral Routes to Neurodegeneration: Passing Through the Blood-Brain Barrier. Front Aging Neurosci 2020; 12:3. [PMID: 32116645 PMCID: PMC7010934 DOI: 10.3389/fnagi.2020.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
A bidirectional crosstalk between peripheral players of immunity and the central nervous system (CNS) exists. Hence, blood-brain barrier (BBB) breakdown is emerging as a participant mechanism of dysregulated peripheral-CNS interplay, promoting diseases. Here, we examine the implication of BBB damage in neurodegeneration, linking it to peripheral brain-directed autoantibodies and gut-brain axis mechanisms. As BBB breakdown is a factor contributing to, or even anticipating, neuronal dysfunction(s), we here identify contemporary pharmacological strategies that could be exploited to repair the BBB in disease conditions. Developing neurovascular, add on, therapeutic strategies may lead to a more efficacious pre-clinical to clinical transition with the goal of curbing the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - Sylvie Claeysen
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| | - Francesco Noe
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Nicola Marchi
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| |
Collapse
|
28
|
Benninghoff AD, Bates MA, Chauhan PS, Wierenga KA, Gilley KN, Holian A, Harkema JR, Pestka JJ. Docosahexaenoic Acid Consumption Impedes Early Interferon- and Chemokine-Related Gene Expression While Suppressing Silica-Triggered Flaring of Murine Lupus. Front Immunol 2019; 10:2851. [PMID: 31921124 PMCID: PMC6923248 DOI: 10.3389/fimmu.2019.02851] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure of lupus-prone female NZBWF1 mice to respirable crystalline silica (cSiO2), a known human autoimmune trigger, initiates loss of tolerance, rapid progression of autoimmunity, and early onset of glomerulonephritis. We have previously demonstrated that dietary supplementation with the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) suppresses autoimmune pathogenesis and nephritis in this unique model of lupus flaring. In this report, we utilized tissues from prior studies to test the hypothesis that DHA consumption interferes with upregulation of critical genes associated with cSiO2-triggered murine lupus. A NanoString nCounter platform targeting 770 immune-related genes was used to assess the effects cSiO2 on mRNA signatures over time in female NZBWF1 mice consuming control (CON) diets compared to mice fed diets containing DHA at an amount calorically equivalent to human consumption of 2 g per day (DHA low) or 5 g per day (DHA high). Experimental groups of mice were sacrificed: (1) 1 d after a single intranasal instillation of 1 mg cSiO2 or vehicle, (2) 1 d after four weekly single instillations of vehicle or 1 mg cSiO2, and (3) 1, 5, 9, and 13 weeks after four weekly single instillations of vehicle or 1 mg cSiO2. Genes associated with inflammation as well as innate and adaptive immunity were markedly upregulated in lungs of CON-fed mice 1 d after four weekly cSiO2 doses but were significantly suppressed in mice fed DHA high diets. Importantly, mRNA signatures in lungs of cSiO2-treated CON-fed mice over 13 weeks reflected progressive amplification of interferon (IFN)- and chemokine-related gene pathways. While these responses in the DHA low group were suppressed primarily at week 5, significant downregulation was observed at weeks 1, 5, 9, and 13 in mice fed the DHA high diet. At week 13, cSiO2 treatment of CON-fed mice affected 214 genes in kidney tissue associated with inflammation, innate/adaptive immunity, IFN, chemokines, and antigen processing, mostly by upregulation; however, feeding DHA dose-dependently suppressed these responses. Taken together, dietary DHA intake in lupus-prone mice impeded cSiO2-triggered mRNA signatures known to be involved in ectopic lymphoid tissue neogenesis, systemic autoimmunity, and glomerulonephritis.
Collapse
Affiliation(s)
- Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences and The School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Preeti S. Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Kristen N. Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
29
|
Abstract
Two environmental factors, crystalline silica (cSiO2), a toxic airborne particle encountered occupationally, and docosahexaenoic acid (DHA), a dietary omega-3 highly unsaturated fatty acid (HUFA), have the potential to influence the development of systemic lupus erythematosus (lupus). Using the NZBWF1 mouse, which spontaneously develops lupus, we found that intranasal exposure to cSiO2 significantly decreases latency and promotes rapid progression of the disease. Specifically, cSiO2 induces the development of ectopic lymphoid structures (ELS) containing germinal centers in the lungs that yield vigorous and diverse autoantibody responses locally and systemically. Transcriptomic analysis revealed that cSiO2 promotes a robust type I interferon gene signature that likely precipitates ELS neogenesis. Intriguingly, dietary supplementation with human-relevant doses of DHA impedes cSiO2-induced gene expression, ELS neogenesis, autoantibody elevation, and glomerulonephritis in this lupus-prone mouse model. Together, our findings point to the feasibility of enhancing tissue omega-3 HUFAs as a personalized nutritional intervention to impede onset and progression of environment-triggered autoimmune disease.
Collapse
Affiliation(s)
- Kathryn A Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jack R Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - James J Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
30
|
Chen X, Wu Y, Zhang Z, Zheng X, Wang Y, Yu M, Liu G. Effects of the rs3834458 Single Nucleotide Polymorphism in FADS2 on Levels of n-3 Long-chain Polyunsaturated Fatty Acids: A Meta-analysis. Prostaglandins Leukot Essent Fatty Acids 2019; 150:1-6. [PMID: 31487670 DOI: 10.1016/j.plefa.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Evaluate the effects of the single nucleotide polymorphism (SNP) rs3834458 in the fatty acid desaturase 2 gene (FADS2) on n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels using statistical meta-analysis. METHODS Literatures pertaining to the relationship between the SNP rs3834458 and LC-PUFA were retrieved from three electronic databases. Original information was analyzed using RevMan 5.3, including single statistics, test for heterogeneity, summary statistics and evaluation of publication bias. RESULTS In total, five pieces of literature were retrieved and divided into seven trials. We observed that the minor allele (Tdel+deldel) carriers of rs3834458 had higher linolenic acid levels (P < 0.00001) and lower eicosapentaenoic acid (P < 0.00001), docosapentenoic acid (P = 0.005) and docosahexaenoic acid (P < 0.00001) levels compared to those of carrying major allele homozygote (TT). CONCLUSION This meta-analysis indicates that minor allele of rs3834458 in FADS2 may result in lower activity of delta-6 desaturase leading to higher ALA and lower EPA, DPA and DHA in blood.
Collapse
Affiliation(s)
- Xueyan Chen
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China; Children's Hospital of Changchun, Changchun, Jilin 130051, China
| | - Yixia Wu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Zilin Zhang
- School of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Xiaolei Zheng
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Yan Wang
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Miao Yu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China
| | - Guoliang Liu
- School of Public Health, Jilin University, Chang Chun, Jilin 130021, China.
| |
Collapse
|
31
|
Li X, Bi X, Wang S, Zhang Z, Li F, Zhao AZ. Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front Immunol 2019; 10:2241. [PMID: 31611873 PMCID: PMC6776881 DOI: 10.3389/fimmu.2019.02241] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
The recognition of ω-3 polyunsaturated acids (PUFAs) as essential fatty acids to normal growth and health was realized more than 80 years ago. However, the awareness of the long-term nutritional intake of ω-3 PUFAs in lowering the risk of a variety of chronic human diseases has grown exponentially only since the 1980s (1, 2). Despite the overwhelming epidemiological evidence, many attempts of using fish-oil supplementation to intervene human diseases have generated conflicting and often ambiguous outcomes; null or weak supporting conclusions were sometimes derived in the subsequent META analysis. Different dosages, as well as the sources of fish-oil, may have contributed to the conflicting outcomes of intervention carried out at different clinics. However, over the past decade, mounting evidence generated from genetic mouse models and clinical studies has shed new light on the functions and the underlying mechanisms of ω-3 PUFAs and their metabolites in the prevention and treatment of rheumatoid arthritis, systemic lupus erythematosus (SLE), multiple sclerosis, and type 1 diabetes. In this review, we have summarized the current understanding of the effects as well as the underlying mechanisms of ω-3 PUFAs on autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoxi Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xinyun Bi
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
32
|
Wierenga KA, Wee J, Gilley KN, Rajasinghe LD, Bates MA, Gavrilin MA, Holian A, Pestka JJ. Docosahexaenoic Acid Suppresses Silica-Induced Inflammasome Activation and IL-1 Cytokine Release by Interfering With Priming Signal. Front Immunol 2019; 10:2130. [PMID: 31616405 PMCID: PMC6763728 DOI: 10.3389/fimmu.2019.02130] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Occupational exposure to respirable crystalline silica (cSiO2) has been etiologically linked to human autoimmunity. Intranasal instillation with cSiO2 triggers profuse inflammation in the lung and onset of autoimmunity in lupus-prone mice; however, dietary supplementation with the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) abrogates these responses. Inflammasome activation, IL-1 cytokine release, and death in alveolar macrophages following cSiO2 exposure are early and critical events that likely contribute to triggering premature autoimmune pathogenesis by this particle. Here we tested the hypothesis that DHA suppresses cSiO2-induced NLRP3 inflammasome activation, IL-1 cytokine release, and cell death in the macrophage. The model used was the murine macrophage RAW 264.7 cell line stably transfected with the inflammasome adapter protein ASC (RAW-ASC). Following priming with LPS, both the canonical activator nigericin and cSiO2 elicited robust inflammasome activation in RAW-ASC cells, as reflected by IL-1β release and caspase-1 activation. These responses were greatly diminished or absent in wild-type RAW cells. In contrast to IL-1β, cSiO2 induced IL-1α release in both RAW-ASC and to a lesser extent in RAW-WT cells after LPS priming. cSiO2-driven effects in RAW-ASC cells were confirmed in bone-marrow derived macrophages. Pre-incubating RAW-ASC cells with 10 and 25 μM DHA for 24 h enriched this fatty acid in the phospholipids by 15- and 25-fold, respectively, at the expense of oleic acid. DHA pre-incubation suppressed inflammasome activation and release of IL-1β and IL-1α by nigericin, cSiO2, and two other crystals - monosodium urate and alum. DHA's suppressive effects were linked to inhibition of LPS-induced Nlrp3, Il1b, and Il1a transcription, potentially through the activation of PPARγ. Finally, nigericin-induced death was inflammasome-dependent, indicative of pyroptosis, and could be inhibited by DHA pretreatment. In contrast, cSiO2-induced death was inflammasome-independent and not inhibited by DHA. Taken together, these findings indicate that DHA suppresses cSiO2-induced inflammasome activation and IL-1 cytokine release in macrophages by acting at the level of priming, but was not protective against cSiO2-induced cell death.
Collapse
Affiliation(s)
- Kathryn A Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Josephine Wee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kristen N Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Melissa A Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Mikhail A Gavrilin
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University, Columbus, OH, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - James J Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
33
|
Mao L, Zhang Y, Wang W, Zhuang P, Wu F, Jiao J. Plant-sourced and animal-sourced monounsaturated fatty acid intakes in relation to mortality: a prospective nationwide cohort study. Eur J Nutr 2019; 59:1989-1998. [PMID: 31297602 DOI: 10.1007/s00394-019-02048-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Monounsaturated fatty acids (MUFAs) are typical components of various plant-sourced and animal-sourced foods. However, the associations of MUFA consumption from different sources with mortality remain unclear. This study aimed to investigate the relationships between MUFA intakes from plant and animal sources and mortality. METHODS A total of 14,305 participants from China Health and Nutrition Survey were prospectively followed up for 14 years. Dietary intake of MUFAs was assessed by 3-day 24-h dietary records in each round. Cox proportional hazards regression models were used to compute hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS A total of 1006 deaths occurred during 199,091 person-years of follow-up. Intake of total MUFAs was not associated with mortality (P-trend = 0.17). The plant-sourced MUFA intake was strongly associated with lower mortality [HRQ4vsQ1 (95% CI) 0.72 (0.58-0.89); P-trend = 0.008], whereas animal-sourced MUFA intake showed no significant association. Likewise, oleic acid (OA) and palmitoleic acid (PA) intakes from plant sources were also inversely associated with mortality [HRQ4vsQ1 (95% CI) 0.66 (0.52-0.84) for OA and 0.73 (0.59-0.91) for PA], while animal-sourced OA and PA were not related to mortality. Theoretically replacing saturated fatty acids (SFAs) (5% of total energy) with isocaloric plant-sourced MUFAs was associated with 15% (95% CI 5-25%) lower mortality. In addition, 18% (95% CI 10-26%) lower mortality was observed when theoretically replacing the sum of SFAs and animal-sourced MUFAs with isocaloric plant-sourced MUFAs. CONCLUSIONS Intakes of MUFAs, including OA and PA, from plant but not animal sources were associated with lower total mortality. These findings suggested the importance of consuming MUFAs from plant-based foods for overall health.
Collapse
Affiliation(s)
- Lei Mao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Wenqiao Wang
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
34
|
Benvenga S, Vita R, Di Bari F, Granese R, Metro D, Le Donne M. Stable consumption of swordfish favors, whereas stable consumption of oily fish protects from, development of postpartum thyroiditis. Endocrine 2019; 65:94-101. [PMID: 30840228 DOI: 10.1007/s12020-019-01882-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE In 236 pregnant women, we showed that selective or predominant consumption of swordfish (group A) was associated with high rates of positivity for serum thyroid autoantibodies (TPOAb and TgAb) throughout day 4 postpartum. In contrast, selective or predominant consumption of oily fish (group B) was associated with TPOAb and TgAb negativity. Rates were intermediate in group C (scanty consumption of swordfish) and group D (consumption of fish other than swordfish and oily fish). Gestational TPOAb positivity is a risk factor for postpartum thyroiditis (PPT), which evolves into permanent hypothyroidism (PH) in about 50% of cases. Purpose of this study was to verify that the different rates of thyroid autoantibodies in the four groups translated into different PPT rates. METHODS We expanded our previous cohort (n = 412) and duration of follow-up (month 12 postpartum), and measured frequency of PPT and PH. RESULTS At first timester of gestation, we confirmed the different Ab positivity rates in group A vs. group B (TPOAb = 21.7% vs. 4.7%, P < 0.0001; TgAb = 14.1% vs. 2.4%, P < 0.05). Overall, PPT prevalence was 63/412 (15.3%), but 22/92 in group A (23.9%), 4/85 in group B (4.7%; P < 0.0001 vs. group A), 17/108 (15.7%) in group C, and 16/117 (13.7%) in group D. Approximately half of the PPT women had PH, regardless of fish group. CONCLUSIONS In conclusion, stable consumption of oily fish (which is enriched in polyunsaturated omega-3 fatty acids) protects from PPT, while stable consumption of swordfish (which is enriched in pollutants) favors PPT. Thus, a dietary prophylaxis of PPT is possible.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program on Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital, A.O.U. Policlinico G. Martino, 98125, Messina, Italy
| | - Roberto Vita
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Flavia Di Bari
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Roberta Granese
- Department of Human Pathology Gaetano Barresi, University of Messina, Messina, Italy
| | - Daniela Metro
- Department of Biomedical, Dental, Morphologic and Functional Image Sciences, University of Messina, 98125, Messina, Italy
| | - Maria Le Donne
- Department of Human Pathology Gaetano Barresi, University of Messina, Messina, Italy
| |
Collapse
|
35
|
La Cava A. The Influence of Diet and Obesity on Gene Expression in SLE. Genes (Basel) 2019; 10:genes10050405. [PMID: 31137916 PMCID: PMC6562976 DOI: 10.3390/genes10050405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
This review provides an overview of the known effects of diet, obesity, and the intake of different nutrients on systemic lupus erythematosus (SLE). It summarizes and discusses the studies in rodents that identified how different diets can regulate gene expression in the disease, together with a description of the effects of diet on lupus patients’ inflammatory state and disease severity. The identification of selected dietary candidates that can modulate SLE onset and progression is analyzed in relation to possible targeted approaches that could ultimately ameliorate the management and prognosis of this disease.
Collapse
Affiliation(s)
- Antonio La Cava
- Department of Medicine, University of California Los Angeles, 1000 Veteran Ave. 32-59, Los Angeles, CA 90095-1670, USA.
| |
Collapse
|
36
|
Bates MA, Akbari P, Gilley KN, Wagner JG, Li N, Kopec AK, Wierenga KA, Jackson-Humbles D, Brandenberger C, Holian A, Benninghoff AD, Harkema JR, Pestka JJ. Dietary Docosahexaenoic Acid Prevents Silica-Induced Development of Pulmonary Ectopic Germinal Centers and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse. Front Immunol 2018; 9:2002. [PMID: 30258439 PMCID: PMC6143671 DOI: 10.3389/fimmu.2018.02002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022] Open
Abstract
Ectopic lymphoid structures (ELS) consist of B-cell and T-cell aggregates that are initiated de novo in inflamed tissues outside of secondary lymphoid organs. When organized within follicular dendritic cell (FDC) networks, ELS contain functional germinal centers that can yield autoantibody-secreting plasma cells and promote autoimmune disease. Intranasal instillation of lupus-prone mice with crystalline silica (cSiO2), a respirable particle linked to human lupus, triggers ELS formation in the lung, systemic autoantibodies, and early onset of glomerulonephritis. Here we tested the hypothesis that consumption of docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid with anti-inflammatory properties, influences the temporal profile of cSiO2-induced pulmonary ectopic germinal center formation and development of glomerulonephritis. Female NZBWF1 mice (6-wk old) were fed purified isocaloric diets supplemented with 0, 4, or 10 g/kg DHA - calorically equivalent to 0, 2, or 5 g DHA per day consumption by humans, respectively. Beginning at age 8 wk, mice were intranasally instilled with 1 mg cSiO2, or saline vehicle alone, once per wk, for 4 wk. Cohorts were sacrificed 1, 5, 9, or 13 wk post-instillation (PI) of the last cSiO2 dose, and lung and kidney lesions were investigated by histopathology. Tissue fatty acid analyses confirmed uniform dose-dependent DHA incorporation across all cohorts. As early as 1 wk PI, inflammation comprising of B (CD45R+) and T (CD3+) cell accumulation was observed in lungs of cSiO2-treated mice compared to vehicle controls; these responses intensified over time. Marked follicular dendritic cell (FDC; CD21+/CD35+) networking appeared at 9 and 13 wk PI. IgG+ plasma cells suggestive of mature germinal centers were evident at 13 wk. DHA supplementation dramatically suppressed cSiO2-triggered B-cell, T-cell, FDC, and IgG+ plasma cell appearance in the lungs as well as anti-dsDNA IgG in bronchial lavage fluid and plasma over the course of the experiment. cSiO2 induced glomerulonephritis with concomitant B-cell accumulation in the renal cortex at 13 wk PI but this response was abrogated by DHA feeding. Taken together, realistic dietary DHA supplementation prevented initiation and/or progression of ectopic lymphoid neogenesis, germinal center development, systemic autoantibody elevation, and resultant glomerulonephritis in this unique preclinical model of environment-triggered lupus.
Collapse
Affiliation(s)
- Melissa A Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Peyman Akbari
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kristen N Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ning Li
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Anna K Kopec
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kathryn A Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daven Jackson-Humbles
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | | | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Jack R Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
37
|
Icer MA, Gezmen-Karadag M, Sozen S. Can urine osteopontin levels, which may be correlated with nutrition intake and body composition, be used as a new biomarker in the diagnosis of nephrolithiasis? Clin Biochem 2018; 60:38-43. [PMID: 30114399 DOI: 10.1016/j.clinbiochem.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/12/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIM The nephrolithiasis has a multifactorial etiology resulting from the interaction of metabolic, genetic and environmental factors. Parameters such as nutrition and urinary osteopontin (OPN) level may affect kidney stone formation. The purpose of this study is to evaluate the correlation between urinary OPN level and kidney stone formation and effect of nutrition on OPN level in nephrolithiasis. MATERIALS AND METHODS This study was conducted on 88 volunteers including 44 healthy individuals and 44 patients diagnosed with nephrolithiasis and aging between 20 and 65 years. Some serum parameters and urinary OPN levels of the individuals were analyzed. Several anthropometric measurements of the individuals were taken and calculated their body mass index. Additionally, 24-hour dietary recall and water intakes were recorded and the participants completed food-frequency questionnaire for the evaluation of their nutritional status. RESULTS Urinary OPN (ng/mL) levels of patients were lower than that of control group (p<0.05). Dietary energy, carbohydrate, poly-unsaturated fatty acid (PUFA) and n-6 fatty acids intakes and urinary OPN levels of male patients were positively correlated (p<0.05). Additionally, there was a negative correlation between their urinary OPN (ng/mL) and serum creatinine (mg/dL) levels of female patients (p<0.05). Body weight, waist circumference, hip circumference and body muscle mass values of healthy males were positively correlated with their urinary OPN levels (p<0.05). CONCLUSIONS Results of the study showed that low urinary OPN levels were correlated with increased kidney stone risk, and dietary habits can affect urinary OPN level.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06500 Ankara, Turkey.
| | - Makbule Gezmen-Karadag
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06500 Ankara, Turkey
| | - Sinan Sozen
- Departments of Urology, School of Medicine, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|
38
|
Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials. Nutr J 2018; 17:57. [PMID: 29859104 PMCID: PMC5984323 DOI: 10.1186/s12937-018-0356-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Objective This study aimed to investigate the possible effect of omega-3 fatty acids on reducing the mortality of sepsis and sepsis-induced acute respiratory distress syndrome (ARDS) in adults. Methods Medline, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI) database, WangFang database, and Chinese BioMedical Literature Database from their inception to March 6, 2017, were searched using systematic review researching methods. Five factors were analyzed to investigate the correlation between omega-3 fatty acids (either parenteral or enteral supplementation) and mortality rate. Results Forty randomized controlled trials (RCTs) were initially included, but only 25 of them assessed mortality. Of these RCTs, nine used enteral nutrition (EN) and 16 used parenteral nutrition (PN). The total mortality rate in the omega-3 fatty acid group was lower than that in the control group. However, the odds ratio (OR) value was not significantly different in the EN or PN subgroup. Eighteen RCTs including 1790 patients with similar severity of sepsis and ARDS were also analyzed. The OR value was not significantly different in the EN or PN subgroup. Omega-3 fatty acids did not show positive effect on improving mortality of sepsis-induced ARDS (p = 0.39). But in EN subgroup, omega-3 fatty acids treatment seemed to have some benefits in reducing mortality rate (p = 0.04). In the RCTs including similar baseline patients, partial correlation analysis found that the concentration ratio of n-6 to n-3 fatty acids had positive correlation with reduction of mortality (RM) (γ = 0.60, P = 0.02), whereas the total number of each RCT had negative correlation with RM (γ = − 0.54, P = 0.05). Conclusions This review found that omega-3 fatty acid supplementation could reduce the mortality rate of sepsis and sepsis-induced ARDS. However, further investigation based on suitable concentrations and indications is needed to support the findings.
Collapse
|
39
|
Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of Diet, Gut Microbiome, and Autoantibody Production. Front Immunol 2018; 9:439. [PMID: 29559977 PMCID: PMC5845559 DOI: 10.3389/fimmu.2018.00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
B cells possess a predominant role in adaptive immune responses via antibody-dependent and -independent functions. The microbiome of the gastrointestinal tract is currently being intensively investigated due to its profound impact on various immune responses, including B cell maturation, activation, and IgA antibody responses. Recent findings have demonstrated the interplay between dietary components, gut microbiome, and autoantibody production. "Western" dietary patterns, such as high fat and high salt diets, can induce alterations in the gut microbiome that in turn affects IgA responses and the production of autoantibodies. This could contribute to multiple pathologies including autoimmune and inflammatory diseases. Here, we summarize current knowledge on the influence of various dietary components on B cell function and (auto)antibody production in relation to the gut microbiota, with a particular focus on the gut-brain axis in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Ioanna Petta
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Judith Fraussen
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Veerle Somers
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| |
Collapse
|
40
|
Dietary Factors Associated with Plasma Thyroid Peroxidase and Thyroglobulin Antibodies. Nutrients 2017; 9:nu9111186. [PMID: 29143786 PMCID: PMC5707658 DOI: 10.3390/nu9111186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
The knowledge about dietary habits and their influence in the development of autoimmune thyroid disease is insufficient. The aim of this study was to analyse the association of dietary factors and plasma thyroid peroxidase antibodies (TPO-Ab) and/or thyroglobulin antibodies (Tg-Ab). The study enrolled 1887 participants originating from the South Croatia. Participants with elevated plasma TPO-Ab and/or Tg-Ab were defined as cases (n = 462) and those with TPO-Ab and/or Tg-Ab within referent values were defined as controls (n = 1425). Dietary intake was evaluated according to a food frequency questionnaire containing 58 food items. Principal component analysis was used to group food items into dietary groups. We used logistic regression analysis to examine dietary groups associated with positive plasma TPO-Ab and/or Tg-Ab. The results indicate that the dietary group with frequent consumption of animal fats and butter is associated with positive plasma TPO-Ab and/or Tg-Ab (p = 0.01). The dietary group with frequent consumption of vegetables as well as the dietary group with high consumption of dried fruit, nuts, and muesli are associated with negative findings of TPO-Ab and/or Tg-Ab (p = 0.048 and p = 0.02, respectively). We showed that the anti-inflammatory dietary groups are associated with the negative findings of plasma TPO-Ab and/or Tg-Ab.
Collapse
|
41
|
Bi X, Li F, Liu S, Jin Y, Zhang X, Yang T, Dai Y, Li X, Zhao AZ. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J Clin Invest 2017; 127:1757-1771. [PMID: 28375156 DOI: 10.1172/jci87388] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Despite the benefit of insulin, blockade of autoimmune attack and regeneration of pancreatic islets are ultimate goals for the complete cure of type 1 diabetes (T1D). Long-term consumption of ω-3 polyunsaturated fatty acids (PUFAs) is known to suppress inflammatory processes, making these fatty acids candidates for the prevention and amelioration of autoimmune diseases. Here, we explored the preventative and therapeutic effects of ω-3 PUFAs on T1D. In NOD mice, dietary intervention with ω-3 PUFAs sharply reduced the incidence of T1D, modulated the differentiation of Th cells and Tregs, and decreased the levels of IFN-γ, IL-17, IL-6, and TNF-α. ω-3 PUFAs exerted similar effects on the differentiation of CD4+ T cells isolated from human peripheral blood mononuclear cells. The regulation of CD4+ T cell differentiation was mediated at least in part through ω-3 PUFA eicosanoid derivatives and by mTOR complex 1 (mTORC1) inhibition. Importantly, therapeutic intervention in NOD mice through nutritional supplementation or lentivirus-mediated expression of an ω-3 fatty acid desaturase, mfat-1, normalized blood glucose and insulin levels for at least 182 days, blocked the development of autoimmunity, prevented lymphocyte infiltration into regenerated islets, and sharply elevated the expression of the β cell markers pancreatic and duodenal homeobox 1 (Pdx1) and paired box 4 (Pax4). The findings suggest that ω-3 PUFAs could potentially serve as a therapeutic modality for T1D.
Collapse
|
42
|
Krstić MP, Mitrović RR, Marković RV, Ivanović JS, Ćirković MA, Djordjević VŽ, Baltić MŽ. Fatty acid composition in the fillets of rainbow trout grown in different conditions. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Milena P. Krstić
- Faculty of Veterinary MedicineUniversity of BelgradeBelgradeSerbia
| | | | | | | | | | | | - Milan Ž. Baltić
- Faculty of Veterinary MedicineUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
43
|
Abstract
AbstractSystemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease characterised by multiple organ involvement and a large number of complications. SLE management remains complicated owing to the biological heterogeneity between patients and the lack of safe and specific targeted therapies. There is evidence that dietary factors can contribute to the geoepidemiology of autoimmune diseases such as SLE. Thus, diet therapy could be a promising approach in SLE owing to both its potential prophylactic effects, without the side effects of classical pharmacology, and its contribution to reducing co-morbidities and improving quality of life in patients with SLE. However, the question arises as to whether nutrients could ameliorate or exacerbate SLE and how they could modulate inflammation and immune function at a molecular level. The present review summarises preclinical and clinical experiences to provide the reader with an update of the positive and negative aspects of macro- and micronutrients and other nutritional factors, including dietary phenols, on SLE, focusing on the mechanisms of action involved.
Collapse
|
44
|
Passos MEP, Alves HHO, Momesso CM, Faria FG, Murata G, Cury-Boaventura MF, Hatanaka E, Massao-Hirabara S, Gorjão R. Differential effects of palmitoleic acid on human lymphocyte proliferation and function. Lipids Health Dis 2016; 15:217. [PMID: 27964715 PMCID: PMC5154135 DOI: 10.1186/s12944-016-0385-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/02/2016] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Palmitoleic acid (PA) is a n-7 monounsaturated fatty acid (MUFA) secreted by adipose tissue and related to decreased insulin resistance in peripheral tissues. Evidences have been shown that PA also decreased proinflammatory cytokine expression in cultured macrophages. Although studies have shown that other fatty acids (FAs) modulate several lymphocyte functions, the specific effect of PA on these cells is unknown. The aim of the present study was to evaluate the possible influence of PA on activation and differentiation of human lymphocytes in comparison to oleic acid (OA). METHODS Human lymphocytes were isolated from peripheral blood of health men and cultured in the presence of growing concentrations of PA or OA (5 to 200 μM), for 24 h. After that, cells were collected and cytotoxicity evaluated by flow cytometry. Then, we analyzed proliferative capacity in lymphocytes treated with non toxic concentrations of PA and OA (25 and 50 μM, respectively), in the presence or absence of concanavalin A (ConA). The Th1/Th2/Th17 cytokine production was determined by the Cytometric Bead Array. CD28 and CD95 surface expression and T regulatory cell percentage were determined by flow cytometry. RESULTS We observed that PA is toxic to lymphocytes above 50 μM. PA promoted a decrease of lymphocyte proliferation stimulated by ConA in both concentrations. PA also decreased CD28 externalization and increased CD95. On the other hand, OA did not alter these parameters. In the same way, PA reduced IL6, IFN-gamma, TNF-alpha and IL17A production in both concentration and IL2 only at 50 μM (in the presence of ConA). OA promoted IFN-gamma reduction in both concentrations and an increase of IL-2, IL4 and IL10 at 25 μM. Both fatty acids decreased the percentage of T regulatory cells. CONCLUSION In conclusion, PA promoted a suppressive effect on lymphocyte proliferation characterized by a decrease of Th1 and Th17 response, and co-stimulatory molecule (CD28). However, OA increased lymphocyte proliferation through IL2 production and Th2 response. These results also show a more suppressive effect of PA on lymphocytes in comparison to OA.
Collapse
Affiliation(s)
- M E P Passos
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil.
| | - H H O Alves
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil
| | - C M Momesso
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil
| | - F G Faria
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil
| | - G Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M F Cury-Boaventura
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil
| | - E Hatanaka
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil
| | - S Massao-Hirabara
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil
| | - R Gorjão
- Institute of Physical Activity and Sport Sciences, Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, CEP: 01506 000, São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Bates MA, Brandenberger C, Langohr II, Kumagai K, Lock AL, Harkema JR, Holian A, Pestka JJ. Silica-Triggered Autoimmunity in Lupus-Prone Mice Blocked by Docosahexaenoic Acid Consumption. PLoS One 2016; 11:e0160622. [PMID: 27513935 PMCID: PMC4981380 DOI: 10.1371/journal.pone.0160622] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 01/08/2023] Open
Abstract
Occupational exposure to respirable crystalline silica (cSiO2, quartz) is etiologically linked to systemic lupus erythematosus (lupus) and other human autoimmune diseases (ADs). In the female NZBWF1 mouse, a widely used animal model that is genetically prone to lupus, short-term repeated intranasal exposure to cSiO2 triggers premature initiation of autoimmune responses in the lungs and kidneys. In contrast to cSiO2's triggering action, consumption of the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) prevents spontaneous onset of autoimmunity in this mouse strain. The aim of this study was to test the hypothesis that consumption of DHA will prevent cSiO2-triggered autoimmunity in the female NZBWF1 mouse. Mice (6 wk old) were fed isocaloric AIN-93G diets containing 0.0, 0.4, 1.2 or 2.4% DHA. Two wk after initiating feeding, mice were intranasally instilled with 1 mg cSiO2 once per wk for 4 wk and maintained on experimental diets for an additional 12 wk. Mice were then sacrificed and the lung, blood and kidney assessed for markers of inflammation and autoimmunity. DHA was incorporated into lung, red blood cells and kidney from diet in a concentration-dependent fashion. Dietary DHA dose-dependently suppressed cSiO2-triggered perivascular leukocyte infiltration and ectopic lymphoid tissue neogenesis in the lung. DHA consumption concurrently inhibited cSiO2-driven elevation of proinflammatory cytokines, B-cell proliferation factors, IgG and anti-dsDNA Ig in both bronchoalveolar lavage fluid and plasma. DHA's prophylactic effects were further mirrored in reduced proteinuria and glomerulonephritis in cSiO2-treated mice. Taken together, these results reveal that DHA consumption suppresses cSiO2 triggering of autoimmunity in female NZBWF1 mice as manifested in the lung, blood and kidney. Our findings provide novel insight into how dietary modulation of the lipidome might be used to prevent or delay triggering of AD by cSiO2. Such knowledge opens the possibility of developing practical, low-cost preventative strategies to reduce the risk of initiating AD and subsequent flaring in cSiO2-exposed individuals. Additional research in this model is required to establish the mechanisms by which DHA suppresses cSiO2-induced autoimmunity and to ascertain unique lipidome signatures predictive of susceptibility to cSiO2-triggered AD.
Collapse
Affiliation(s)
- Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States of America
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, 30625, Germany
| | - Ingeborg I. Langohr
- Department of Pathobiological Studies, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States of America
| | - Kazuyoshi Kumagai
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, 48824, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, United States of America
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States of America
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States of America
| |
Collapse
|
46
|
Sex-specific effects of LiCl treatment on preservation of renal function and extended life-span in murine models of SLE: perspective on insights into the potential basis for survivorship in NZB/W female mice. Biol Sex Differ 2016; 7:31. [PMID: 27354902 PMCID: PMC4924261 DOI: 10.1186/s13293-016-0085-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
Considerable research effort has been invested in attempting to understand immune dysregulation leading to autoimmunity and target organ damage. In systemic lupus erythematosus (SLE), patients can develop a systemic disease with a number of organs involved. One of the major target organs is the kidney, but patients vary in the progression of the end-organ targeting of this organ. Some patients develop glomerulonephritis only, while others develop rapidly progressive end organ failure. In murine models of SLE, renal involvement can also occur. Studies performed over the past several years have indicated that treatment with LiCl of females, but not males of the NZB/W model, at an early age during the onset of disease, can prevent development of end-stage renal disease in a significant percentage of the animals. While on Li treatment, up to 80 % of the females can exhibit long-term survival with evidence of mild glomerulonephritis which does not progress to renal failure in spite of on-going autoimmunity. Stopping the treatment led to a reactivation of the disease and renal failure. Li treatment of other murine models of SLE was less effective and decreased survivorship in male BxSB mice, exhibited little effect on male MRL-lpr mice, and only modestly improved survivorship in female MRL-lpr mice. This perspective piece discusses the findings of several related studies which support the concept that protecting target organs such as the kidney, even in the face of continued immune insults and some inflammation, can lead to prolonged survival with retention of organ function. Some possible mechanisms for the effectiveness of Li treatment in this context are also discussed. However, the detailed mechanistic basis for the sex-specific effects of LiCl treatment particularly in the NZB/W model remains to be elucidated. Elucidating such details may provide important clues for development of effective treatment for patients with SLE, ~90 % of which are females.
Collapse
|
47
|
Liao X, Pirapakaran T, Luo XM. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis. Mediators Inflamm 2016; 2016:6012715. [PMID: 27403037 PMCID: PMC4923605 DOI: 10.1155/2016/6012715] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Lupus nephritis (LN) is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE), an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tharshikha Pirapakaran
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
48
|
Schmid A, Bala M, Leszczak S, Ober I, Buechler C, Karrasch T. Pro-inflammatory chemokines CCL2, chemerin, IP-10 and RANTES in human serum during an oral lipid tolerance test. Cytokine 2016; 80:56-63. [PMID: 26950614 DOI: 10.1016/j.cyto.2016.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND There is a strong coincidence of obesity and a chronic state of modest inflammation. Secretion of pro-inflammatory cytokines from adipocytes and immune cells represents a key mechanism in this process and is affected by fatty acids. MATERIAL AND METHODS A study cohort of 100 overnight fasted healthy volunteers underwent an oral lipid tolerance test (OLTT) by ingestion of 160ml of a protein- and sugar-free lipid emulsion of defined composition. Venal blood was drawn at 0h (fasting) and at 2, 4, and 6h after lipid ingestion. Subjects were characterized by anthropometric and standard laboratory parameters. Serum concentrations of CCL2, IP-10, chemerin, and RANTES were measured by enzyme-linked immunosorbent assay (ELISA). Murine 3T3-L1 adipocytes were stimulated with free fatty acids (FA) and with sex steroids and concentrations of CCL2 and chemerin in cell culture supernatants were measured by ELISA. RESULTS A significant reduction of circulating CCL2, IP-10, and chemerin concentrations was observed as a consequence of triglyceride ingestion whereas RANTES levels were increased. CCL2 serum concentrations were positively correlated with resistin and visfatin levels and with LDL/HDL ratio and negatively with adiponectin. There were significant differences in chemerin and RANTES serum concentrations in female and male subjects. CCL2 secretion from 3T3-L1 adipocytes was inhibited by treatment with linoleic (LA) and oleic acid (OA) whereas chemerin secretion was induced. Chemerin release from 3T3-L1 adipocytes was inhibited by testosterone. CONCLUSIONS Oral lipid loading is linked to reduced circulating pro-inflammatory chemokines CCL2, IP-10, and chemerin and to increased RANTES levels, suggesting that dietary lipids affect immune function.
Collapse
Affiliation(s)
- Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Germany.
| | - Margarita Bala
- Department of Internal Medicine I, Regensburg University Hospital, Germany
| | - Stephanie Leszczak
- Department of Internal Medicine I, Regensburg University Hospital, Germany
| | - Irene Ober
- Department of Internal Medicine I, Regensburg University Hospital, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, Giessen University Hospital, Germany
| |
Collapse
|
49
|
Targeting the inflammasome in rheumatic diseases. Transl Res 2016; 167:125-37. [PMID: 26118952 PMCID: PMC4487391 DOI: 10.1016/j.trsl.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022]
Abstract
Activation of the inflammasome, a protein complex responsible for many cellular functions, including the activation of the proinflammatory cytokines interleukin (IL)-1β and IL-18, has been identified as a key participant in many rheumatic diseases including autoimmune, inflammatory, and autoinflammatory syndromes. This review will discuss the recent advances in understanding the role of this complex in various rheumatic diseases. Furthermore, it will focus on available therapies, which directly and indirectly target the inflammasome and its downstream cytokines to quiet inflammation and possibly dampen autoimmune processes.
Collapse
|
50
|
Mu Q, Zhang H, Luo XM. SLE: Another Autoimmune Disorder Influenced by Microbes and Diet? Front Immunol 2015; 6:608. [PMID: 26648937 PMCID: PMC4663251 DOI: 10.3389/fimmu.2015.00608] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease. Despite years of study, the etiology of SLE is still unclear. Both genetic and environmental factors have been implicated in the disease mechanisms. In the past decade, a growing body of evidence has indicated an important role of gut microbes in the development of autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. However, such knowledge on SLE is little, though we have already known that environmental factors can trigger the development of lupus. Several recent studies have suggested that alterations of the gut microbial composition may be correlated with SLE disease manifestations, while the exact roles of either symbiotic or pathogenic microbes in this disease remain to be explored. Elucidation of the roles of gut microbes - as well as the roles of diet that can modulate the composition of gut microbes - in SLE will shed light on how this autoimmune disorder develops, and provide opportunities for improved biomarkers of the disease and the potential to probe new therapies. In this review, we aim to compile the available evidence on the contributions of diet and gut microbes to SLE occurrence and pathogenesis.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech , Blacksburg, VA , USA
| | - Husen Zhang
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA , USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|