1
|
Ehrhardt B, Angstmann H, Höschler B, Kovacevic D, Hammer B, Roeder T, Rabe KF, Wagner C, Uliczka K, Krauss-Etschmann S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci Rep 2024; 14:16567. [PMID: 39019933 PMCID: PMC11255251 DOI: 10.1038/s41598-024-66752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Hanna Angstmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Beate Höschler
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Hammer
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Kiel, Germany
| | - Christina Wagner
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Karin Uliczka
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany.
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Neves S, Pacheco S, Vaz F, James P, Simões T, Penque D. Occupational second-hand smoke exposure: A comparative shotgun proteomics study on nasal epithelia from healthy restaurant workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104459. [PMID: 38685369 DOI: 10.1016/j.etap.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Non-smokers exposed to second-hand smoke (SHS) present risk of developing tobacco smoke-associated pathologies. To investigate the airway molecular response to SHS exposure that could be used in health risk assessment, comparative shotgun proteomics was performed on nasal epithelium from a group of healthy restaurant workers, non-smokers (never and former) exposed and not exposed to SHS in the workplace. HIF1α-glycolytic targets (GAPDH, TPI) and proteins related to xenobiotic metabolism, cell proliferation and differentiation leading to cancer (ADH1C, TUBB4B, EEF2) showed significant modulation in non-smokers exposed. In never smokers exposed, enrichment of glutathione metabolism pathway and EEF2-regulating protein synthesis in genotoxic response were increased, while in former smokers exposed, proteins (LYZ, ATP1A1, SERPINB3) associated with tissue damage/regeneration, apoptosis inhibition and inflammation that may lead to asthma, COPD or cancer, were upregulated. The identified proteins are potential response and susceptibility/risk biomarkers for SHS exposure.
Collapse
Affiliation(s)
- Sofia Neves
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal; Center for Toxicogenomics and Human Health, ToxOmics, NOVA Medical School-FCM, UNL, Lisbon, Portugal.
| | - Solange Pacheco
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal
| | - Fátima Vaz
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal; Center for Toxicogenomics and Human Health, ToxOmics, NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Peter James
- Protein Technology Laboratory, Department of Immunotechnology, Lund University, Sweden
| | - Tânia Simões
- CECAD Cologne-Excellence in Aging Research University of Cologne, Germany
| | - Deborah Penque
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal; Center for Toxicogenomics and Human Health, ToxOmics, NOVA Medical School-FCM, UNL, Lisbon, Portugal
| |
Collapse
|
3
|
Bu X, Wang M, Yuan J, Song J, Luan G, Yu J, Wang Y, Li Y, Wang C, Zhang L. SerpinB3/B4 Abates Epithelial Cell-Derived CXCL8/IL-8 Expression in Chronic Rhinosinusitis with Nasal Polyps. J Immunol Res 2024; 2024:8553447. [PMID: 38550710 PMCID: PMC10978078 DOI: 10.1155/2024/8553447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Background Serine proteinase inhibitors, clade B, member 3 (SerpinB3) and B4 are highly similar in amino acid sequences and associated with inflammation regulation. We investigated SerpinB3 and B4 expression and their roles in chronic rhinosinusitis with nasal polyps (CRSwNP). Methods The expression of SerpinB3 and B4 in nasal mucosa tissues, brush cells, and secretions from CRSwNP patients was measured, and their regulation by inflammatory cytokines were investigated. Their functions were also analyzed using air-liquid interface (ALI)-cultured primary human nasal epithelial cells (HNECs) and transcriptomic analysis. Results Both SerpinB3 and B4 expression was higher in nasal mucosa, brush cells, and secretions from eosinophilic (E) CRSwNP and nonECRSwNP patients than in healthy controls. Immunofluorescence staining indicated that SerpinB3 and B4 were primarily expressed in epithelial cells and their expression was higher in CRSwNP patients. SerpinB3 and B4 expression was upregulated by interleukin-4 (IL-4), IL-5, IL-6, and IL-17a. Transcriptomic analysis identified differentially expressed genes (DEGs) in response to recombinant SerpinB3 and B4 stimulation. Both the DEGs of SerpinB3 and B4 were associated with disease genes of nasal polyps and inflammation in DisGeNET database. Pathway enrichment indicated that downregulated DEGs of SerpinB3 and B4 were both enriched in cytokine-cytokine receptor interactions, with CXCL8 as the hub gene in the protein-protein interaction networks. Furthermore, CXCL8/IL-8 expression was downregulated by recombinant SerpinB3 and B4 protein in ALI-cultured HNECs, and upregulated when knockdown of SerpinB3/B4. Conclusion SerpinB3/B4 expression is upregulated in nasal mucosa of CRSwNP patients. SerpinB3/B4 may play an anti-inflammatory role in CRSwNP by inhibiting the expression of epithelial cell-derived CXCL8/IL-8.
Collapse
Affiliation(s)
- Xiangting Bu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Jing Yuan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Jing Song
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Ge Luan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Jiaqi Yu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
4
|
Rezaeeyan H, Arabfard M, Rasouli HR, Shahriary A, Gh BFNM. Evaluation of common protein biomarkers involved in the pathogenesis of respiratory diseases with proteomic methods: A systematic review. Immun Inflamm Dis 2023; 11:e1090. [PMID: 38018577 PMCID: PMC10659759 DOI: 10.1002/iid3.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
AIM Respiratory disease (RD) is one of the most common diseases characterized by lung dysfunction. Many diagnostic mechanisms have been used to identify the pathogenic agents of responsible for RD. Among these, proteomics emerges as a valuable diagnostic method for pinpointing the specific proteins involved in RD pathogenesis. Therefore, in this study, for the first time, we examined the protein markers involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, bronchiolitis obliterans (BO), and chemical warfare victims exposed to mustard gas, using the proteomics method as a systematic study. MATERIALS AND METHODS A systematic search was performed up to September 2023 on several databases, including PubMed, Scopus, ISI Web of Science, and Cochrane. In total, selected 4246 articles were for evaluation according to the criteria. Finally, 119 studies were selected for this systematic review. RESULTS A total of 13,806 proteins were identified, 6471 in COPD, 1603 in Asthma, 5638 in IPF, three in BO, and 91 in mustard gas exposed victims. Alterations in the expression of these proteins were observed in the respective diseases. After evaluation, the results showed that 31 proteins were found to be shared among all five diseases. CONCLUSION Although these 31 proteins regulate different factors and molecular pathways in all five diseases, they ultimately lead to the regulation of inflammatory pathways. In other words, the expression of some proteins in COPD and mustard-exposed patients increases inflammatory reactions, while in IPF, they cause lung fibrosis. Asthma, causes allergic reactions due to T-cell differentiation toward Th2.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineIranian Blood Transfusion Organization (IBTO)TehranIran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Hamid R. Rasouli
- Trauma Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - B. Fatemeh Nobakht M. Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Shields PG. Role of untargeted omics biomarkers of exposure and effect for tobacco research. ADDICTION NEUROSCIENCE 2023; 7:100098. [PMID: 37396411 PMCID: PMC10310069 DOI: 10.1016/j.addicn.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tobacco research remains a clear priority to improve individual and population health, and has recently become more complex with emerging combustible and noncombustible tobacco products. The use of omics methods in prevention and cessation studies are intended to identify new biomarkers for risk, compared risks related to other products and never use, and compliance for cessation and reinitation. to assess the relative effects of tobacco products to each other. They are important for the prediction of reinitiation of tobacco use and relapse prevention. In the research setting, both technical and clinical validation is required, which presents a number of complexities in the omics methodologies from biospecimen collection and sample preparation to data collection and analysis. When the results identify differences in omics features, networks or pathways, it is unclear if the results are toxic effects, a healthy response to a toxic exposure or neither. The use of surrogate biospecimens (e.g., urine, blood, sputum or nasal) may or may not reflect target organs such as the lung or bladder. This review describes the approaches for the use of omics in tobacco research and provides examples of prior studies, along with the strengths and limitations of the various methods. To date, there is little consistency in results, likely due to small number of studies, limitations in study size, the variability in the analytic platforms and bioinformatic pipelines, differences in biospecimen collection and/or human subject study design. Given the demonstrated value for the use of omics in clinical medicine, it is anticipated that the use in tobacco research will be similarly productive.
Collapse
Affiliation(s)
- Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH
| |
Collapse
|
6
|
Fang H, Liu Y, Yang Q, Han S, Zhang H. Prognostic Biomarkers Based on Proteomic Technology in COPD: A Recent Review. Int J Chron Obstruct Pulmon Dis 2023; 18:1353-1365. [PMID: 37408604 PMCID: PMC10319291 DOI: 10.2147/copd.s410387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common heterogeneous respiratory disease which is characterized by persistent and incompletely reversible airflow limitation. Due to the heterogeneity and phenotypic complexity of COPD, traditional diagnostic methods provide limited information and pose a great challenge to clinical management. In recent years, with the development of omics technologies, proteomics, metabolomics, transcriptomics, etc., have been widely used in the study of COPD, providing great help to discover new biomarkers and elucidate the complex mechanisms of COPD. In this review, we summarize the prognostic biomarkers of COPD based on proteomic studies in recent years and evaluate their association with COPD prognosis. Finally, we present the prospects and challenges of COPD prognostic-related studies. This review is expected to provide cutting-edge evidence in prognostic evaluation of clinical patients with COPD and to inform future proteomic studies on prognostic biomarkers of COPD.
Collapse
Affiliation(s)
- Hanyu Fang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ying Liu
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Qiwen Yang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Siyu Han
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hongchun Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
7
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Tang Y, Chen Z, Fang Z, Zhao J, Zhou Y, Tang C. Multi-Omics study on biomarker and pathway discovery of chronic obstructive pulmonary disease. J Breath Res 2021; 15. [PMID: 34280912 DOI: 10.1088/1752-7163/ac15ea] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common heterogeneous respiratory disease characterized by persistent and incompletely reversible airflow limitation. Due to the heterogeneity and phenotypes complexity of COPD, traditionally diagnostic methods can only give limited information on predicted results and treatment, which are not sufficient for accurate diagnosis and evaluation. With the development of omics technologies in recent years, genomics, proteomics, and metabolomics are widely used in the study of COPD, providing good tools for discovering biomarkers to diagnose and elucidate the complex mechanism of COPD. In this review, we summarized the biomarkers of COPD based on metabolomic, proteomic and transcriptomic studies that have been reported in recent years. Furthermore, protein-protein interactions and multi-omics integrated analysis were carried out to explore the important metabolites and proteins that involved in significant pathways in the progression of COPD for explanation the pathogenesis of COPD. Finally, the prospective and challenges in the study of COPD were proposed. It is expected that this review will provide some references for the development of diagnostic methods and elucidation of the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yuqing Tang
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Zhengjun Chen
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Zhiling Fang
- Ningbo University Medical School, Ningbo University School of Medicine, Ningbo 315211, China, Ningbo, Zhejiang, 315211, CHINA
| | - Jinshun Zhao
- Ningbo University Medical School, Ningbo University School of Medicine, Ningbo 315211, China, Ningbo, Zhejiang, 315211, CHINA
| | - Yuping Zhou
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Chunlan Tang
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| |
Collapse
|
9
|
Sinha I, Modesto J, Krebs NM, Stanley AE, Walter VA, Richie JP, Muscat JE, Sinha R. Changes in salivary proteome before and after cigarette smoking in smokers compared to sham smoking in nonsmokers: A pilot study. Tob Induc Dis 2021; 19:56. [PMID: 34239408 PMCID: PMC8240953 DOI: 10.18332/tid/138336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Smoking is the leading cause of preventable disease. Although smoking results in an acute effect of relaxation and positive mood through dopamine release, smoking is thought to increase stress symptoms such as heart rate and blood pressure from nicotine-induced effects on the HPA axis and increased cortisol. Despite the importance in understanding the mechanisms in smoking maintenance, little is known about the overall protein and physiological response to smoking. There may be multiple functions involved that if identified might help in improving methods for behavioral and pharmacological interventions. Therefore, our goal for this pilot study was to identify proteins in the saliva that change in response to an acute smoking event versus acute sham smoking event in smokers and non-smokers, respectively. METHODS We employed the iTRAQ technique followed by Mass Spectrometry to identify differentially expressed proteins in saliva of smokers and non-smokers after smoking cigarettes and sham smoking, respectively. We also validated some of the salivary proteins by ELISA or western blotting. In addition, salivary cortisol and salivary amylase (sAA) activity were measured. RESULTS In all, 484 salivary proteins were identified. Several proteins were elevated as well as decreased in smokers compared to non-smokers. Among these were proteins associated with stress response including fibrinogen alpha, cystatin A and sAA. Our investigation also highlights methodological considerations in study design, sampling and iTRAQ analysis. CONCLUSIONS We suggest further investigation of other differentially expressed proteins in this study including ACBP, A2ML1, APOA4, BPIB1, BPIA2, CAH1, CAH6, CYTA, DSG1, EST1, GRP78, GSTO1, sAA, SAP, STAT, TCO1, and TGM3 that might assist in improving methods for behavioral and pharmacological interventions for smokers.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Hershey, United States
| | - Jennifer Modesto
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Nicolle M Krebs
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Anne E Stanley
- Mass Spectrometry and Proteomics Core, Penn State University College of Medicine, Hershey, United States
| | - Vonn A Walter
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - John P Richie
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Joshua E Muscat
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Hershey, United States
| |
Collapse
|
10
|
The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases. Int J Mol Sci 2021; 22:ijms22126351. [PMID: 34198546 PMCID: PMC8231800 DOI: 10.3390/ijms22126351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating heterogeneous disease characterised by unregulated proteolytic destruction of lung tissue mediated via a protease-antiprotease imbalance. In COPD, the relationship between the neutrophil serine protease, neutrophil elastase, and its endogenous inhibitor, alpha-1-antitrypsin (AAT) is the best characterised. AAT belongs to a superfamily of serine protease inhibitors known as serpins. Advances in screening technologies have, however, resulted in many members of the serpin superfamily being identified as having differential expression across a multitude of chronic lung diseases compared to healthy individuals. Serpins exhibit a unique suicide-substrate mechanism of inhibition during which they undergo a dramatic conformational change to a more stable form. A limitation is that this also renders them susceptible to disease-causing mutations. Identification of the extent of their physiological/pathological role in the airways would allow further expansion of knowledge regarding the complexity of protease regulation in the lung and may provide wider opportunity for their use as therapeutics to aid the management of COPD and other chronic airways diseases.
Collapse
|
11
|
Lee JD, Kim HY, Kang K, Jeong HG, Song MK, Tae IH, Lee SH, Kim HR, Lee K, Chae S, Hwang D, Kim S, Kim HS, Kim KB, Lee BM. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol 2020; 94:887-909. [PMID: 32080758 DOI: 10.1007/s00204-020-02657-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
|
12
|
Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, Gómez-Gómez A, Van-Brussel E, Díaz-Barriga F, Medellín-Garibay S, Flores-Ramírez R. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed Chromatogr 2019; 33:e4684. [PMID: 31423612 DOI: 10.1002/bmc.4684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.
Collapse
Affiliation(s)
- Maribel Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Sofía Ramírez-García
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Cesar Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Alejandro Gómez-Gómez
- Pulmonology Service, Hospital Central "Dr. Ignacio Morones Prieto" San Luis Potosí, San Luis Potosí, Mexico
| | - Evelyn Van-Brussel
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Susanna Medellín-Garibay
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.,Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
13
|
Song W, Zheng S, Li M, Zhang X, Cao R, Ye C, Shao R, Li G, Li J, Liu S, Li H, Li L. Linking endotypes to omics profiles in difficult-to-control asthma using the diagnostic Chinese medicine syndrome differentiation algorithm. J Asthma 2019; 57:532-542. [PMID: 30915875 DOI: 10.1080/02770903.2019.1590589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Patients with difficult-to-control asthma have difficulty breathing almost all of the time, even leading to life-threatening asthma attacks. However, only few diagnostic markers for this disease have been identified. We aimed to take advantage of unique Chinese medicine theories for phenotypic classification and to explore molecular signatures in difficult-to-control asthma. Methods: The Chinese medicine syndrome differentiation algorithm (CMSDA) is a syndrome-scoring classification method based on the Chinese medicine overall observation theory. Patients with difficult-to-control asthma were classified into Cold- and Hot-pattern groups according to the CMSDA. DNA methylation and metabolomic profiles were obtained using Infinium Human Methylation 450 BeadChip and gas chromatography-mass spectrometer. Subsequently, an integrated bioinformatics analysis was performed to compare those two patterns and identify Cold/Hot-associated candidates, followed by functional validation studies. Results: A total of 20 patients with difficult-to-control asthma were enrolled in the study. Ten were grouped as Cold and 10 as Hot according to the CMSDA. We identified distinct whole-genome DNA methylation and metabolomic profiles between Cold- and Hot-pattern groups. ALDH3A1 gene exhibited variations in the DNA methylation probe cg10791966, while two metabolic pathways were associated with those two patterns. Conclusions: Our study introduced a novel diagnostic classification approach, the CMSDA, for difficult-to-control asthma. This is an alternative way to categorize diverse syndromes and link endotypes with omics profiles of this disease. ALDH3A1 might be a potential biomarker for precision diagnosis of difficult-to-control asthma.
Collapse
Affiliation(s)
- Wenping Song
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Si Zheng
- Institute of Medical Information (IMI) and Library, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Meng Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Cao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Guangxi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiao Li
- Institute of Medical Information (IMI) and Library, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shigang Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Serum SCCA levels in patients suffering cancers or other diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:165-175. [PMID: 30905447 DOI: 10.1016/bs.pmbts.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased serum squamous cell carcinoma antigen (SCCA) levels are clinically used diagnostic or prognostic biomarker for squamous cell carcinomas. According to recently published studies, increased serum SCCA levels are also observed in adenocarcinomas, hepatocarcinomas, kidney, and other inflammatory diseases, indicating squamous cell carcinoma is not the production source of serum SCCA in these diseases. However, serum SCCA levels in patients suffering different types of diseases have not been systematically measured and compared. Thus, in our current study, serum SCCA levels from 21,608 patients with 39 clinically defined diseases were collected and measured by the clinical laboratory in the Affiliated Hospital of Qingdao University over the past 5 years in addition to 232 serum samples from individuals who attend their annual physical examination as the healthy controls. According to the median, mean, and -log10p values, we found that patients with uremia, azotemia, diabetic nephropathy, and nephritic syndrome had the highest serum SCCA levels among all 39 different types of diseases including patients suffering squamous cell carcinomas. Moreover, patients suffering lung cancer, cervical cancer, esophagus cancer, or chronic pulmonary disease had lower median and interquartile range values but higher or comparable mean values and significantly higher SD values than that of the healthy controls. Furthermore, patients with endometrial cancer, pancreatitis, osteoporosis, and some other diseases had lower serum SCCA levels than that of the healthy controls. These results demonstrated that serum SCCA can not only be used in diagnosis and prognosis of squamous cell carcinomas but also as biomarkers for uremia, azotemia, diabetic nephropathy, and nephritic syndrome.
Collapse
|
15
|
Klont F, Horvatovich P, Govorukhina N, Bischoff R. Pre- and Post-analytical Factors in Biomarker Discovery. Methods Mol Biol 2019; 1959:1-22. [PMID: 30852812 DOI: 10.1007/978-1-4939-9164-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The translation of promising biomarkers, which were identified in biomarker discovery experiments, to clinical assays is one of the key challenges in present-day proteomics research. Many so-called "biomarker candidates" fail to progress beyond the discovery phase, and much emphasis is placed on pre- and post-analytical variability in an attempt to provide explanations for this bottleneck in the biomarker development pipeline. With respect to such variability, there is a large number of pre- and post-analytical factors which may impact the outcomes of proteomics experiments and thus necessitate tight control. This chapter highlights some of these factors and provides guidance for addressing them on the basis of examples from previously published proteomics studies.
Collapse
Affiliation(s)
- Frank Klont
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Cagnone M, Salvini R, Bardoni A, Fumagalli M, Iadarola P, Viglio S. Searching for biomarkers of chronic obstructive pulmonary disease using proteomics: The current state. Electrophoresis 2018; 40:151-164. [PMID: 30216498 DOI: 10.1002/elps.201800305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Detection of proteins which may be potential biomarkers of disorders represents a big step forward in understanding the molecular mechanisms that underlie pathological processes. In this context proteomics plays the important role of opening a path for the identification of molecular signatures that can potentially assist in early diagnosis of several clinical disturbances. Aim of this report is to provide an overview of the wide variety of proteomic strategies that have been applied to the investigation of chronic obstructive pulmonary disease (COPD), a severe disorder that causes an irreversible damage to the lungs and for which there is no cure yet. The results in this area published over the past decade show that proteomics indeed has the ability of monitoring alterations in expression profiles of proteins from fluids/tissues of patients affected by COPD and healthy controls. However, these data also suggest that proteomics, while being an attractive tool for the identification of novel pathological mediators of COPD, remains a technique mainly generated and developed in research laboratories. Great efforts dedicated to the validation of these biological signatures will result in the proof of their clinical utility.
Collapse
Affiliation(s)
- Maddalena Cagnone
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L.Spallanzani", Biochemistry Unit, University of Pavia, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies "L.Spallanzani", Biochemistry Unit, University of Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| |
Collapse
|
17
|
Billatos E, Faiz A, Gesthalter Y, LeClerc A, Alekseyev YO, Xiao X, Liu G, Ten Hacken NHT, Heijink IH, Timens W, Brandsma CA, Postma DS, van den Berge M, Spira A, Lenburg ME. Impact of acute exposure to cigarette smoke on airway gene expression. Physiol Genomics 2018; 50:705-713. [PMID: 29932825 DOI: 10.1152/physiolgenomics.00092.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Understanding effects of acute smoke exposure (ASE) on airway epithelial gene expression and their relationship with the effects of chronic smoke exposure may provide biological insights into the development of smoking-related respiratory diseases. METHODS Bronchial airway epithelial cell brushings were collected from 63 individuals without recent cigarette smoke exposure and before and 24 h after smoking three cigarettes. RNA from these samples was profiled on Affymetrix Human Gene 1.0 ST microarrays. RESULTS We identified 91 genes differentially expressed 24 h after ASE (false discovery rate < 0.25). ASE induced genes involved in xenobiotic metabolism, oxidative stress, and inflammation and repressed genes related to cilium morphogenesis and cell cycle. While many genes altered by ASE are altered similarly in chronic smokers, metallothionein genes are induced by ASE and suppressed in chronic smokers. Metallothioneins are also suppressed in current and former smokers with lung cancer relative to those without lung cancer. CONCLUSIONS Acute exposure to as little as three cigarettes and chronic smoking induce largely concordant changes in airway epithelial gene expression. Differences in short-term and long-term effects of smoking on metallothionein expression and their relationship to lung cancer requires further study given these enzymes' role in the oxidative stress response.
Collapse
Affiliation(s)
- E Billatos
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - A Faiz
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - Y Gesthalter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - A LeClerc
- Microarray and Sequencing Resource Core Facility, Boston University School of Medicine , Boston, Massachusetts
| | - Y O Alekseyev
- Microarray and Sequencing Resource Core Facility, Boston University School of Medicine , Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - X Xiao
- Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| | - G Liu
- Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| | - N H T Ten Hacken
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - I H Heijink
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - W Timens
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - C A Brandsma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - D S Postma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - M van den Berge
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - A Spira
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - M E Lenburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts.,Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
18
|
Pouwels SD, Faiz A, den Boef LE, Gras R, van den Berge M, Boezen HM, Korstanje R, ten Hacken NHT, van Oosterhout AJM, Heijink IH, Nawijn MC. Genetic variance is associated with susceptibility for cigarette smoke-induced DAMP release in mice. Am J Physiol Lung Cell Mol Physiol 2017; 313:L559-L580. [DOI: 10.1152/ajplung.00466.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by unresolved neutrophilic airway inflammation and is caused by chronic exposure to toxic gases, such as cigarette smoke (CS), in genetically susceptible individuals. Recent data indicate a role for damage-associated molecular patterns (DAMPs) in COPD. Here, we investigated the genetics of CS-induced DAMP release in 28 inbred mouse strains. Subsequently, in lung tissue from a subset of strains, the expression of the identified candidate genes was analyzed. We tested whether small interfering RNA-dependent knockdown of candidate genes altered the susceptibility of the human A549 cell line to CS-induced cell death and DAMP release. Furthermore, we tested whether these genes were differentially regulated by CS exposure in bronchial brushings obtained from individuals with a family history indicative of either the presence or absence of susceptibility for COPD. We observed that, of the four DAMPs tested, double-stranded DNA (dsDNA) showed the highest correlation with neutrophilic airway inflammation. Genetic analyses identified 11 candidate genes governing either CS-induced or basal dsDNA release in mice. Two candidate genes ( Elac2 and Ppt1) showed differential expression in lung tissue on CS exposure between susceptible and nonsusceptible mouse strains. Knockdown of ELAC2 and PPT1 in A549 cells altered susceptibility to CS extract-induced cell death and DAMP release. In bronchial brushings, CS-induced expression of ENOX1 and ARGHGEF11 was significantly different between individuals susceptible or nonsusceptible for COPD. Our study shows that genetic variance in a mouse model is associated with CS-induced DAMP release, and that this might contribute to susceptibility for COPD.
Collapse
Affiliation(s)
- Simon D. Pouwels
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisette E. den Boef
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reneé Gras
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H. Marike Boezen
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Nick H. T. ten Hacken
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoon J. M. van Oosterhout
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Iskandar AR, Titz B, Sewer A, Leroy P, Schneider T, Zanetti F, Mathis C, Elamin A, Frentzel S, Schlage WK, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res (Camb) 2017; 6:631-653. [PMID: 30090531 PMCID: PMC6062142 DOI: 10.1039/c7tx00047b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Systems biology combines comprehensive molecular analyses with quantitative modeling to understand the characteristics of a biological system as a whole. Leveraging a similar approach, systems toxicology aims to decipher complex biological responses following exposures. This work reports a systems toxicology meta-analysis in the context of in vitro assessment of a candidate modified-risk tobacco product (MRTP) using three human organotypic cultures of the aerodigestive tract (buccal, bronchial, and nasal epithelia). Complementing a series of functional measures, a causal network enrichment analysis of transcriptomic data was used to compare quantitatively the biological impact of aerosol from the Tobacco Heating System (THS) 2.2, a candidate MRTP, with 3R4F cigarette smoke (CS) at similar nicotine concentrations. Lower toxicity was observed in all cultures following exposure to THS2.2 aerosol compared with 3R4F CS. Because of their morphological differences, a smaller exposure impact was observed in the buccal (stratified epithelium) compared with the bronchial and nasal (pseudostratified epithelium). However, the causal network enrichment approach supported a similar mechanistic impact of CS across the three cultures, including the impact on xenobiotic, oxidative stress, and inflammatory responses. At comparable nicotine concentrations, THS2.2 aerosol elicited reduced and more transient effects on these processes. To demonstrate the benefits of additional data modalities, we employed a newly established targeted mass-spectrometry marker panel to further confirm the reduced cellular stress responses elicited by THS2.2 aerosol compared with 3R4F CS in the nasal culture. Overall, this work demonstrates the applicability and robustness of the systems toxicology approach for in vitro inhalation toxicity assessment.
Collapse
Affiliation(s)
- A R Iskandar
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - B Titz
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Sewer
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - P Leroy
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - T Schneider
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - F Zanetti
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - C Mathis
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Elamin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - S Frentzel
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - W K Schlage
- Biology consultant , Max-Baermann-Str. 21 , 51429 Bergisch Gladbach , Germany
| | - F Martin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - N V Ivanov
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - M C Peitsch
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - J Hoeng
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| |
Collapse
|
20
|
Fujii K, Nakamura H, Nishimura T. Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma. Expert Rev Proteomics 2017; 14:373-386. [PMID: 28271730 DOI: 10.1080/14789450.2017.1304215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Lung cancer and related diseases have been one of the most common causes of deaths worldwide. Genomic-based biomarkers may hardly reflect the underlying dynamic molecular mechanism of functional protein interactions, which is the center of a disease. Recent developments in mass spectrometry (MS) have made it possible to analyze disease-relevant proteins expressed in clinical specimens by proteomic challenges. Areas covered: To understand the molecular mechanisms of lung cancer and its subtypes, chronic obstructive pulmonary disease (COPD), asthma and others, great efforts have been taken to identify numerous relevant proteins by MS-based clinical proteomic approaches. Since lung cancer is a multifactorial disease that is biologically associated with asthma and COPD among various lung diseases, this study focused on proteomic studies on biomarker discovery using various clinical specimens for lung cancer, COPD, and asthma. Expert commentary: MS-based exploratory proteomics utilizing clinical specimens, which can incorporate both experimental and bioinformatic analysis of protein-protein interaction and also can adopt proteogenomic approaches, makes it possible to reveal molecular networks that are relevant to a disease subgroup and that could differentiate between drug responders and non-responders, good and poor prognoses, drug resistance, and so on.
Collapse
Affiliation(s)
- Kiyonaga Fujii
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| | - Haruhiko Nakamura
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan.,b Department of Chest Surgery , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| | - Toshihide Nishimura
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| |
Collapse
|
21
|
Mossina A, Lukas C, Merl-Pham J, Uhl FE, Mutze K, Schamberger A, Staab-Weijnitz C, Jia J, Yildirim AÖ, Königshoff M, Hauck SM, Eickelberg O, Meiners S. Cigarette smoke alters the secretome of lung epithelial cells. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Alessandra Mossina
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Christina Lukas
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science; Helmholtz Zentrum München; Munich Germany
| | - Franziska E. Uhl
- Department of Medicine; Vermont Lung Center (VLC); University of Vermont; Burlington VT USA
| | - Kathrin Mutze
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Andrea Schamberger
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Claudia Staab-Weijnitz
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Jie Jia
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Ali Ö. Yildirim
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Melanie Königshoff
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science; Helmholtz Zentrum München; Munich Germany
| | - Oliver Eickelberg
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Silke Meiners
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| |
Collapse
|
22
|
Mannam P, Rauniyar N, Lam TT, Luo R, Lee PJ, Srivastava A. MKK3 influences mitophagy and is involved in cigarette smoke-induced inflammation. Free Radic Biol Med 2016; 101:102-115. [PMID: 27717867 DOI: 10.1016/j.freeradbiomed.2016.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 11/26/2022]
Abstract
Cigarette smoking is the primary risk factor for COPD which is characterized by excessive inflammation and airflow obstruction of the lung. While inflammation is causally related to initiation and progression of COPD, the mitochondrial mechanisms that underlie the associated inflammatory responses are poorly understood. In this context, we have studied the role played by Mitogen activated protein (MAP) kinase kinase 3 (MKK3), a dual-specificity protein kinase, in cigarette smoke induced-inflammation and mitochondrial dysfunction. Serum pro-inflammatory cytokines were significantly elevated in WT but not in MKK3-/- mice exposed to Cigarette smoke (CS) for 2 months. To study the cellular mechanisms of inflammation, bone marrow derived macrophages (BMDMs), wild type (WT) and MKK3-/-, were exposed to cigarette smoke extract (CSE) and inflammatory cytokine production and mitochondrial function assessed. The levels of IL-1β, IL-6, and TNFα were increased along with higher reactive oxygen species (ROS) and P-NFκB after CSE treatment in WT but not in MKK3-/- BMDMs. CSE treatment adversely affected basal mitochondrial respiration, ATP production, maximum respiratory capacity, and spare respiratory capacity in WT BMDMs only. Mitophagy, clearance of dysfunctional mitochondria, was up regulated in CS exposed WT mice lung tissue and CSE exposed WT BMDMs, respectively. The proteomic analysis of BMDMs by iTRAQ (isobaric tags for relative and absolute quantitation) showed up regulation of mitochondrial dysfunction associated proteins in WT and higher OXPHOS (Oxidative phosphorylation) and IL-10 signaling proteins in MKK3-/- BMDMs after CSE exposure, confirming the critical role of mitochondrial homeostasis. Interestingly, we found increased levels of p-MKK3 by immunohistochemistry in COPD patient lung tissues that could be responsible for insufficient mitophagy and disease progression. This study identifies MKK3 as a negative regulator of mitochondrial function and inflammatory responses to CS and suggests that MKK3 could be a therapeutic target.
Collapse
Affiliation(s)
- Praveen Mannam
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA.
| | - Navin Rauniyar
- MS & Proteomics Resource at Yale University, WM Keck Foundation Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8057, USA
| | - TuKiet T Lam
- MS & Proteomics Resource at Yale University, WM Keck Foundation Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8057, USA
| | - Ruiyan Luo
- Department of Epidemiology & Biostatistics, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Patty J Lee
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA
| | - Anup Srivastava
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA.
| |
Collapse
|
23
|
Sun Y, Sheshadri N, Zong WX. SERPINB3 and B4: From biochemistry to biology. Semin Cell Dev Biol 2016; 62:170-177. [PMID: 27637160 DOI: 10.1016/j.semcdb.2016.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Human SERPINB3 and SERPINB4 are evolutionary duplicated serine/cysteine protease inhibitors. Genomic analysis indicates that these paralogous genes were encoded from independent loci arising from tandem gene duplication. Although the two molecules share 92% identity of their amino acid sequences, they are distinct in the Reactive Center Loop (RCL) including a hinge region and catalytic sequences which accounts for altered substrate specificity. Elevated expression of the two molecules has been reported to contribute to numerous pathological conditions such as inflammatory diseases and cancer. In this review, we focus on summarizing the biochemical features of SERPINB3/B4 and discussing the mechanistic basis for their biological functions and implications in human diseases.
Collapse
Affiliation(s)
- Yu Sun
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Namratha Sheshadri
- National Cancer Institute, Center for Cancer Research, Frederick, MD 21702, United States
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States.
| |
Collapse
|
24
|
Diao WQ, Shen N, Du YP, Liu BB, Sun XY, Xu M, He B. Fetuin-B (FETUB): a Plasma Biomarker Candidate Related to the Severity of Lung Function in COPD. Sci Rep 2016; 6:30045. [PMID: 27443820 PMCID: PMC4957096 DOI: 10.1038/srep30045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/29/2016] [Indexed: 12/03/2022] Open
Abstract
Biomarkers for the progression of lung function in COPD are currently scarce. Plasma fetuin-B (FETUB) was identified by iTRAQ-based proteomics and was verified by ELISA in another group. Information regarding acute exacerbation (AE) was collected in a one-year follow-up programme. FETUB concentrations (1652 ± 427 ng/ml) were greater in COPD patients than in controls (1237 ± 77 ng/ml). The concentrations of FETUB in GOLD II (1762 ± 427 ng/ml), III (1650 ± 375 ng/ml) and IV (1800 ± 451 ng/ml) groups were greater than those in the controls (1257 ± 414 ng/ml) and the GOLD I (1345 ± 391 ng/ml) group. ROCs indicated that FETUB distinguished COPD patients from controls (AUC 0.747, 95% CI: 0.642–0.834) and also GOLD II, III and IV from GOLD I COPD patients (AUC: 0.770, 95% CI: 0.634–0.874). The combination of FETUB and fibrinogen performed better (AUC: 0.804, 95% CI: 0.705–0.881). FETUB also predicted the occurrence of AE (AUC: 0.707, 95% CI: 0.566–0.824) or frequent AE (AUC: 0.727, 95% CI: 0.587–0.840). FETUB concentrations were negatively correlated with FEV1%pred (r = −0.446, p = 0.000) and positively correlated with RV%pred (r = 0.317, p = 0.004), RV/TLC% (r = 0.360, p = 0.004), CT emphysema% (r = 0.322, p = 0.008) and grades of lung function (r = 0.437, p = 0.000). In conclusion, FETUB is likely to assist the diagnosis and management of COPD as a complement for other markers.
Collapse
Affiliation(s)
- Wen-Qi Diao
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ning Shen
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yi-Peng Du
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Bei-Bei Liu
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiao-Yan Sun
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
25
|
Ghosh N, Dutta M, Singh B, Banerjee R, Bhattacharyya P, Chaudhury K. Transcriptomics, proteomics and metabolomics driven biomarker discovery in COPD: an update. Expert Rev Mol Diagn 2016; 16:897-913. [PMID: 27267972 DOI: 10.1080/14737159.2016.1198258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Diagnosis of chronic obstructive pulmonary disease (COPD), characterized by progressive irreversible airflow limitation, remains a challenge. Lack of sensitive diagnostic markers and alternative treatments have limited patients' survival rate. Herein, we provide for clinicians and scientists a comprehensive review on the various omics platforms used to investigate COPD. AREAS COVERED This review consists of articles from PubMed (2009-2016) as well as views of the contributing authors. The review highlights the need for COPD biomarker identification and also provides an update on promising candidate markers identified in various biological fluids using omics technologies. Expert commentary: The multi-omics approach holds promise for the development of robust early stage COPD diagnostic markers, screening of high-risk population, and also improved prognosis which could lead to personalized medicine in future. Various factors regulating an omics study including sample size, control selection, disease phenotyping, usage of complementary techniques and result replication in omics-based research are outlined.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Mainak Dutta
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Brajesh Singh
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Rintu Banerjee
- b Department of Agricultural & Food Engineering , Indian Institute of Technology Kharagpur , Kharagpur , India
| | | | - Koel Chaudhury
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| |
Collapse
|
26
|
Titz B, Sewer A, Schneider T, Elamin A, Martin F, Dijon S, Luettich K, Guedj E, Vuillaume G, Ivanov NV, Peck MJ, Chaudhary NI, Hoeng J, Peitsch MC. Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects. J Proteomics 2015; 128:306-20. [DOI: 10.1016/j.jprot.2015.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/15/2015] [Indexed: 12/15/2022]
|
27
|
Baxter A, Thain S, Banerjee A, Haswell L, Parmar A, Phillips G, Minet E. Targeted omics analyses, and metabolic enzyme activity assays demonstrate maintenance of key mucociliary characteristics in long term cultures of reconstituted human airway epithelia. Toxicol In Vitro 2015; 29:864-75. [PMID: 25863282 DOI: 10.1016/j.tiv.2015.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023]
Abstract
3D reconstituted respiratory epithelia have emerged as better in vitro models for toxicological testing compared to cell lines due to the conservation of key morphological features and functions. MucilAir™ is a commercially available human airway epithelia system that can potentially maintain functional attributes for up to a year, however, detailed mucociliary characteristics and xenobiotic metabolism relevant to inhaled pro-toxicant bioactivation is lacking. Here, we assessed in MucilAir™ some key biomarkers that are characteristic of the respiratory epithelia including morphology, function and xenobiotics metabolism. The end points that were measured included targeted proteomics using a panel of 243 airway surface liquid (ASL) proteins, cilia beat frequency (CBF), a qRT-PCR screen of xenobiotic metabolizing enzymes, and CYP2A6/13, CYP1A1/1B1 activity. Comparison of ASL proteomics with human sputum identified key proteins common to both matrices, but present at different levels. Xenobiotic metabolism gene profiling demonstrated strong similarities with the normal human lung and did not reveal any consistent changes when assessed over a 6 month period. Inducibility and activity of CYP1A1/1B1 and activity of CYP2A6/2A13 were present at one month in culture and maintained in one tested MucilAir™ donor for several months. In conclusion, MucilAir™ presented important morphological and metabolic characteristics of a mucociliary epithelium in short and long term culture. MucilAir™ is therefore a potentially useful model to test repeated sub-cytotoxic doses of toxicants.
Collapse
Affiliation(s)
- Andrew Baxter
- BAT, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK
| | - Simon Thain
- BAT, Group Research and Development Cambridge, Milton Road, Cambridge CB4 0WA, UK
| | - Anisha Banerjee
- BAT, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK
| | - Linsey Haswell
- BAT, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK
| | - Aleesha Parmar
- BAT, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK
| | - Gary Phillips
- BAT, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK
| | - Emmanuel Minet
- BAT, Group Research and Development, Regents Park Road, Southampton SO15 8TL, UK.
| |
Collapse
|
28
|
Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA. Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin Appl 2015; 9:295-300. [DOI: 10.1002/prca.201400120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/08/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Jules A. Westbrook
- Academic Unit of Clinical Oncology; The Medical School, University of Sheffield; Sheffield UK
| | - Josselin Noirel
- Chaire de Bioinformatique; EA4627; Conservatoire National des Arts et Métiers; Paris France
| | - Janet E. Brown
- Academic Unit of Clinical Oncology; The Medical School, University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- Department of Chemical and Biological Engineering; ChELSI Institute; University of Sheffield; Sheffield UK
| | - Caroline A. Evans
- Department of Chemical and Biological Engineering; ChELSI Institute; University of Sheffield; Sheffield UK
| |
Collapse
|
29
|
Terracciano R, Pelaia G, Preianò M, Savino R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl 2015; 9:203-20. [PMID: 25504544 DOI: 10.1002/prca.201400099] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 12/25/2022]
Abstract
Although asthma and chronic obstructive pulmonary disease COPD represent the two most common chronic respiratory diseases worldwide, the mechanisms underlying their pathobiology need to be further elucidated. Presently, differentiation of asthma and COPD are largely based on clinical and lung function parameters. However, the complexity of these multifactorial diseases may lead to misclassification and to inappropriate management strategies. Recently, tremendous progress in MS has extended the sensitivity, accuracy, and speed of analysis, enabling the identification of thousands of proteins per experiment. Beyond identification, MS has also greatly implemented quantitation issues allowing to assess qualitative-quantitative differences in protein profiles of different samples, in particular diseased versus normal. Herein, we provide a summary of recent proteomics-based investigations in the field of asthma/COPD, highlighting major issues related to sampling and processing procedures for proteomic analyses of specific airway and parenchymal specimens (induced sputum, exhaled breath condensate, epithelial lining fluid, bronchoalveolar and nasal lavage fluid), as well as blood-derived specimen (plasma and serum). Within such a context, together with current difficulties and limitations mainly due to lack of general standardization in preanalytical sampling procedure, our discussion will focus on the challenges and possible benefits of proteomic studies in phenotypic stratification of asthma and COPD.
Collapse
Affiliation(s)
- Rosa Terracciano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | | | | | | |
Collapse
|
30
|
Cytopathological Aspects in the Bronchoalveolar Lavage Fluid in Chronic Obstructive Pulmonary Disease. CURRENT HEALTH SCIENCES JOURNAL 2015; 41:35-41. [PMID: 30151248 PMCID: PMC6057535 DOI: 10.12865/chsj.41.01.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/15/2015] [Indexed: 11/18/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a clinical syndrome characterised by a slow progressive decline in expiratory airflow [1], a process that has gradually developed over the years. Studies of patients with COPD show an inflammatory process in the small airways [2]. The aim of this paper is to identify the cytopathological aspects of the liquids present in the bronchoalveolar lavage in patients with COPD. We were performed a descriptive analytical case-control and prospective study on forty patients with COPD and ten asymptomatic smokers (healthy smokers or patients at risk). The percentage of marcophage, the type of the dominant inflamatory cell, in the bronchoalveolar lavage (BAL) liquid was significantly higher at patients with mild and moderate COPD as compared to patients with severe and very severe COPD. In the present work, the percentage of the neutrophil in the BAL liquid was significantly higher at patients with severe and very severe COPD, as compared to the patients with mild and moderate COPD and to aparently healthy smokers. In conclusion, we can say that COPD is characterized by an inflammatory process located in the small airways with predominant participation of macrophages, the procentage of macrophages in BAL fluid variyng inversely proportional to the severity of the disease.
Collapse
|