1
|
Hyung S, Park JH, Jung K. Application of optogenetic glial cells to neuron-glial communication. Front Cell Neurosci 2023; 17:1249043. [PMID: 37868193 PMCID: PMC10585272 DOI: 10.3389/fncel.2023.1249043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Optogenetic techniques combine optics and genetics to enable cell-specific targeting and precise spatiotemporal control of excitable cells, and they are increasingly being employed. One of the most significant advantages of the optogenetic approach is that it allows for the modulation of nearby cells or circuits with millisecond precision, enabling researchers to gain a better understanding of the complex nervous system. Furthermore, optogenetic neuron activation permits the regulation of information processing in the brain, including synaptic activity and transmission, and also promotes nerve structure development. However, the optimal conditions remain unclear, and further research is required to identify the types of cells that can most effectively and precisely control nerve function. Recent studies have described optogenetic glial manipulation for coordinating the reciprocal communication between neurons and glia. Optogenetically stimulated glial cells can modulate information processing in the central nervous system and provide structural support for nerve fibers in the peripheral nervous system. These advances promote the effective use of optogenetics, although further experiments are needed. This review describes the critical role of glial cells in the nervous system and reviews the optogenetic applications of several types of glial cells, as well as their significance in neuron-glia interactions. Together, it briefly discusses the therapeutic potential and feasibility of optogenetics.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Park
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Jung
- DAWINBIO Inc., Hanam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Leng Y, Li X, Zheng F, Liu H, Wang C, Wang X, Liao Y, Liu J, Meng K, Yu J, Zhang J, Wang B, Tan Y, Liu M, Jia X, Li D, Li Y, Gu Z, Fan Y. Advances in In Vitro Models of Neuromuscular Junction: Focusing on Organ-on-a-Chip, Organoids, and Biohybrid Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211059. [PMID: 36934404 DOI: 10.1002/adma.202211059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The neuromuscular junction (NMJ) is a peripheral synaptic connection between presynaptic motor neurons and postsynaptic skeletal muscle fibers that enables muscle contraction and voluntary motor movement. Many traumatic, neurodegenerative, and neuroimmunological diseases are classically believed to mainly affect either the neuronal or the muscle side of the NMJ, and treatment options are lacking. Recent advances in novel techniques have helped develop in vitro physiological and pathophysiological models of the NMJ as well as enable precise control and evaluation of its functions. This paper reviews the recent developments in in vitro NMJ models with 2D or 3D cultures, from organ-on-a-chip and organoids to biohybrid robotics. Related derivative techniques are introduced for functional analysis of the NMJ, such as the patch-clamp technique, microelectrode arrays, calcium imaging, and stimulus methods, particularly optogenetic-mediated light stimulation, microelectrode-mediated electrical stimulation, and biochemical stimulation. Finally, the applications of the in vitro NMJ models as disease models or for drug screening related to suitable neuromuscular diseases are summarized and their future development trends and challenges are discussed.
Collapse
Affiliation(s)
- Yubing Leng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaorui Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xudong Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiangyue Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Kaiqi Meng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiaheng Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jingyi Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Binyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| |
Collapse
|
3
|
Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del'Immagine A, Böhm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci 2023; 24:540-556. [PMID: 37558908 DOI: 10.1038/s41583-023-00723-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France.
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | | | - Urs L Böhm
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Beloate LN, Zhang N. Connecting the dots between cell populations, whole-brain activity, and behavior. NEUROPHOTONICS 2022; 9:032208. [PMID: 35350137 PMCID: PMC8957372 DOI: 10.1117/1.nph.9.3.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targeted Ca 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.
Collapse
Affiliation(s)
- Lauren N. Beloate
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
| | - Nanyin Zhang
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
- Pennsylvania State University, Huck Institutes of the Life Sciences, Pennsylvania, United States
| |
Collapse
|
5
|
Kim E, Kum J, Kim H. Trans-Spinal Focused Ultrasound Stimulation Selectively Modulates Descending Motor Pathway. IEEE Trans Neural Syst Rehabil Eng 2022; 30:314-320. [PMID: 35108206 DOI: 10.1109/tnsre.2022.3148877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Compared to current non-invasive methods utilizing magnetic and electrical means, focused ultrasound provides greater spatial resolution and penetration depth. Despite the broad application of ultrasound stimulation, there is a lack of studies dedicated to the investigation of acoustic neuromodulation on the spinal cord. This study aims to apply focused ultrasound on the spinal cord to modulate the descending pathways in a non-invasive fashion. The application of trans-spinal focused ultrasound (tsFUS) was examined on the motor deficit mouse model. tsFUS was achieved using a single-element focused ultrasound transducer operating at 3 MHz. The sonication was performed on anesthetized 6 week-old mice targeting T12 and L3 vertebrae. The effect was analyzed by comparing electromyography responses from the hindlimb induced by electrical stimulation of the motor cortex. Further, the mouse model with the Harmaline-induced essential tremor was selected to investigate the potential clinical application of tsFUS. The safety was verified by histological assessment. Sonication at the T12 area inhibited motor response, while sonication over the L3 region provided signal enhancement. Sonication of T12 of the ET mouse also showed the ability of ultrasound to suppress tremors. Meanwhile, the histological examination did not show any abnormalities with the highest applied acoustic pressure. In this work, a non-invasive motor signal modulation was achieved using tsFUS. Moreover, the results showed the ability of focused ultrasound to manage tremors in a safe manner. This study provides a stepping stone for the trans-spinal application of focused ultrasound to motor-related disorders.
Collapse
|
6
|
Viganò L, Howells H, Rossi M, Rabuffetti M, Puglisi G, Leonetti A, Bellacicca A, Conti Nibali M, Gay L, Sciortino T, Cerri G, Bello L, Fornia L. Stimulation of frontal pathways disrupts hand muscle control during object manipulation. Brain 2021; 145:1535-1550. [PMID: 34623420 PMCID: PMC9128819 DOI: 10.1093/brain/awab379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output and, despite extensively investigated in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in thirty-four patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tracts disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution in 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: 1) an arrest pattern, characterised by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local mid-U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. 2) a clumsy pattern, characterised by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (p = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and post-operative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.
Collapse
Affiliation(s)
- Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Henrietta Howells
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Marco Rabuffetti
- Biomedical Technology Department, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano.,MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Antonella Leonetti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Andrea Bellacicca
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Luca Fornia
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| |
Collapse
|
7
|
Kathe C, Michoud F, Schönle P, Rowald A, Brun N, Ravier J, Furfaro I, Paggi V, Kim K, Soloukey S, Asboth L, Hutson TH, Jelescu I, Philippides A, Alwahab N, Gandar J, Huber D, De Zeeuw CI, Barraud Q, Huang Q, Lacour SP, Courtine G. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat Biotechnol 2021; 40:198-208. [PMID: 34580478 PMCID: PMC7612390 DOI: 10.1038/s41587-021-01019-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.
Collapse
Affiliation(s)
- Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Frédéric Michoud
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Philipp Schönle
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Andreas Rowald
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Noé Brun
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Jimmy Ravier
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Ivan Furfaro
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Kyungjin Kim
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Leonie Asboth
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Thomas H Hutson
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Ileana Jelescu
- Centre d'Imagerie Biomedicale, EPFL, Lausanne, Switzerland
| | - Antoine Philippides
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Noaf Alwahab
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Jérôme Gandar
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Daniel Huber
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute of Neuroscience, Royal Dutch Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Qiuting Huang
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland.
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland. .,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland. .,Department of Neurosurgery, CHUV, Lausanne, Switzerland.
| |
Collapse
|
8
|
Vahedipour A, Short MR, Timnak A, Maghsoudi OH, Hallowell T, Gerstenhaber J, Cappellari O, Lemay M, Spence AJ. A versatile system for neuromuscular stimulation and recording in the mouse model using a lightweight magnetically coupled headmount. J Neurosci Methods 2021; 362:109319. [PMID: 34400212 DOI: 10.1016/j.jneumeth.2021.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Neural stimulation and recording in rodents are common methods to better understand the nervous system and improve the quality of life of individuals who are suffering from neurological disorders (e.g., epilepsy), as well as for permanent reduction of chronic pain in patients with neuropathic pain and spinal-cord injury. This method requires a neural interface (e.g., a headmount) to couple the implanted neural device with instrumentation system. The size and the total weight of such headmounts should be designed in a way to minimize its effect on the movement of the animal. This is a crucial factor in gait, kinematic, and behavioral neuroscience studies of freely moving mice. Here we introduce a lightweight 'snap-in' electro-magnetic headmount that is extremely small, and uses strong neodymium magnetics to enable a reliable connection without sacrificing the lightweight of the device. Additionally, the headmount requires minimal surgical intervention during the implantation, resulting in minimal tissue damage. The device has demonstrated itself to be robust, and successfully provided direct electrical stimulation of nerve and electrical muscle stimulation and recording, as well as powering implanted LEDs for optogenetic use scenarios.
Collapse
Affiliation(s)
- Annie Vahedipour
- Department of Pediatrics, Neurology, Yale University, New Haven, CT 06510, USA.
| | - Matthew R Short
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD 20814, USA
| | - Azadeh Timnak
- Laboratory for Cell and Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Omid Haji Maghsoudi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Hallowell
- Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Ornella Cappellari
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Michel Lemay
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Andrew J Spence
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
9
|
Usseglio G, Gatier E, Heuzé A, Hérent C, Bouvier J. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons. Curr Biol 2020; 30:4665-4681.e6. [PMID: 33007251 DOI: 10.1016/j.cub.2020.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Spatial orientation requires the execution of lateralized movements and a change in the animal's heading in response to multiple sensory modalities. While much research has focused on the circuits for sensory integration, chiefly to the midbrain superior colliculus (SC), the downstream cells and circuits that engage adequate motor actions have remained elusive. Furthermore, the mechanisms supporting trajectory changes are still speculative. Here, using transneuronal viral tracings in mice, we show that brainstem V2a neurons, a genetically defined subtype of glutamatergic neurons of the reticular formation, receive putative synaptic inputs from the contralateral SC. This makes them a candidate relay of lateralized orienting commands. We next show that unilateral optogenetic activations of brainstem V2a neurons in vivo evoked ipsilateral orienting-like responses of the head and the nose tip on stationary mice. When animals are walking, similar stimulations impose a transient locomotor arrest followed by a change of trajectory. Third, we reveal that these distinct motor actions are controlled by dedicated V2a subsets each projecting to a specific spinal cord segment, with at least (1) a lumbar-projecting subset whose unilateral activation specifically controls locomotor speed but neither impacts trajectory nor evokes orienting movements, and (2) a cervical-projecting subset dedicated to head orientation, but not to locomotor speed. Activating the latter subset suffices to steer the animals' directional heading, placing the head orientation as the prime driver of locomotor trajectory. V2a neurons and their modular organization may therefore underlie the orchestration of multiple motor actions during multi-faceted orienting behaviors.
Collapse
Affiliation(s)
- Giovanni Usseglio
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Edwin Gatier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Aurélie Heuzé
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Coralie Hérent
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France.
| |
Collapse
|
10
|
Wang Y, Xie K, Yue H, Chen X, Luo X, Liao Q, Liu M, Wang F, Shi P. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. NANOSCALE 2020; 12:2406-2414. [PMID: 31782467 DOI: 10.1039/c9nr07583f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wireless optogenetics based on the upconversion technique has recently provided an effective and interference-free alternative for remote brain stimulation and inhibition in behaving animals, which is of great promise for neuroscience research. However, more versatile upconversion devices are yet to be implemented for neural tissues other than the brain. In this study, a flexible and fully implantable upconversion device was developed for epidural spinal cord stimulation. The upconversion device was fabricated via a straightforward, two-step, heat-pulling process using biocompatible thermoplastic polypropylene as a backbone, which is mixed with upconversion nanoparticles (UCNPs) to form a flexible optrode device that converts near-infrared (NIR) irradiation to visible light for the optogenetic manipulation of spinal cord tissues. In this system, the flexible upconversion device is fully implantable within the rigid spine structure, and shows excellent long-term biocompatibility even after a four-month experiment. In anesthetized mice, the UCNP device implanted at the L4 vertebra can be used to reliably evoke hindlimb muscular activity upon NIR triggering. In behaving mice, neural modulation by the same UCNP devices effectively inhibits the animals' movement as a result of remote spinal cord stimulation. We believe that the flexible upconversion device provides new possibilities for wireless neural modulation in spinal cord tissues, and will become a valuable supplement to the current tool sets of upconversion based wireless optogenetics.
Collapse
Affiliation(s)
- Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, China and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China. and Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Haidian District, Beijing, 100191, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| | - Haibing Yue
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| | - Xian Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| | - Xuan Luo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| | - Qinghai Liao
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Ming Liu
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China. and Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
11
|
DePaoli D, Gasecka A, Bahdine M, Deschenes JM, Goetz L, Perez-Sanchez J, Bonin RP, De Koninck Y, Parent M, Côté DC. Anisotropic light scattering from myelinated axons in the spinal cord. NEUROPHOTONICS 2020; 7:015011. [PMID: 32206678 PMCID: PMC7063473 DOI: 10.1117/1.nph.7.1.015011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Optogenetics has become an integral tool for studying and dissecting the neural circuitries of the brain using optical control. Recently, it has also begun to be used in the investigation of the spinal cord and peripheral nervous system. However, information on these regions' optical properties is sparse. Moreover, there is a lack of data on the dependence of light propagation with respect to neural tissue organization and orientation. This information is important for effective simulations and optogenetic planning, particularly in the spinal cord where the myelinated axons are highly organized. To this end, we report experimental measurements for the scattering coefficient, validated with three different methods in both the longitudinal and radial directions of multiple mammalian spinal cords. In our analysis, we find that there is indeed a directional dependence of photon propagation when interacting with organized myelinated axons. Specifically, light propagating perpendicular to myelinated axons in the white matter of the spinal cord produced a measured reduced scattering coefficient ( μ s ' ) of 3.52 ± 0.1 mm - 1 , and light that was propagated along the myelinated axons in the white matter produced a measured μ s ' of 1.57 ± 0.03 mm - 1 , across the various species considered. This 50% decrease in scattering power along the myelinated axons is observed with three different measurement strategies (integrating spheres, observed transmittance, and punch-through method). Furthermore, this directional dependence in scattering power and overall light attenuation did not occur in the gray matter regions where the myelin organization is nearly random. The acquired information will be integral in preparing future light-transport simulations and in overall optogenetic planning in both the spinal cord and the brain.
Collapse
Affiliation(s)
- Damon DePaoli
- CERVO Brain Research Center, Québec City, Québec, Canada
- Center for Optics, Photonics and Lasers, Québec City, Québec, Canada
| | - Alicja Gasecka
- CERVO Brain Research Center, Québec City, Québec, Canada
- Center for Optics, Photonics and Lasers, Québec City, Québec, Canada
| | - Mohamed Bahdine
- CERVO Brain Research Center, Québec City, Québec, Canada
- Center for Optics, Photonics and Lasers, Québec City, Québec, Canada
| | - Jean M. Deschenes
- CERVO Brain Research Center, Québec City, Québec, Canada
- Center for Optics, Photonics and Lasers, Québec City, Québec, Canada
| | - Laurent Goetz
- CERVO Brain Research Center, Québec City, Québec, Canada
| | | | - Robert P. Bonin
- University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, Ontario, Canada
| | - Yves De Koninck
- CERVO Brain Research Center, Québec City, Québec, Canada
- Center for Optics, Photonics and Lasers, Québec City, Québec, Canada
| | - Martin Parent
- CERVO Brain Research Center, Québec City, Québec, Canada
| | - Daniel C. Côté
- CERVO Brain Research Center, Québec City, Québec, Canada
- Center for Optics, Photonics and Lasers, Québec City, Québec, Canada
| |
Collapse
|
12
|
Mondello SE, Sunshine MD, Fischedick AE, Dreyer SJ, Horwitz GD, Anikeeva P, Horner PJ, Moritz CT. Optogenetic surface stimulation of the rat cervical spinal cord. J Neurophysiol 2018; 120:795-811. [DOI: 10.1152/jn.00461.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical intraspinal microstimulation (ISMS) at various sites along the cervical spinal cord permits forelimb muscle activation, elicits complex limb movements and may enhance functional recovery after spinal cord injury. Here, we explore optogenetic spinal stimulation (OSS) as a less invasive and cell type-specific alternative to ISMS. To map forelimb muscle activation by OSS in rats, adeno-associated viruses (AAV) carrying the blue-light sensitive ion channels channelrhodopsin-2 (ChR2) and Chronos were injected into the cervical spinal cord at different depths and volumes. Following an AAV incubation period of several weeks, OSS-induced forelimb muscle activation and movements were assessed at 16 sites along the dorsal surface of the cervical spinal cord. Three distinct movement types were observed. We find that AAV injection volume and depth can be titrated to achieve OSS-based activation of several movements. Optical stimulation of the spinal cord is thus a promising method for dissecting the function of spinal circuitry and targeting therapies following injury. NEW & NOTEWORTHY Optogenetics in the spinal cord can be used both for therapeutic treatments and to uncover basic mechanisms of spinal cord physiology. For the first time, we describe the methodology and outcomes of optogenetic surface stimulation of the rat spinal cord. Specifically, we describe the evoked responses of forelimbs and address the effects of different adeno-associated virus injection paradigms. Additionally, we are the first to report on the limitations of light penetration through the rat spinal cord.
Collapse
Affiliation(s)
- S. E. Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
- Center for Sensorimotor Neural Engineering, Seattle, Washington
| | - M. D. Sunshine
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
- Center for Sensorimotor Neural Engineering, Seattle, Washington
| | - A. E. Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - S. J. Dreyer
- Center for Sensorimotor Neural Engineering, Seattle, Washington
- Department of Bioengineering, University of Illinois, Chicago, Illinois
| | - G. D. Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington
- Washington National Primate Research Center, Seattle, Washington
| | - P. Anikeeva
- Center for Sensorimotor Neural Engineering, Seattle, Washington
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - P. J. Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, Texas
| | - C. T. Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington
- Center for Sensorimotor Neural Engineering, Seattle, Washington
| |
Collapse
|
13
|
Differential changes in the spinal segmental locomotor output in Hereditary Spastic Paraplegia. Clin Neurophysiol 2018; 129:516-525. [DOI: 10.1016/j.clinph.2017.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/16/2017] [Accepted: 11/24/2017] [Indexed: 11/19/2022]
|
14
|
Nam Y, Kim JH, Kim JH, Jha MK, Jung JY, Lee MG, Choi IS, Jang IS, Lim DG, Hwang SH, Cho HJ, Suk K. Reversible Induction of Pain Hypersensitivity following Optogenetic Stimulation of Spinal Astrocytes. Cell Rep 2017; 17:3049-3061. [PMID: 27974216 DOI: 10.1016/j.celrep.2016.11.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 10/17/2016] [Accepted: 11/12/2016] [Indexed: 12/30/2022] Open
Abstract
While glial activation is an integral part of pain pathogenesis, the existence of a causal relationship between glia and pain processing has yet to be demonstrated in vivo. Here, we have investigated whether the activation of spinal astrocytes could directly evoke pain hypersensitivity in vivo via the use of optogenetic techniques. Optogenetic stimulation of channelrhopdopsin-2 (ChR)-expressing spinal astrocytes induced pain hypersensitivity in a reversible and time-dependent manner, which was accompanied by glial activation, NR1 phosphorylation, ATP release, and the production of proalgesic mediators. Photostimulation of ChR2-expressing astrocytes in culture and spinal slices recapitulated in vivo findings, demonstrating the release of proalgesic mediators and electrophysiological disinhibition of spinal projection neurons. These findings deepen our understanding of the role of astrocytes in pain pathogenesis and provide the scientific basis for an astrocyte-oriented pain treatment.
Collapse
Affiliation(s)
- Youngpyo Nam
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Ji Young Jung
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Sung-Hun Hwang
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Hee-Jung Cho
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| |
Collapse
|
15
|
Samineni VK, Yoon J, Crawford KE, Jeong YR, McKenzie KC, Shin G, Xie Z, Sundaram SS, Li Y, Yang MY, Kim J, Wu D, Xue Y, Feng X, Huang Y, Mickle AD, Banks A, Ha JS, Golden JP, Rogers JA, Gereau RW. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 2017; 158:2108-2116. [PMID: 28700536 PMCID: PMC5640477 DOI: 10.1097/j.pain.0000000000000968] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of optogenetic tools has allowed unprecedented insights into the organization of neuronal networks. Although recently developed technologies have enabled implementation of optogenetics for studies of brain function in freely moving, untethered animals, wireless powering and device durability pose challenges in studies of spinal cord circuits where dynamic, multidimensional motions against hard and soft surrounding tissues can lead to device degradation. We demonstrate here a fully implantable optoelectronic device powered by near-field wireless communication technology, with a thin and flexible open architecture that provides excellent mechanical durability, robust sealing against biofluid penetration and fidelity in wireless activation, thereby allowing for long-term optical stimulation of the spinal cord without constraint on the natural behaviors of the animals. The system consists of a double-layer, rectangular-shaped magnetic coil antenna connected to a microscale inorganic light-emitting diode (μ-ILED) on a thin, flexible probe that can be implanted just above the dura of the mouse spinal cord for effective stimulation of light-sensitive proteins expressed in neurons in the dorsal horn. Wireless optogenetic activation of TRPV1-ChR2 afferents with spinal μ-ILEDs causes nocifensive behaviors and robust real-time place aversion with sustained operation in animals over periods of several weeks to months. The relatively low-cost electronics required for control of the systems, together with the biocompatibility and robust operation of these devices will allow broad application of optogenetics in future studies of spinal circuits, as well as various peripheral targets, in awake, freely moving and untethered animals, where existing approaches have limited utility.
Collapse
Affiliation(s)
- Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Jangyeol Yoon
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kaitlyn E Crawford
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Ra Jeong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Kajanna C McKenzie
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Gunchul Shin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhaoqian Xie
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Saranya S Sundaram
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing, China
| | - Min Young Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jeonghyun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Di Wu
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
| | - Xue Feng
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsien Excellent Education Program, School of Aerospace, Tsinghua University, Beijing, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL USA
| | - Aaron D Mickle
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony Banks
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - John A Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery; Center for Bio-Integrated Electronics; Simpson Querrey Institute for Nano/biotechnology; Northwestern University, Evanston, IL, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, St. Louis, MO, USA
- Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Bellardita C, Caggiano V, Leiras R, Caldeira V, Fuchs A, Bouvier J, Löw P, Kiehn O. Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice. eLife 2017; 6:23011. [PMID: 28191872 PMCID: PMC5332159 DOI: 10.7554/elife.23011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/27/2017] [Indexed: 12/28/2022] Open
Abstract
Spasms after spinal cord injury (SCI) are debilitating involuntary muscle contractions that have been associated with increased motor neuron excitability and decreased inhibition. However, whether spasms involve activation of premotor spinal excitatory neuronal circuits is unknown. Here we use mouse genetics, electrophysiology, imaging and optogenetics to directly target major classes of spinal interneurons as well as motor neurons during spasms in a mouse model of chronic SCI. We find that assemblies of excitatory spinal interneurons are recruited by sensory input into functional circuits to generate persistent neural activity, which interacts with both the graded expression of plateau potentials in motor neurons to generate spasms, and inhibitory interneurons to curtail them. Our study reveals hitherto unrecognized neuronal mechanisms for the generation of persistent neural activity under pathophysiological conditions, opening up new targets for treatment of muscle spasms after SCI. DOI:http://dx.doi.org/10.7554/eLife.23011.001
Collapse
Affiliation(s)
- Carmelo Bellardita
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vittorio Caggiano
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Leiras
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vanessa Caldeira
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Fuchs
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julien Bouvier
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Löw
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Kiehn
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
An Optogenetic Demonstration of Motor Modularity in the Mammalian Spinal Cord. Sci Rep 2016; 6:35185. [PMID: 27734925 PMCID: PMC5062376 DOI: 10.1038/srep35185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/26/2016] [Indexed: 12/04/2022] Open
Abstract
Motor modules are neural entities hypothesized to be building blocks of movement construction. How motor modules are underpinned by neural circuits has remained obscured. As a first step towards dissecting these circuits, we optogenetically evoked motor outputs from the lumbosacral spinal cord of two strains of transgenic mice – the Chat, with channelrhodopsin (ChR2) expressed in motoneurons, and the Thy1, expressed in putatively excitatory neurons. Motor output was represented as a spatial field of isometric ankle force. We found that Thy1 force fields were more complex and diverse in structure than Chat fields: the Thy1 fields comprised mostly non-parallel vectors while the Chat fields, mostly parallel vectors. In both, most fields elicited by co-stimulation of two laser beams were well explained by linear combination of the separately-evoked fields. We interpreted the Thy1 force fields as representations of spinal motor modules. Our comparison of the Chat and Thy1 fields allowed us to conclude, with reasonable certainty, that the structure of neuromotor modules originates from excitatory spinal interneurons. Our results not only demonstrate, for the first time using optogenetics, how the spinal modules follow linearity in their combinations, but also provide a reference against which future optogenetic studies of modularity can be compared.
Collapse
|
18
|
Abstract
A unified approach to nonnegative matrix factorization based on the theory of generalized linear models is proposed. This approach embeds a variety of statistical models, including the exponential family, within a single theoretical framework and provides a unified view of such factorizations from the perspective of quasi-likelihood. Using this framework, a family of algorithms for handling signal-dependent noise is developed and its convergence proved using the expectation-maximization algorithm. In addition, a measure to evaluate the goodness of fit of the resulting factorization is described. The proposed methods allow modeling of nonlinear effects using appropriate link functions and are illustrated using an application in biomedical signal processing.
Collapse
Affiliation(s)
- Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, U.S.A.
| | - Vincent C K Cheung
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
19
|
Uzel SGM, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, Boyer LA, So PTC, Kamm RD. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. SCIENCE ADVANCES 2016; 2:e1501429. [PMID: 27493991 PMCID: PMC4972469 DOI: 10.1126/sciadv.1501429] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/06/2016] [Indexed: 05/21/2023]
Abstract
Motor units are the fundamental elements responsible for muscle movement. They are formed by lower motor neurons and their muscle targets, synapsed via neuromuscular junctions (NMJs). The loss of NMJs in neurodegenerative disorders (such as amyotrophic lateral sclerosis or spinal muscle atrophy) or as a result of traumatic injuries affects millions of lives each year. Developing in vitro assays that closely recapitulate the physiology of neuromuscular tissues is crucial to understand the formation and maturation of NMJs, as well as to help unravel the mechanisms leading to their degeneration and repair. We present a microfluidic platform designed to coculture myoblast-derived muscle strips and motor neurons differentiated from mouse embryonic stem cells (ESCs) within a three-dimensional (3D) hydrogel. The device geometry mimics the spinal cord-limb physical separation by compartmentalizing the two cell types, which also facilitates the observation of 3D neurite outgrowth and remote muscle innervation. Moreover, the use of compliant pillars as anchors for muscle strips provides a quantitative functional readout of force generation. Finally, photosensitizing the ESC provides a pool of source cells that can be differentiated into optically excitable motor neurons, allowing for spatiodynamic, versatile, and noninvasive in vitro control of the motor units.
Collapse
Affiliation(s)
- Sebastien G. M. Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Randall J. Platt
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Taylor M. Pearl
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Vincent Chan
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | | | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Corresponding author.
| |
Collapse
|
20
|
Montgomery KL, Iyer SM, Christensen AJ, Deisseroth K, Delp SL. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system. Sci Transl Med 2016; 8:337rv5. [DOI: 10.1126/scitranslmed.aad7577] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
|
21
|
Abstract
Unravelling the functional operation of neuronal networks and linking cellular activity to specific behavioural outcomes are among the biggest challenges in neuroscience. In this broad field of research, substantial progress has been made in studies of the spinal networks that control locomotion. Through united efforts using electrophysiological and molecular genetic network approaches and behavioural studies in phylogenetically diverse experimental models, the organization of locomotor networks has begun to be decoded. The emergent themes from this research are that the locomotor networks have a modular organization with distinct transmitter and molecular codes and that their organization is reconfigured with changes to the speed of locomotion or changes in gait.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retziusväg 8, 17177 Stockholm, Sweden
| |
Collapse
|
22
|
Bouvier J, Caggiano V, Leiras R, Caldeira V, Bellardita C, Balueva K, Fuchs A, Kiehn O. Descending Command Neurons in the Brainstem that Halt Locomotion. Cell 2015; 163:1191-1203. [PMID: 26590422 PMCID: PMC4899047 DOI: 10.1016/j.cell.2015.10.074] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/21/2015] [Accepted: 10/28/2015] [Indexed: 01/21/2023]
Abstract
The episodic nature of locomotion is thought to be controlled by descending inputs from the brainstem. Most studies have largely attributed this control to initiating excitatory signals, but little is known about putative commands that may specifically determine locomotor offset. To link identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord. Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic descending pathway that favors immobility and may thus help control the episodic nature of locomotion.
Collapse
Affiliation(s)
- Julien Bouvier
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Paris-Saclay Institute of Neuroscience, UMR 9197 - CNRS and Université-Paris 11, 91190 Gif-sur-Yvette, France.
| | - Vittorio Caggiano
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Roberto Leiras
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vanessa Caldeira
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Carmelo Bellardita
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kira Balueva
- Institute of Physiology, Christian Albrechts University of Kiel, 24098 Kiel, Germany
| | - Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
23
|
Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, Ferenczi EA, Tanabe Y, Deisseroth K, Delp SL, Poon ASY. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 2015; 12:969-74. [PMID: 26280330 PMCID: PMC5507210 DOI: 10.1038/nmeth.3536] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/06/2015] [Indexed: 01/22/2023]
Abstract
To enable sophisticated optogenetic manipulation of neural circuits throughout the nervous system with limited disruption of animal behavior, light-delivery systems beyond fiber optic tethering and large, head-mounted wireless receivers are desirable. We report the development of an easy-to-construct, implantable wireless optogenetic device. Our smallest version (20 mg, 10 mm(3)) is two orders of magnitude smaller than previously reported wireless optogenetic systems, allowing the entire device to be implanted subcutaneously. With a radio-frequency (RF) power source and controller, this implant produces sufficient light power for optogenetic stimulation with minimal tissue heating (<1 °C). We show how three adaptations of the implant allow for untethered optogenetic control throughout the nervous system (brain, spinal cord and peripheral nerve endings) of behaving mice. This technology opens the door for optogenetic experiments in which animals are able to behave naturally with optogenetic manipulation of both central and peripheral targets.
Collapse
Affiliation(s)
- Kate L Montgomery
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Alexander J Yeh
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John S Ho
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Vivien Tsao
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Shrivats Mohan Iyer
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Neurosciences Program, Stanford University, Stanford, California, USA
| | - Emily A Ferenczi
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Neurosciences Program, Stanford University, Stanford, California, USA
| | - Yuji Tanabe
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Neurosciences Program, Stanford University, Stanford, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Scott L Delp
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Ada S Y Poon
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Giszter SF. Spinal primitives and intra-spinal micro-stimulation (ISMS) based prostheses: a neurobiological perspective on the "known unknowns" in ISMS and future prospects. Front Neurosci 2015; 9:72. [PMID: 25852454 PMCID: PMC4367173 DOI: 10.3389/fnins.2015.00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/18/2014] [Indexed: 11/13/2022] Open
Abstract
The current literature on Intra-Spinal Micro-Stimulation (ISMS) for motor prostheses is reviewed in light of neurobiological data on spinal organization, and a neurobiological perspective on output motor modularity, ISMS maps, stimulation combination effects, and stability. By comparing published data in these areas, the review identifies several gaps in current knowledge that are crucial to the development of effective intraspinal neuroprostheses. Gaps can be categorized into a lack of systematic and reproducible details of: (a) Topography and threshold for ISMS across the segmental motor system, the topography of autonomic recruitment by ISMS, and the coupling relations between these two types of outputs in practice. (b) Compositional rules for ISMS motor responses tested across the full range of the target spinal topographies. (c) Rules for ISMS effects' dependence on spinal cord state and neural dynamics during naturally elicited or ISMS triggered behaviors. (d) Plasticity of the compositional rules for ISMS motor responses, and understanding plasticity of ISMS topography in different spinal cord lesion states, disease states, and following rehabilitation. All these knowledge gaps to a greater or lesser extent require novel electrode technology in order to allow high density chronic recording and stimulation. The current lack of this technology may explain why these prominent gaps in the ISMS literature currently exist. It is also argued that given the "known unknowns" in the current ISMS literature, it may be prudent to adopt and develop control schemes that can manage the current results with simple superposition and winner-take-all interactions, but can also incorporate the possible plastic and stochastic dynamic interactions that may emerge in fuller analyses over longer terms, and which have already been noted in some simpler model systems.
Collapse
Affiliation(s)
- Simon F Giszter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Drexel University Philadelphia, PA, USA ; School of Biomedical Engineering and Health Systems, Drexel University Philadelphia, PA, USA
| |
Collapse
|