1
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced Spine Stability and Survival Lead to Increases in Dendritic Spine Density as an Early Response to Local Alpha-Synuclein Overexpression in Mouse Prefrontal Cortex. Cell Mol Neurobiol 2024; 44:42. [PMID: 38668880 PMCID: PMC11052719 DOI: 10.1007/s10571-024-01472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. However, the impact of local pathology in the cortex is unknown. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1 to 2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow-up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Rachel Cole
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | | | - Linder H Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Akash Pradeep
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Emma Bagnall
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Georgina M Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced spine stability and survival lead to increases in dendritic spine density as an early response to local alpha-synuclein overexpression in mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559765. [PMID: 37808820 PMCID: PMC10557684 DOI: 10.1101/2023.09.28.559765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. Patients with LBDs develop cognitive changes, including abnormalities in executive function, attention, hallucinations, slowed processing, and cognitive fluctuations. The causes of these non-motor symptoms remain unclear; however, accumulation of alpha-Synuclein aggregates in the cortex and subsequent interference of synaptic and cellular function could contribute to psychiatric and cognitive symptoms. It is unknown how the cortex responds to local pathology in the absence of significant secondary effects of alpha-Synuclein pathology in the brainstem. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1-2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
|
3
|
Kuan W, Alfaidi M, Horne CB, Vallin B, Fox S, Fazal SV, Williams‐Gray CH, Barker RA. Selective neurodegeneration generated by intravenous α-synuclein pre-formed fibril administration is not associated with endogenous α-synuclein levels in the rat brain. Brain Pathol 2023; 33:e13128. [PMID: 36321260 PMCID: PMC10154377 DOI: 10.1111/bpa.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/11/2022] [Indexed: 03/02/2023] Open
Abstract
Selective loss of discrete neuronal populations is a prominent feature of many neurodegenerative conditions, but the molecular basis of this is poorly understood. A central role of α-synuclein in the selective neurodegeneration of Parkinson's disease has been speculated, as its level of expression critically determines the propensity of this protein to misfold. To investigate whether the propensity of neuronal cell loss is associated with the level of endogenous α-synuclein expression, non-transgenic rats were given a single intravenous administration of α-synuclein pre-formed fibrils (PFFs) reversibly complexed with the rabies virus glycoprotein peptide (RVG9R). The number of surviving cells in different neuronal populations was systematically quantified using unbiased stereology. Our data demonstrated that a non-selective, transvascular delivery of α-synuclein PFFs led to a time-dependent loss of specific populations of midbrain (but not olfactory) dopaminergic neurons, medullary (but not pontine) cholinergic neurons, and brainstem serotonergic neurons. Contrary to the central role of endogenous α-synuclein expression in determining the seeding and aggregation propensity of pathological α-synuclein, we did not observe an association between the levels of α-synuclein expression in different regions of the rodent brain (although did not ascertain this at the individual cell level) and neurodegenerative propensity. The results from our study highlight the complexity of the neurodegenerative process generated by α-synuclein seeding. Further investigations are therefore required to elucidate the molecular basis of neurodegeneration driven by exogenous pathogenic α-synuclein spread.
Collapse
Affiliation(s)
- Wei‐Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Maha Alfaidi
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Catherine B. Horne
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Benjamin Vallin
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Sarah Fox
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Shaline V. Fazal
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Caroline H. Williams‐Gray
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
- Department of NeurologyAddenbrooke's HospitalCambridgeUK
- Wellcome Trust MRC Cambridge Stem Cell CentreCambridgeUK
| |
Collapse
|
4
|
Gubinelli F, Sarauskyte L, Venuti C, Kulacz I, Cazzolla G, Negrini M, Anwer D, Vecchio I, Jakobs F, Manfredsson F, Davidsson M, Heuer A. Characterisation of functional deficits induced by AAV overexpression of alpha-synuclein in rats. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100065. [PMID: 36632447 PMCID: PMC9827042 DOI: 10.1016/j.crneur.2022.100065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background In the last decades different preclinical animal models of Parkinson's disease (PD) have been generated, aiming to mimic the progressive neuronal loss of midbrain dopaminergic (DA) cells as well as motor and non-motor impairment. Among all the available models, AAV-based models of human alpha-synuclein (h-aSYN) overexpression are promising tools for investigation of disease progression and therapeutic interventions. Objectives The goal with this work was to characterise the impairment in motor and non-motor domains following nigrostriatal overexpression of h-aSYN and correlate the behavioural deficits with histological assessment of associated pathology. Methods Intranigral injection of an AAV9 expressing h-aSYN was compared with untreated animals, 6-OHDA and AAV9 expressing either no transgene or GFP. The animals were assessed on a series of simple and complex behavioural tasks probing motor and non-motor domains. Post-mortem neuropathology was analysed using immunohistochemical methods. Results Overexpression of h-aSYN led to progressive degeneration of DA neurons of the SN and axonal terminals in the striatum (STR). We observed extensive nigral and striatal pathology, resembling that of human PD brain, as well as the development of stable progressive deficit in simple motor tasks and in non-motor domains such as deficits in motivation and lateralised neglect. Conclusions In the present work we characterized a rat model of PD that closely resembles human PD pathology at the histological and behavioural level. The correlation of cell loss with behavioural performance enables the selection of rats which can be used in neuroprotective or neurorestorative therapies.
Collapse
Affiliation(s)
- F. Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - L. Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - C. Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Kulacz
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - G. Cazzolla
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - M. Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - D. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Vecchio
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F. Jakobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F.P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - M. Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA,Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - A. Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden,Corresponding author. Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Sölvegatan 19, 22 184, Lund, Sweden.
| |
Collapse
|
5
|
Lin CL, Zheng TL, Tsou SH, Chang HM, Tseng LH, Yu CH, Hung CS, Ho YJ. Amitriptyline Improves Cognitive and Neuronal Function in a Rat Model that Mimics Dementia with Lewy Bodies. Behav Brain Res 2022; 435:114035. [PMID: 35926562 DOI: 10.1016/j.bbr.2022.114035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Dementia with Lewy bodies (DLB), a highly prevalent neurodegenerative disorder, causes motor and cognitive deficits. The main pathophysiologies of DLB are glutamate excitotoxicity and accumulation of Lewy bodies comprising α-synuclein (α-syn) and β-amyloid (Aβ). Amitriptyline (AMI) promotes expression of glutamate transporter-1 and glutamate reuptake. In this study, we measured the effects of AMI on behavioral and neuronal function in a DLB rat model. We used rivastigmine (RIVA) as a positive control. To establish the DLB rat model, male Wistar rats were stereotaxically injected with recombinant adenoassociated viral vector with the SNCA gene (10μg/10μL) and Aβ (5μg/2.5μL) into the left ventricle and prefrontal cortex, respectively. AMI (10mg/kg/day, i.p.), RIVA (2mg/kg/day, i.p.), or saline was injected intraperitoneally after surgery. From the 29th day, behavioral tests were performed to evaluate the motor and cognitive functions of the rats. Immunohistochemical staining was used to assess neuronal changes. We measured the α-syn level, number of newborn cells, and neuronal density in the hippocampus and in the nigrostriatal dopaminergic system. The DLB group exhibited deficit in object recognition. Both the AMI and RIVA treatments reversed these deficits. Histologically, the DLB rats exhibited cell loss in the substantia nigra pars compacta and in the hippocampal CA1 area. AMI reduced this cell loss, but RIVA did not. In addition, the DLB rats exhibited a lower number of newborn cells and higher α-syn levels in the dentate gyrus (DG). AMI did not affect α-syn accumulation but recovered neurogenesis in the DG of the rats, whereas RIVA reversed the α-syn accumulation but did not affect neurogenesis in the rats. We suggest that AMI may have potential for use in the treatment of DLB.
Collapse
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Ting-Lin Zheng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Sing-Hua Tsou
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Hung-Ming Chang
- Department of Anantomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung 907, Taiwan, ROC
| | - Ching-Han Yu
- Department of Pysiology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10581, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| |
Collapse
|
6
|
Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests. Behav Brain Res 2022; 429:113887. [DOI: 10.1016/j.bbr.2022.113887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
|
7
|
Negrini M, Tomasello G, Davidsson M, Fenyi A, Adant C, Hauser S, Espa E, Gubinelli F, Manfredsson FP, Melki R, Heuer A. Sequential or Simultaneous Injection of Preformed Fibrils and AAV Overexpression of Alpha-Synuclein Are Equipotent in Producing Relevant Pathology and Behavioral Deficits. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1133-1153. [PMID: 35213388 PMCID: PMC9198765 DOI: 10.3233/jpd-212555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preclinical rodent models for Parkinson's disease (PD) based on viral human alpha-synuclein (h-αSyn) overexpression recapitulate some of the pathological hallmarks as it presents in humans, such as progressive cell loss and additional synucleinopathy in cortical and subcortical structures. Recent studies have combined viral vector-based overexpression of human wild-type αSyn with the sequential or simultaneous inoculation of preformed fibrils (PFFs) derived from human αSyn. OBJECTIVE The goal of the study was to investigate whether sequential or combined delivery of the AAV vector and the PFFs are equipotent in inducing stable neurodegeneration and behavioral deficits. METHODS Here we compare between four experimental paradigms (PFFs only, AAV-h-αSyn only, AAV-h-αSyn with simultaneous PFFs, and AAV-h-αSyn with sequential PFFs) and their respective GFP control groups. RESULTS We observed reduction of TH expression and loss of neurons in the midbrain in all AAV (h-αSyn or GFP) injected groups, with or without additional PFFs inoculation. The overexpression of either h-αSyn or GFP alone induced motor deficits and dysfunctional dopamine release/reuptake in electrochemical recordings in the ipsilateral striatum. However, we observed a substantial formation of insoluble h-αSyn aggregates and inflammatory response only when h-αSyn and PFFs were combined. Moreover, the presence of h-αSyn induced higher axonal pathology compared to control groups. CONCLUSION Simultaneous AAV and PFFs injections are equipotent in the presented experimental setup in inducing histopathological and behavioral changes. This model provides new and interesting possibilities for characterizing PD pathology in preclinical models and means to assess future therapeutic interventions.
Collapse
Affiliation(s)
- Matilde Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Giuseppe Tomasello
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
- Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alexis Fenyi
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Cécile Adant
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Swantje Hauser
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Janakiraman U, Dhanalakshmi C, Yu J, Moutal A, Boinon L, Fukunaga K, Khanna R, Nelson MA. The investigation of the T-type calcium channel enhancer SAK3 in an animal model of TAF1 intellectual disability syndrome. Neurobiol Dis 2020; 143:105006. [PMID: 32622085 PMCID: PMC7422587 DOI: 10.1016/j.nbd.2020.105006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Chinnasamy Dhanalakshmi
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA; The BIO5 Institute, University of Arizona, USA
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
9
|
Wagner LM, Nathwani SM, Ten Eyck PP, Aldridge GM. Local cortical overexpression of human wild-type alpha-synuclein leads to increased dendritic spine density in mouse. Neurosci Lett 2020; 733:135051. [PMID: 32417387 DOI: 10.1016/j.neulet.2020.135051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Lewy body dementias are characterized by deposition of alpha-synuclein (α-syn) protein aggregates known as Lewy bodies and Lewy neurites in cortical regions, in addition to brainstem. These aggregates are thought to cause the death of dopaminergic neurons in the substantia nigra and other vulnerable cell types in patients, leading to parkinsonism. There is evidence from mice that localized overexpression of wild-type α-syn leads to dopaminergic cell death in the substantia nigra. However, it is not known how cortical neurons are affected by α-syn. In this study, we used viral overexpression of α-syn to investigate whether localized overexpression within the cortex affects the density, length, and morphology of dendritic spines, which serve as a measure of synaptic connectivity. An AAV2/6 viral vector coding for wild-type human α-syn was used to target overexpression bilaterally to the medial prefrontal cortex within adult mice. After ten weeks the brain was stained using the Golgi-Cox method. Density of dendritic spines in the injected region was increased in layer V pyramidal neurons compared with animals injected with control virus. Immunohistochemistry in separate animals showed human α-syn expression throughout the region of interest, especially in presynaptic terminals. However, phosphorylated α-syn was seen in a discrete number of cells at the region of highest overexpression, localized mainly to the soma and nucleus. These findings demonstrate that at early timepoints, α-syn overexpression may alter connectivity in the cortex, which may be relevant to early stages of the disease. In addition, these findings contribute to the understanding of α-syn, which when overexpressed in the wildtype, non-aggregated state may promote spine formation. Loss of spines secondary to α-syn in cortex may require higher expression, longer incubation, cellular damage, concomitant dopaminergic dysfunction or other two-hit factors to lead to synaptic degeneration.
Collapse
|
10
|
Janakiraman U, Yu J, Moutal A, Chinnasamy D, Boinon L, Batchelor SN, Anandhan A, Khanna R, Nelson MA. TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex. Neurobiol Dis 2019; 132:104539. [PMID: 31344492 PMCID: PMC7197880 DOI: 10.1016/j.nbd.2019.104539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
TAF1/MRSX33 intellectual disability syndrome is an X-linked disorder caused by loss-of-function mutations in the TAF1 gene. How these mutations cause dysmorphology, hypotonia, intellectual and motor defects is unknown. Mouse models which have embryonically targeted TAF1 have failed, possibly due to TAF1 being essential for viability, preferentially expressed in early brain development, and intolerant of mutation. Novel animal models are valuable tools for understanding neuronal pathology. Here, we report the development and characterization of a novel animal model for TAF1 ID syndrome in which the TAF1 gene is deleted in embryonic rats using clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) technology and somatic brain transgenesis mediated by lentiviral transduction. Rat pups, post-natal day 3, were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 vectors. Rats were subjected to a battery of behavioral tests followed by histopathological analyses of brains at post-natal day 14 and day 35. TAF1-edited rats exhibited behavioral deficits at both the neonatal and juvenile stages of development. Deletion of TAF1 lead to a hypoplasia and loss of the Purkinje cells. We also observed a decreased in GFAP positive astrocytes and an increase in Iba1 positive microglia within the granular layer of the cerebellum in TAF1-edited animals. Immunostaining revealed a reduction in the expression of the CaV3.1 T-type calcium channel. Abnormal motor symptoms in TAF1-edited rats were associated with irregular cerebellar output caused by changes in the intrinsic activity of the Purkinje cells due to loss of pre-synaptic CaV3.1. This animal model provides a powerful new tool for studies of neuronal dysfunction in conditions associated with TAF1 abnormalities and should prove useful for developing therapeutic strategies to treat TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Dhanalakshmi Chinnasamy
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Shelby N Batchelor
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Annaduri Anandhan
- Department of Pharmacology and Toxicology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States of America; The BIO5 Institute, University of Arizona, United States of America
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
11
|
Valek L, Auburger G, Tegeder I. Sensory neuropathy and nociception in rodent models of Parkinson's disease. Dis Model Mech 2019; 12:12/6/dmm039396. [PMID: 31248900 PMCID: PMC6602317 DOI: 10.1242/dmm.039396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) often manifests with prodromal pain and sensory losses whose etiologies are not well understood. Multiple genetic and toxicity-based rodent models of PD partly recapitulate the histopathology and motor function deficits. Although far less studied, there is some evidence that rodents, similar to humans, develop sensory manifestations of the disease, which may precede motor disturbances and help to elucidate the underlying mechanisms of PD-associated pain at the molecular and neuron circuit levels. The present Review summarizes nociception and other sensory functions in frequently used rodent PD models within the context of the complex phenotypes. In terms of mechanisms, it appears that the acute loss of dopaminergic neurons in systemic toxicity models (MPTP, rotenone) primarily causes nociceptive hyperexcitability, presumably owing to a loss of inhibitory control, whereas genetic models primarily result in a progressive loss of heat perception, reflecting sensory fiber neuropathies. At the molecular level, neither α-synuclein deposits alone nor failure of mitophagy alone appear to be strong enough to result in axonal or synaptic pathology of nociceptive neurons that manifest at the behavioral level, and peripheral sensory loss may mask central ‘pain’ in behavioral tests. Hence, allostatic combinations or additional challenges and novel behavioral assessments are needed to better evaluate PD-associated sensory neuropathies and pain in rodents. Summary: Rodent models of Parkinson's disease partially develop prodromal somatosensory and olfactory dysfunctions reminiscent of sensory neuropathies in patients and reveal mechanistic insight, but data are incomplete and fragmented.
Collapse
Affiliation(s)
- Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt, Germany
| |
Collapse
|
12
|
Ho YJ, Shen MS, Tai CH, Li HH, Chen JH, Liao WC, Chiu PY, Lee IY, Lin CL, Hung CS. Use of Ceftriaxone in Treating Cognitive and Neuronal Deficits Associated With Dementia With Lewy Bodies. Front Neurosci 2019; 13:507. [PMID: 31178684 PMCID: PMC6543807 DOI: 10.3389/fnins.2019.00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is caused by accumulation of Lewy bodies, destruction of mitochondria, and excess of glutamate in synapses, which eventually leads to excitotoxicity, neurodegeneration, and cognitive impairments. Ceftriaxone (CEF) reduces excitotoxicity by increasing glutamate transporter 1 expression and glutamate reuptake. We investigated whether CEF can prevent cognitive decline and neurological deficits and increase neurogenesis in DLB rats. Male Wistar rats infused with viral vector containing human alpha-synuclein (α-syn) gene, SNCA, in the lateral ventricle were used as a rat model of DLB. CEF (100 mg/kg/day, i.p.) was injected in these rats for 27 days. The active avoidance test and object recognition test was performed. Finally, the brains of all the rats were immunohistochemically stained to measure α-syn, neuronal density, and newborn cells in the hippocampus and substantia nigra. The results revealed that DLB rats had learning and object recognition impairments and exhibited cell loss in the nigrostriatal dopaminergic system, and hippocampal CA1, and dentate gyrus (DG). Additionally, DLB rats had fewer newborn cells in the DG and substantia nigra pars reticulata and more α-syn immune-positive cells in the DG. Treatment with CEF improved cognitive function, reduced cell loss, and increased the number of newborn cells in the brain. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of DLB rats. CEF may therefore has clinical potential for treating DLB.
Collapse
Affiliation(s)
- Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, College of Medicine, National Taiwan University Hospital - National Taiwan University, Taipei, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy - Department of Pediatrics, Faculty of Medicine, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - I-Yen Lee
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
König M, Berlin B, Schwab K, Frahm S, Theuring F, Wischik CM, Harrington CR, Riedel G, Klein J. Increased Cholinergic Response in α-Synuclein Transgenic Mice (h-α-synL62). ACS Chem Neurosci 2019; 10:1915-1922. [PMID: 30253092 DOI: 10.1021/acschemneuro.8b00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pathological accumulation of misfolded α-synuclein (α-syn) in the brain plays a key role in the pathogenesis of Parkinson's disease, leading to neuronal dysfunction and motor disorders. The underlying mechanisms linking α-syn aggregations with neurotransmitter disturbance in Parkinson's brains are not well characterized. In the present study, we investigated transgenic mice expressing an aggregation-prone form of full-length human α-syn (h-α-synL62) linked to a signal sequence. These mice display dopamine depletion and progressive motor deficits. We detected accumulation of α-syn in cholinergic interneurons where they are colocalized with choline acetyltransferase. Using microdialysis, we measured acetylcholine levels in the striatum at baseline and during stimulation in the open field and with scopolamine. While no difference between wild-type and transgenic mice was detected in 3 month old mice, striatal acetylcholine levels at 9 months of age were significantly higher in transgenic mice. Concomitantly, high-affinity choline uptake was also increased while choline acetyltransferase and acetylcholine esterase activities were unchanged. The results suggest a disinhibition of acetylcholine release in α-syn transgenic mice.
Collapse
Affiliation(s)
- Magdalena König
- Department of Pharmacology, Goethe University Frankfurt, Biocenter N260, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Beata Berlin
- Department of Pharmacology, Goethe University Frankfurt, Biocenter N260, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Karima Schwab
- Charite - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Center for Cardiovascular
Research, Institute of Pharmacology, Berlin, Germany
| | - Silke Frahm
- Charite - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Center for Cardiovascular
Research, Institute of Pharmacology, Berlin, Germany
| | - Franz Theuring
- Charite - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, Center for Cardiovascular
Research, Institute of Pharmacology, Berlin, Germany
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
- TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
- TauRx Therapeutics Ltd., Singapore 068805, Singapore
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Jochen Klein
- Department of Pharmacology, Goethe University Frankfurt, Biocenter N260, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Aldrin-Kirk P, Björklund T. Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain. Methods Mol Biol 2019; 1937:59-87. [PMID: 30706390 DOI: 10.1007/978-1-4939-9065-8_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemogenetics is the process of genetically expressing a macromolecule receptor capable of modulating the activity of the cell in response to selective chemical ligand. This chapter will cover the chemogenetic technologies that are available to date, focusing on the commonly available engineered or otherwise modified ligand-gated ion channels and G-protein-coupled receptors in the context of neuromodulation. First, we will give a brief overview of each chemogenetic approach as well as in vitro/in vivo applications, then we will list their strengths and weaknesses. Finally, we will provide tips for ligand application in each case.Each technology has specific limitations that make them more or less suitable for different applications in neuroscience although we will focus mainly on the most commonly used and versatile family named designer receptors exclusively activated by designer drugs or DREADDs. We here describe the most common cases where these can be implemented and provide tips on how and where these technologies can be applied in the field of neuroscience.
Collapse
Affiliation(s)
- Patrick Aldrin-Kirk
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
16
|
Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behav Neurol 2018; 2018:4618716. [PMID: 30154934 PMCID: PMC6092970 DOI: 10.1155/2018/4618716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is characterized by neuronal deficits and α-synuclein inclusions in the brain. Ceftriaxone (CEF), a β-lactam antibiotic, has been suggested as a therapeutic agent in several neurodegenerative disorders for its abilities to counteract glutamate-mediated toxicity and to block α-synuclein polymerization. By using manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemistry, we measured the effects of CEF on neuronal activity and α-synuclein accumulation in the brain in a DLB rat model. The data showed that CEF corrected neuronal density and activity in the hippocampal CA1 area, suppressed hyperactivity in the subthalamic nucleus, and reduced α-synuclein accumulation, indicating that CEF is a potential agent in the treatment of DLB.
Collapse
|
17
|
Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 2017; 18:515-529. [DOI: 10.1038/nrn.2017.75] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Feng GY, Liu J, Wang YC, Wang ZY, Hu Y, Xia QJ, Xu Y, Shang FF, Chen MR, Wang F, Zhou X, Wang TH. Effects of Alpha-Synuclein on Primary Spinal Cord Neurons Associated with Apoptosis and CNTF Expression. Cell Mol Neurobiol 2017; 37:817-829. [PMID: 27581683 PMCID: PMC11482142 DOI: 10.1007/s10571-016-0420-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Spinal cord injury (SCI) often causes neurological deficits with poor recovery; the treatment, however, is far from satisfaction, and the mechanisms remain unclear. Using immunohistochemistry and western blotting analysis, we found α-synuclein (SNCA) was significantly up-regulated in the spinal caudal segment of rats subjected to spinal cord transection at 3 days post-operation. Moreover, the role of SNCA on neuronal growth and apoptosis in vitro was determined by using overexpressing and interfering SNCA recombined plasmid vectors, and the underlying mechanism was detected by QRT-PCR and western blotting. Spinal neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival, while it results in cell apoptosis in SNCA-ORF group. In molecular level, SNCA silence induced the up-regulation of CNTF and down-regulation of Caspase7/9. Together, endogenous SNCA plays a crucial role in spinal neuronal survival, in which the underlying mechanism may be linked to the regulation both apoptotic genes (Caspase7/9) and CNTF. The present findings therefore provide novel insights into the role of SNCA in spinal cord and associated mechanism, which may provide novel cue for the treatment of SCI in future clinic trials.
Collapse
Affiliation(s)
- Guo-Ying Feng
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China
| | - You-Cui Wang
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhen-Yu Wang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650031, China
| | - Yue Hu
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Jie Xia
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Xu
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei-Fei Shang
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mei-Rong Chen
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China
| | - Fang Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China.
| | - Xue Zhou
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ting-Hua Wang
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China.
- Department of Anesthesia, Institute of Neurological Disease, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Histology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Wang YC, Feng GY, Xia QJ, Hu Y, Xu Y, Xiong LL, Chen ZW, Wang HP, Wang TH, Zhou X. Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats. Apoptosis 2016; 21:404-20. [PMID: 26822976 DOI: 10.1007/s10495-016-1218-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) often causes severe functional impairment with poor recovery. The treatment, however, is far from satisfaction, and the mechanisms remain unclear. By using proteomics and western blot, we found spinal cord transection (SCT) resulted in a significant down-regulation of α-synuclein (SNCA) in the motor cortex of SCT rats at 3 days post-operation. In order to detect the role of SNCA, we used SNCA-ORF/shRNA lentivirus to upregulate or knockdown SNCA expression. In vivo, SNCA-shRNA lentivirus injection into the cerebral cortex motor area not only inhibited SNCA expression, but also significantly enhanced neurons' survival, and attenuated neuronal apoptosis, as well as promoted motor and sensory function recovery in hind limbs. While, overexpression SNCA exhibited the opposite effects. In vitro, cortical neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival and neurite outgrowth, while it was accompanied by reverse efficiency in SNCA-ORF group. In molecular level, SNCA silence induced the upregulation of Bcl-2 and the downregulation of Bax, and the expression of NGF, BDNF and NT3 was substantially upregulated in cortical neurons. Together, endogenous SNCA play a crucial role in motor and sensory function regulation, in which, the underlying mechanism may be linked to the regulation of apoptosis associated with apoptotic gene (Bax, Bcl2) and neurotrophic factors expression (NGF, BDNF and NT3). These finds provide novel insights to understand the role of SNCA in cerebral cortex after SCT, and it may be as a novel treatment target for SCI repair in future clinic trials.
Collapse
Affiliation(s)
- You-Cui Wang
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guo-Ying Feng
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qing-Jie Xia
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Hu
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Xu
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liu-Lin Xiong
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Wei Chen
- Institute of Physical Education, Yunnan Normal University, Kunming, 650500, China
| | - Hang-Ping Wang
- Institute of Physical Education, Yunnan Normal University, Kunming, 650500, China
| | - Ting-Hua Wang
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China. .,Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xue Zhou
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
21
|
α-Synuclein-Based Animal Models of Parkinson's Disease: Challenges and Opportunities in a New Era. Trends Neurosci 2016; 39:750-762. [PMID: 27776749 DOI: 10.1016/j.tins.2016.09.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
In recent years, a new generation of animal models of Parkinson's disease (PD) based on ectopic expression, overexpression, or intracerebral injection of the protein α-synuclein have emerged. Critically, these models develop inclusions of aggregated α-synuclein and/or α-synuclein-mediated neuronal loss replicating the defining pathological hallmarks of PD and driving significant advances in the understanding of the pathogenic mechanisms underpinning PD. Here, we provide a comprehensive review of this new generation of animal models of PD, ranging from invertebrate to rodent to nonhuman primate. We focus on their strengths and limitations with respect to their highly anticipated contribution to the further understanding of α-synuclein pathobiology and the future testing of novel disease-modifying therapeutics.
Collapse
|
22
|
Repetto IE, Monti R, Tropiano M, Tomasi S, Arbini A, Andrade-Moraes CH, Lent R, Vercelli A. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases. Front Cell Neurosci 2016; 10:190. [PMID: 27547177 PMCID: PMC4974250 DOI: 10.3389/fncel.2016.00190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole brain and also in discrete regions of interest, with the potential to investigate non-neuronal alterations. Moreover, IF could be used in addition or in substitution to classical stereological techniques or TTC staining used so far, since it is fast, precise and easily combined with complex molecular analysis.
Collapse
Affiliation(s)
- Ivan E. Repetto
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | - Riccardo Monti
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | - Marta Tropiano
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | - Simone Tomasi
- Child Study Center, Yale School of Medicine, New HavenCT, USA
| | - Alessia Arbini
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| | | | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of TurinTurin, Italy
| |
Collapse
|
23
|
Lin CL, Cheng YS, Li HH, Chiu PY, Chang YT, Ho YJ, Lai TJ. Amyloid-β suppresses AMP-activated protein kinase (AMPK) signaling and contributes to α-synuclein-induced cytotoxicity. Exp Neurol 2016; 275 Pt 1:84-98. [DOI: 10.1016/j.expneurol.2015.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/11/2015] [Accepted: 10/24/2015] [Indexed: 12/01/2022]
|
24
|
Rodent models of impulsive–compulsive behaviors in Parkinson's disease: How far have we reached? Neurobiol Dis 2015; 82:561-573. [DOI: 10.1016/j.nbd.2015.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 01/26/2023] Open
|
25
|
Pantcheva P, Reyes S, Hoover J, Kaelber S, Borlongan CV. Treating non-motor symptoms of Parkinson's disease with transplantation of stem cells. Expert Rev Neurother 2015; 15:1231-40. [PMID: 26394528 PMCID: PMC4828972 DOI: 10.1586/14737175.2015.1091727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) treatment-based research has focused on developing therapies for the management of motor symptoms. Non-motor symptoms do not respond to treatments targeting motor deficits, thus necessitating an urgent need to develop new modalities that cater to both motor and non-motor deficits. Stem cell transplantation is potentially therapeutic for PD, but the disease non-motor symptoms have been primarily neglected in such cell therapy regimens. Many types of stem cells are currently available for transplantation therapy, including adult tissue (e.g., bone marrow, placenta)-derived mesenchymal stem cells. The fact that mesenchymal stem cells can replace and rescue degenerated dopaminergic and non-dopaminergic cells suggests their potential for the treatment of motor as well as non-motor symptoms of PD, which is discussed in this article.
Collapse
Affiliation(s)
- Paolina Pantcheva
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Stephanny Reyes
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Jaclyn Hoover
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Sussannah Kaelber
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| |
Collapse
|
26
|
Whissell PD, Cajanding JD, Fogel N, Kim JC. Comparative density of CCK- and PV-GABA cells within the cortex and hippocampus. Front Neuroanat 2015; 9:124. [PMID: 26441554 PMCID: PMC4585045 DOI: 10.3389/fnana.2015.00124] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/14/2022] Open
Abstract
Cholecystokinin (CCK)- and parvalbumin (PV)-expressing neurons constitute the two major populations of perisomatic GABAergic neurons in the cortex and the hippocampus. As CCK- and PV-GABA neurons differ in an array of morphological, biochemical and electrophysiological features, it has been proposed that they form distinct inhibitory ensembles which differentially contribute to network oscillations and behavior. However, the relationship and balance between CCK- and PV-GABA neurons in the inhibitory networks of the brain is currently unclear as the distribution of these cells has never been compared on a large scale. Here, we systemically investigated the distribution of CCK- and PV-GABA cells across a wide number of discrete forebrain regions using an intersectional genetic approach. Our analysis revealed several novel trends in the distribution of these cells. While PV-GABA cells were more abundant overall, CCK-GABA cells outnumbered PV-GABA cells in several subregions of the hippocampus, medial prefrontal cortex and ventrolateral temporal cortex. Interestingly, CCK-GABA cells were relatively more abundant in secondary/association areas of the cortex (V2, S2, M2, and AudD/AudV) than they were in corresponding primary areas (V1, S1, M1, and Aud1). The reverse trend was observed for PV-GABA cells. Our findings suggest that the balance between CCK- and PV-GABA cells in a given cortical region is related to the type of processing that area performs; inhibitory networks in the secondary cortex tend to favor the inclusion of CCK-GABA cells more than networks in the primary cortex. The intersectional genetic labeling approach employed in the current study expands upon the ability to study molecularly defined subsets of GABAergic neurons. This technique can be applied to the investigation of neuropathologies which involve disruptions to the GABAergic system, including schizophrenia, stress, maternal immune activation and autism.
Collapse
Affiliation(s)
- Paul D Whissell
- Department of Psychology, University of Toronto, Toronto ON, Canada
| | | | - Nicole Fogel
- Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, Toronto ON, Canada ; Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| |
Collapse
|