1
|
Semple BD, Mychasiuk R. Sex and Age-at-Injury as Determinants of Social Behavior Outcomes After TBI. ADVANCES IN NEUROBIOLOGY 2024; 42:205-218. [PMID: 39432044 DOI: 10.1007/978-3-031-69832-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
While our understanding of long-term disability after traumatic brain injury (TBI) has habitually focused on cognitive and sensorimotor functioning, it is increasingly appreciated that changes in social function for survivors of a brain injury are common and have a profound impact on one's quality of life. In this chapter, we highlight the consequences of TBI on social behavior, taking into account evidence from studies of patient populations as well as from preclinical animal models. After first considering the protracted nature of the development of social behavior across the lifespan, including the neurobiological networks that underlie social functioning, we discuss how TBI results in social behavior impairments and how these manifest. We focus particularly on how age-at-injury influences TBI-induced social impairments, with most of the evidence suggesting age-dependent vulnerability after injury at a younger age. In addition, we explore how biological sex is a key determinant of social behavior impairments after TBI, while gender in humans may also influence the nature and extent of social outcomes. Finally, we identify key knowledge gaps and emphasize the need for further research in the field.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Richelle Mychasiuk
- Department of Neuroscience, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Donovan M, Frentz M, Lozano AR, Rao S, Rodriguez M, Noble-Haeusslein LJ. The Emerging Landscape of the Cerebellum after a Pediatric Traumatic Brain Injury: From Diaschisis to Sociality. ADVANCES IN NEUROBIOLOGY 2024; 42:165-177. [PMID: 39432042 DOI: 10.1007/978-3-031-69832-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is an expanding interest in the cerebellum in the context of focal and diffuse traumatic injuries to the cerebral cortex. In the adult brain, preclinical studies have revealed acute as well as progressive loss of Purkinje cells in the cerebellum coincident with microglial activation. This pathogenesis, remote to the site of the primary injury, is termed "diaschisis." Here we consider traumatic injuries to the developing brain, where the cerebellum likewise undergoes neurodegeneration. As injury is superimposed on a young brain, long-term adverse consequences may reflect diaschisis that is compounded by disruption of brain development.
Collapse
Affiliation(s)
- Michael Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Morgan Frentz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Anakaren Romero Lozano
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shripriya Rao
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Linda J Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School and the College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Kahriman A, Bouley J, Tuncali I, Dogan EO, Pereira M, Luu T, Bosco DA, Jaber S, Peters OM, Brown RH, Henninger N. Repeated mild traumatic brain injury triggers pathology in asymptomatic C9ORF72 transgenic mice. Brain 2023; 146:5139-5152. [PMID: 37527465 PMCID: PMC11046056 DOI: 10.1093/brain/awad264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative diseases that represent ends of the spectrum of a single disease. The most common genetic cause of FTD and ALS is a hexanucleotide repeat expansion in the C9orf72 gene. Although epidemiological data suggest that traumatic brain injury (TBI) represents a risk factor for FTD and ALS, its role in exacerbating disease onset and course remains unclear. To explore the interplay between traumatic brain injury and genetic risk in the induction of FTD/ALS pathology we combined a mild repetitive traumatic brain injury paradigm with an established bacterial artificial chromosome transgenic C9orf72 (C9BAC) mouse model without an overt motor phenotype or neurodegeneration. We assessed 8-10 week-old littermate C9BACtg/tg (n = 21), C9BACtg/- (n = 20) and non-transgenic (n = 21) mice of both sexes for the presence of behavioural deficits and cerebral histopathology at 12 months after repetitive TBI. Repetitive TBI did not affect body weight gain, general neurological deficit severity, nor survival over the 12-month observation period and there was no difference in rotarod performance, object recognition, social interaction and acoustic characteristics of ultrasonic vocalizations of C9BAC mice subjected to repetitive TBI versus sham injury. However, we found that repetitive TBI increased the time to the return of the righting reflex, reduced grip force, altered sociability behaviours and attenuated ultrasonic call emissions during social interactions in C9BAC mice. Strikingly, we found that repetitive TBI caused widespread microglial activation and reduced neuronal density that was associated with loss of histological markers of axonal and synaptic integrity as well as profound neuronal transactive response DNA binding protein 43 kDa mislocalization in the cerebral cortex of C9BAC mice at 12 months; this was not observed in non-transgenic repetitive TBI and C9BAC sham mice. Our data indicate that repetitive TBI can be an environmental risk factor that is sufficient to trigger FTD/ALS-associated neuropathology and behavioural deficits, but not paralysis, in mice carrying a C9orf72 hexanucleotide repeat expansion.
Collapse
Affiliation(s)
- Aydan Kahriman
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Idil Tuncali
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Thuyvan Luu
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samer Jaber
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Owen M Peters
- School of Biosciences, UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Chu E, Mychasiuk R, Green TRF, Zamani A, Dill LK, Sharma R, Raftery AL, Tsantikos E, Hibbs ML, Semple BD. Regulation of microglial responses after pediatric traumatic brain injury: exploring the role of SHIP-1. Front Neurosci 2023; 17:1276495. [PMID: 37901420 PMCID: PMC10603304 DOI: 10.3389/fnins.2023.1276495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Severe traumatic brain injury (TBI) is the world's leading cause of permanent neurological disability in children. TBI-induced neurological deficits may be driven by neuroinflammation post-injury. Abnormal activity of SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) has been associated with dysregulated immunological responses, but the role of SHIP-1 in the brain remains unclear. The current study investigated the immunoregulatory role of SHIP-1 in a mouse model of moderate-severe pediatric TBI. Methods SHIP-1+/- and SHIP-1-/- mice underwent experimental TBI or sham surgery at post-natal day 21. Brain gene expression was examined across a time course, and immunofluorescence staining was evaluated to determine cellular immune responses, alongside peripheral serum cytokine levels by immunoassays. Brain tissue volume loss was measured using volumetric analysis, and behavior changes both acutely and chronically post-injury. Results Acutely, inflammatory gene expression was elevated in the injured cortex alongside increased IBA-1 expression and altered microglial morphology; but to a similar extent in SHIP-1-/- mice and littermate SHIP-1+/- control mice. Similarly, the infiltration and activation of CD68-positive macrophages, and reactivity of GFAP-positive astrocytes, was increased after TBI but comparable between genotypes. TBI increased anxiety-like behavior acutely, whereas SHIP-1 deficiency alone reduced general locomotor activity. Chronically, at 12-weeks post-TBI, SHIP-1-/- mice exhibited reduced body weight and increased circulating cytokines. Pro-inflammatory gene expression in the injured hippocampus was also elevated in SHIP-1-/- mice; however, GFAP immunoreactivity at the injury site in TBI mice was lower. TBI induced a comparable loss of cortical and hippocampal tissue in both genotypes, while SHIP-1-/- mice showed reduced general activity and impaired working memory, independent of TBI. Conclusion Together, evidence does not support SHIP-1 as an essential regulator of brain microglial morphology, brain immune responses, or the extent of tissue damage after moderate-severe pediatric TBI in mice. However, our data suggest that reduced SHIP-1 activity induces a greater inflammatory response in the hippocampus chronically post-TBI, warranting further investigation.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Deparment of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Tabitha R. F. Green
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, United States
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Larissa K. Dill
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - April L. Raftery
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Deparment of Neurology, Alfred Health, Prahran, VIC, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
El-Demerdash N, Pan T, Choi O, Saraswati M, Koehler RC, Robertson CL, Savonenko A. Importance of Control Groups for Evaluating Long-Term Behavioral and Cognitive Outcomes of Controlled Cortical Impact in Immature Rats. J Neurotrauma 2023; 40:1197-1215. [PMID: 36416234 PMCID: PMC10259614 DOI: 10.1089/neu.2021.0376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Therapies are limited for pediatric traumatic brain injury (TBI), especially for the very young who can experience long-term consequences to learning, memory, and social behavior. Animal models of pediatric TBI have yielded mechanistic insights, but demonstration of clinically relevant long-term behavioral and/or cognitive deficits has been challenging. We characterized short- and long-term outcomes in a controlled cortical impact (CCI) model of pediatric TBI using a panel of tests between 2 weeks and ∼4 months after injury. Male rats with CCI at postnatal Day (PND) 10 were compared with three control groups: Naïve, Anesthesia, and Craniotomy. Motor testing (PND 25-33), novel object recognition (NOR; PND 40-50), and multiple tasks in water maze (WM; PND 65-100) were followed by social interaction tests (PND 120-140). Anesthesia rats performed the same as Naïve rats in all tasks. TBI rats, when compared with Naïve controls, had functional impairments across most tests studied. The most sensitive cognitive processes affected by TBI included those that required fast one-trial learning (NOR, WM), flexibility of acquired memory traces (reversals in WM), response strategies (WM), or recognition memory in the setting of reciprocal social interactions. Both TBI and Craniotomy groups demonstrated increased rates of decision making across several WM tasks, suggesting disinhibition of motor responses. When the TBI group was compared with the Craniotomy group, however, deficits were detected in a limited number of outcomes. The latter included learning speed (WM), cognitive flexibility (WM), and social recognition memory. Notably, effects of craniotomy, when compared with Naïve controls, spanned across multiple tasks, and in some tasks, could reach the effect sizes observed in TBI. These results highlight the importance of appropriate control groups in pediatric CCI models. In addition, the study demonstrates the high sensitivity of comprehensive cognitive testing to detect long-term effects of early-age craniotomy and TBI and provides a template for future testing of experimental therapies.
Collapse
Affiliation(s)
- Nagat El-Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Tiffany Pan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Olivia Choi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Courtney L. Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Dill LK, Teymornejad S, Sharma R, Bozkurt S, Christensen J, Chu E, Rewell SS, Shad A, Mychasiuk R, Semple BD. Modulating chronic outcomes after pediatric traumatic brain injury: Distinct effects of social and environmental enrichment. Exp Neurol 2023; 364:114407. [PMID: 37059414 DOI: 10.1016/j.expneurol.2023.114407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Impairments in social and cognitive function are a common consequence of pediatric traumatic brain injury (TBI). Rehabilitation has the potential to promote optimal behavioral recovery. Here, we evaluated whether an enhanced social and/or cognitive environment could improve long-term outcomes in a preclinical model of pediatric TBI. Male C57Bl/6 J mice received a moderately-severe TBI or sham procedure at postnatal day 21. After one week, mice were randomized to different social conditions (minimal socialization, n = 2/cage; or social grouping, n = 6/cage), and housing conditions (standard cage, or environmental enrichment (EE), incorporating sensory, motor, and cognitive stimuli). After 8 weeks, neurobehavioral outcomes were assessed, followed by post-mortem neuropathology. We found that TBI mice exhibited hyperactivity, spatial memory deficits, reduced anxiety-like behavior, and reduced sensorimotor performance compared to age-matched sham controls. Pro-social and sociosexual behaviors were also reduced in TBI mice. EE increased sensorimotor performance, and the duration of sociosexual interactions. Conversely, social housing reduced hyperactivity and altered anxiety-like behavior in TBI mice, and reduced same-sex social investigation. TBI mice showed impaired spatial memory retention, except for TBI mice exposed to both EE and group housing. In the brain, while TBI led to significant regional tissue atrophy, social housing had modest neuroprotective effects on hippocampal volumes, neurogenesis, and oligodendrocyte progenitor numbers. In conclusion, manipulation of the post-injury environment has benefit for chronic behavioral outcomes, but the benefits are specific to the type of enrichment available. This study improves understanding of modifiable factors that may be harnessed to optimize long-term outcomes for survivors of early-life TBI.
Collapse
Affiliation(s)
- Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sadaf Teymornejad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sarah S Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ali Shad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
7
|
Doust YV, Rowe RK, Adelson PD, Lifshitz J, Ziebell JM. Age-at-Injury Determines the Extent of Long-Term Neuropathology and Microgliosis After a Diffuse Brain Injury in Male Rats. Front Neurol 2021; 12:722526. [PMID: 34566867 PMCID: PMC8455817 DOI: 10.3389/fneur.2021.722526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) can occur at any age, from youth to the elderly, and its contribution to age-related neuropathology remains unknown. Few studies have investigated the relationship between age-at-injury and pathophysiology at a discrete biological age. In this study, we report the immunohistochemical analysis of naïve rat brains compared to those subjected to diffuse TBI by midline fluid percussion injury (mFPI) at post-natal day (PND) 17, PND35, 2-, 4-, or 6-months of age. All brains were collected when rats were 10-months of age (n = 6–7/group). Generalized linear mixed models were fitted to analyze binomial proportion and count data with R Studio. Amyloid precursor protein (APP) and neurofilament (SMI34, SMI32) neuronal pathology were counted in the corpus callosum (CC) and primary sensory barrel field (S1BF). Phosphorylated TAR DNA-binding protein 43 (pTDP-43) neuropathology was counted in the S1BF and hippocampus. There was a significantly greater extent of APP and SMI34 axonal pathology and pTDP-43 neuropathology following a TBI compared with naïves regardless of brain region or age-at-injury. However, age-at-injury did determine the extent of dendritic neurofilament (SMI32) pathology in the CC and S1BF where all brain-injured rats exhibited a greater extent of pathology compared with naïve. No significant differences were detected in the extent of astrocyte activation between brain-injured and naïve rats. Microglia counts were conducted in the S1BF, hippocampus, ventral posteromedial (VPM) nucleus, zona incerta, and posterior hypothalamic nucleus. There was a significantly greater proportion of deramified microglia, regardless of whether the TBI was recent or remote, but this only occurred in the S1BF and hippocampus. The proportion of microglia with colocalized CD68 and TREM2 in the S1BF was greater in all brain-injured rats compared with naïve, regardless of whether the TBI was recent or remote. Only rats with recent TBI exhibited a greater proportion of CD68-positive microglia compared with naive in the hippocampus and posterior hypothalamic nucleus. Whilst, only rats with a remote brain-injury displayed a greater proportion of microglia colocalized with TREM2 in the hippocampus. Thus, chronic alterations in neuronal and microglial characteristics are evident in the injured brain despite the recency of a diffuse brain injury.
Collapse
Affiliation(s)
- Yasmine V Doust
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rachel K Rowe
- Department of Integrative Physiology at University of Colorado, Boulder, CO, United States.,BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - P David Adelson
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.,BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| |
Collapse
|
8
|
Zamani A, Ryan NP, Wright DK, Caeyenberghs K, Semple BD. The Impact of Traumatic Injury to the Immature Human Brain: A Scoping Review with Insights from Advanced Structural Neuroimaging. J Neurotrauma 2021; 37:724-738. [PMID: 32037951 DOI: 10.1089/neu.2019.6895] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) during critical periods of early-life brain development can affect the normal formation of brain networks responsible for a range of complex social behaviors. Because of the protracted nature of brain and behavioral development, deficits in cognitive and socioaffective behaviors may not become evident until late adolescence and early adulthood, when such skills are expected to reach maturity. In addition, multiple pre- and post-injury factors can interact with the effects of early brain insult to influence long-term outcomes. In recent years, with advancements in magnetic-resonance-based neuroimaging techniques and analysis, studies of the pediatric population have revealed a link between neurobehavioral deficits, such as social dysfunction, with white matter damage. In this review, in which we focus on contributions from Australian researchers to the field, we have highlighted pioneering longitudinal studies in pediatric TBI, in relation to social deficits specifically. We also discuss the use of advanced neuroimaging and novel behavioral assays in animal models of TBI in the immature brain. Together, this research aims to understand the relationship between injury consequences and ongoing brain development after pediatric TBI, which promises to improve prediction of the behavioral deficits that emerge in the years subsequent to early-life injury.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia.,Brain & Mind Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Fletcher JL, Dill LK, Wood RJ, Wang S, Robertson K, Murray SS, Zamani A, Semple BD. Acute treatment with TrkB agonist LM22A-4 confers neuroprotection and preserves myelin integrity in a mouse model of pediatric traumatic brain injury. Exp Neurol 2021; 339:113652. [PMID: 33609501 DOI: 10.1016/j.expneurol.2021.113652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Young children have a high risk of sustaining a traumatic brain injury (TBI), which can have debilitating life-long consequences. Importantly, the young brain shows particular vulnerability to injury, likely attributed to ongoing maturation of the myelinating nervous system at the time of insult. Here, we examined the effect of acute treatment with the partial tropomyosin receptor kinase B (TrkB) agonist, LM22A-4, on pathological and neurobehavioral outcomes after pediatric TBI, with the hypothesis that targeting TrkB would minimize tissue damage and support functional recovery. We focused on myelinated tracts-the corpus callosum and external capsules-based on recent evidence that TrkB activation potentiates oligodendrocyte remyelination. Male mice at postnatal day 21 received an experimental TBI or sham surgery. Acutely post-injury, extensive cell death, a robust glial response and disruption of compact myelin were evident in the injured brain. TBI or sham mice then received intranasal saline vehicle or LM22A-4 for 14 days. Behavior testing was performed from 4 weeks post-injury, and brains were collected at 5 weeks for histology. TBI mice showed hyperactivity, reduced anxiety-like behavior, and social memory impairments. LM22A-4 ameliorated the abnormal anxiolytic phenotype but had no effect on social memory deficits. Use of spectral confocal reflectance microscopy detected persistent myelin fragmentation in the external capsule of TBI mice at 5 weeks post-injury, which was accompanied by regionally distinct deficits in oligodendrocyte progenitor cells and post-mitotic oligodendrocytes, as well as chronic reactive gliosis and atrophy of the corpus callosum and injured external capsule. LM22A-4 treatment ameliorated myelin deficits in the perilesional external capsule, as well as tissue volume loss and the extent of reactive gliosis. However, there was no effect of this TrkB agonist on oligodendroglial populations detected at 5 weeks post-injury. Collectively, our results demonstrate that targeting TrkB immediately after TBI during early life confers neuroprotection and preserves myelin integrity, and this was associated with some improved neurobehavioral outcomes as the pediatric injured brain matures.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhiannon J Wood
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Sharon Wang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kate Robertson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Hanscom M, Loane DJ, Aubretch T, Leser J, Molesworth K, Hedgekar N, Ritzel RM, Abulwerdi G, Shea-Donohue T, Faden AI. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. J Neuroinflammation 2021; 18:24. [PMID: 33461596 PMCID: PMC7814749 DOI: 10.1186/s12974-020-02067-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Disruptions of brain-gut axis have been implicated in the progression of a variety of gastrointestinal (GI) disorders and central nervous system (CNS) diseases and injuries, including traumatic brain injury (TBI). TBI is a chronic disease process characterized by persistent secondary injury processes which can be exacerbated by subsequent challenges. Enteric pathogen infection during chronic TBI worsened cortical lesion volume; however, the pathophysiological mechanisms underlying the damaging effects of enteric challenge during chronic TBI remain unknown. This preclinical study examined the effect of intestinal inflammation during chronic TBI on associated neurobehavioral and neuropathological outcomes, systemic inflammation, and dysautonomia. METHODS Dextran sodium sulfate (DSS) was administered to adult male C57BL/6NCrl mice 28 days following craniotomy (Sham) or TBI for 7 days to induce intestinal inflammation, followed by a return to normal drinking water for an additional 7 to 28 days for recovery; uninjured animals (Naïve) served as an additional control group. Behavioral testing was carried out prior to, during, and following DSS administration to assess changes in motor and cognitive function, social behavior, and mood. Electrocardiography was performed to examine autonomic balance. Brains were collected for histological and molecular analyses of injury lesion, neurodegeneration, and neuroinflammation. Blood, colons, spleens, mesenteric lymph nodes (mLNs), and thymus were collected for morphometric analyses and/or immune characterization by flow cytometry. RESULTS Intestinal inflammation 28 days after craniotomy or TBI persistently induced, or exacerbated, respectively, deficits in fine motor coordination, cognition, social behavior, and anxiety-like behavior. Behavioral changes were associated with an induction, or exacerbation, of hippocampal neuronal cell loss and microglial activation in Sham and TBI mice administered DSS, respectively. Acute DSS administration resulted in a sustained systemic immune response with increases in myeloid cells in blood and spleen, as well as myeloid cells and lymphocytes in mesenteric lymph nodes. Dysautonomia was also induced in Sham and TBI mice administered DSS, with increased sympathetic tone beginning during DSS administration and persisting through the first recovery week. CONCLUSION Intestinal inflammation during chronic experimental TBI causes a sustained systemic immune response and altered autonomic balance that are associated with microglial activation, increased neurodegeneration, and persistent neurological deficits.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA.
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Taryn Aubretch
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Jenna Leser
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Kara Molesworth
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Nivedita Hedgekar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Terez Shea-Donohue
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| |
Collapse
|
11
|
Eyolfson E, Carr T, Khan A, Wright DK, Mychasiuk R, Lohman AW. Repetitive Mild Traumatic Brain Injuries in Mice during Adolescence Cause Sexually Dimorphic Behavioral Deficits and Neuroinflammatory Dynamics. J Neurotrauma 2020; 37:2718-2732. [DOI: 10.1089/neu.2020.7195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
| | - Thomas Carr
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Asher Khan
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alexander W. Lohman
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp Neurol 2019; 320:112979. [DOI: 10.1016/j.expneurol.2019.112979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
|
14
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
15
|
von Leden RE, Parker KN, Bates AA, Noble-Haeusslein LJ, Donovan MH. The emerging role of neutrophils as modifiers of recovery after traumatic injury to the developing brain. Exp Neurol 2019; 317:144-154. [PMID: 30876905 DOI: 10.1016/j.expneurol.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
The innate immune response plays a critical role in traumatic brain injury (TBI), contributing to ongoing pathogenesis and worsening long-term outcomes. Here we focus on neutrophils, one of the "first responders" to TBI. These leukocytes are recruited to the injured brain where they release a host of toxic molecules including free radicals, proteases, and pro-inflammatory cytokines, all of which promote secondary tissue damage. There is mounting evidence that the developing brain is more vulnerable to injury that the adult brain. This vulnerability to greater damage from TBI is, in part, attributed to relatively low antioxidant reserves coupled with an early robust immune response. The latter is reflected in enhanced sensitivity to cytokines and a prolonged recruitment of neutrophils into both cortical and subcortical regions. This review considers the contribution of neutrophils to early secondary pathogenesis in the injured developing brain and raises the distinct possibility that these leukocytes, which exhibit phenotypic plasticity, may also be poised to support wound healing. We provide a basic review of the development, life cycle, and granular contents of neutrophils and evaluate their potential as therapeutic targets for early neuroprotection and functional recovery after injury at early age. While neutrophils have been broadly studied in neurotrauma, we are only beginning to appreciate their diverse roles in the developing brain and the extent to which their acute manipulation may result in enduring neurological recovery when TBI is superimposed upon brain development.
Collapse
Affiliation(s)
- Ramona E von Leden
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| | - Kaila N Parker
- Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA.
| | - Adrian A Bates
- Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA; Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Michael H Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| |
Collapse
|
16
|
Zamani A, Mychasiuk R, Semple BD. Determinants of social behavior deficits and recovery after pediatric traumatic brain injury. Exp Neurol 2019; 314:34-45. [PMID: 30653969 DOI: 10.1016/j.expneurol.2019.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/12/2019] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) during early childhood is associated with a particularly high risk of developing social behavior impairments, including deficits in social cognition that manifest as reduced social interactions, with profound consequences for the individuals' quality of life. A number of pre-injury, post-injury, and injury-related factors have been identified or hypothesized to determine the extent of social behavior problems after childhood TBI. These include variables associated with the individual themselves (e.g. age, genetics, the injury severity, and extent of white matter damage), proximal environmental factors (e.g. family functioning, parental mental health), and more distal environmental factors (e.g. socioeconomic status, access to resources). In this review, we synthesize the available evidence demonstrating which of these determinants influence risk versus resilience to social behavior deficits after pediatric TBI, drawing upon the available clinical and preclinical literature. Injury-related pathology in neuroanatomical regions associated with social cognition and behaviors will also be described, with a focus on findings from magnetic resonance imaging and diffusion tensor imaging. Finally, study limitations and suggested future directions are highlighted. In summary, while no single variable can alone accurately predict the manifestation of social behavior problems after TBI during early childhood, an increased understanding of how both injury and environmental factors can influence social outcomes provides a useful framework for the development of more effective rehabilitation strategies aiming to optimize recovery for young brain-injured patients.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Prahran, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 2018; 159:107420. [PMID: 30445100 DOI: 10.1016/j.neuropharm.2018.11.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Rodents emit ultrasonic vocalizations (USVs) to communicate the presence of positive or negative emotional states and to coordinate social interactions. On this basis, USVs are increasingly being used as a behavioral readout in rodent studies of affect, motivation and social behavior. Notably, several investigations have demonstrated that rodents emit USVs when tested in experimental paradigms that are used in preclinical studies of psychiatric and neurological diseases. Moreover, it has been shown that calling behavior may be influenced by genetic and/or environmental factors (i.e., stress), early rearing conditions that have been implicated in brain disease, as well as psychoactive drugs. Hence, measuring USV emissions has emerged as a useful tool in studying the mechanisms that underlie the emotional disturbances featuring certain brain diseases, as well as in the development of suited pharmacological therapies. This review provides an overview of the behavioral significance of USV emissions and describes the contexts that promote calling behavior in rats and mice. Moreover, the review summarizes the current evidence concerning the use of USVs as a marker of affect in rat and mouse models of sociability, psychiatric diseases and neurological diseases, and discusses the strengths and current limitations of using USVs as a behavioral readout in rodent studies of emotional behavior. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Sylvie Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|
18
|
Bajwa NM, Lee JB, Halavi S, Hartman RE, Obenaus A. Repeated isoflurane in adult male mice leads to acute and persistent motor decrements with long-term modifications in corpus callosum microstructural integrity. J Neurosci Res 2018; 97:332-345. [DOI: 10.1002/jnr.24343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Nikita M. Bajwa
- Musculoskeletal Disease Center; VA Loma Linda Healthcare System; Loma Linda California
| | - Jeong B. Lee
- Department of Basic Sciences, School of Medicine; Loma Linda University; Loma Linda California
| | - Shina Halavi
- Department of Psychology, School of Behavioral Health; Loma Linda University; Loma Linda California
| | - Richard E. Hartman
- Department of Psychology, School of Behavioral Health; Loma Linda University; Loma Linda California
| | - Andre Obenaus
- Department of Basic Sciences, School of Medicine; Loma Linda University; Loma Linda California
- Department of Pediatrics, School of Medicine; University of California; Irvine California
| |
Collapse
|
19
|
Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis 2018; 123:27-41. [PMID: 30059725 DOI: 10.1016/j.nbd.2018.07.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Akram Zamani
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia.
| | - Genevieve Rayner
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre (Austin Campus), Heidelberg, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Comprehensive Epilepsy Program, Alfred Health, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
20
|
Zhao S, Wang X, Gao X, Chen J. Delayed and progressive damages to juvenile mice after moderate traumatic brain injury. Sci Rep 2018; 8:7339. [PMID: 29743575 PMCID: PMC5943589 DOI: 10.1038/s41598-018-25475-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Symptoms are commonly more severe in pediatric traumatic brain injury (TBI) patients than in young adult TBI patients. To understand the mechanism, juvenile mice received a controlled cortical impact (CCI) injury at moderate level. Tissue lesion and cell death were measured and compared to our previous reports on brain injury in the young adult mice that received same level of impact using same injury device. Tissue lesion and cell death in the cortex was much less in the juvenile mouse brain in the first few hours after injury. However, once the injury occurred, it developed more rapidly, lasted much longer, and eventually led to exaggerated cell death and a 32.7% larger tissue lesion cavity in the cortex of juvenile mouse brain than of young adult mouse brain. Moreover, we found significant cell death in the thalamus of juvenile brains at 72 h, which was not commonly seen in the young adult mice. In summary, cell death in juvenile mice was delayed, lasted longer, and finally resulted in more severe brain injury than in the young adult mice. The results suggest that pediatric TBI patients may have a longer therapeutic window, but they also need longer intensive clinical care after injury.
Collapse
Affiliation(s)
- Shu Zhao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States.
| |
Collapse
|
21
|
Hylin MJ, Holden RC, Smith AC, Logsdon AF, Qaiser R, Lucke-Wold BP. Juvenile Traumatic Brain Injury Results in Cognitive Deficits Associated with Impaired Endoplasmic Reticulum Stress and Early Tauopathy. Dev Neurosci 2018; 40:175-188. [PMID: 29788004 PMCID: PMC6376969 DOI: 10.1159/000488343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 03/12/2018] [Indexed: 02/05/2023] Open
Abstract
The leading cause of death in the juvenile population is trauma, and in particular neurotrauma. The juvenile brain response to neurotrauma is not completely understood. Endoplasmic reticulum (ER) stress has been shown to contribute to injury expansion and behavioral deficits in adult rodents and furthermore has been seen in adult postmortem human brains diagnosed with chronic traumatic encephalopathy. Whether endoplasmic reticulum stress is increased in juveniles with traumatic brain injury (TBI) is poorly delineated. We investigated this important topic using a juvenile rat controlled cortical impact (CCI) model. We proposed that ER stress would be significantly increased in juvenile rats following TBI and that this would correlate with behavioral deficits using a juvenile rat model. A juvenile rat (postnatal day 28) CCI model was used. Binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) were measured at 4 h in the ipsilateral pericontusion cortex. Hypoxia-inducible factor (HIF)-1α was measured at 48 h and tau kinase measured at 1 week and 30 days. At 4 h following injury, BiP and CHOP (markers of ER stress) were significantly elevated in rats exposed to TBI. We also found that HIF-1α was significantly upregulated 48 h following TBI showing delayed hypoxia. The early ER stress activation was additionally asso-ciated with the activation of a known tau kinase, glycogen synthase kinase-3β (GSK-3β), by 1 week. Tau oligomers measured by R23 were significantly increased by 30 days following TBI. The biochemical changes following TBI were associated with increased impulsive-like or anti-anxiety behavior measured with the elevated plus maze, deficits in short-term memory measured with novel object recognition, and deficits in spatial memory measured with the Morris water maze in juvenile rats exposed to TBI. These results show that ER stress was increased early in juvenile rats exposed to TBI, that these rats developed tau oligomers over the course of 30 days, and that they had significant short-term and spatial memory deficits following injury.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Ryan C. Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Aidan C. Smith
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Aric F. Logsdon
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Rabia Qaiser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
22
|
Ziebell JM, Rowe RK, Muccigrosso MM, Reddaway JT, Adelson PD, Godbout JP, Lifshitz J. Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming? Brain Behav Immun 2017; 59:1-7. [PMID: 26975888 DOI: 10.1016/j.bbi.2016.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/01/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health.
Collapse
Affiliation(s)
- Jenna M Ziebell
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Neuroscience Graduate Program, Arizona State University, Tempe, AZ, USA
| | | | - Jack T Reddaway
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; University of Bath, Department of Biology and Biochemistry, Bath, United Kingdom
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; University of Bath, Department of Biology and Biochemistry, Bath, United Kingdom
| | - Jonathan P Godbout
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Neuroscience Graduate Program, Arizona State University, Tempe, AZ, USA; VA Healthcare System, Phoenix, AZ, USA
| |
Collapse
|
23
|
Sex-dependent changes in neuronal morphology and psychosocial behaviors after pediatric brain injury. Behav Brain Res 2016; 319:48-62. [PMID: 27829127 DOI: 10.1016/j.bbr.2016.10.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Chronic social behavior problems after pediatric traumatic brain injury (TBI) significantly contribute to poor quality of life for survivors. Using a well-characterized mouse model of early childhood TBI, we have previously demonstrated that young brain-injured mice develop social deficits by adulthood. As biological sex may influence both normal and aberrant social development, we here evaluated potential sex differences in post-TBI psychosocial deficits by comparing the behavior of male and female mice at adulthood (8 weeks post-injury). Secondly, we hypothesized that pediatric TBI would influence neuronal morphology identified by Golgi-Cox staining in the hippocampus and prefrontal cortex, regions involved in social cognition and behavior, before the onset of social problems (3 weeks post-injury). Morphological analysis of pyramidal neurons in the ipsilateral prefrontal cortex and granule cells of the hippocampal dentate gyrus revealed a reduction in dendritic complexity after pediatric TBI. This was most apparent in TBI males, whereas neurons from females were less affected. At adulthood, consistent with previous studies, TBI males showed deficits in sociability and social recognition. TBI females also showed a reduction in sociability, but intact social recognition and increased sociosexual avoidance. Together, these findings indicate that sex is a determinant of regional neuroplasticity and social outcomes after pediatric TBI. Reduced neuronal complexity in the prefrontal cortex and hippocampus, several weeks after injury in male mice, appears to precede the subsequent emergence of social deficits. Sex-specific alterations in the social brain network are thus implicated as an underlying mechanism of social dysfunction after pediatric TBI.
Collapse
|
24
|
Robinson S, Winer JL, Berkner J, Chan LAS, Denson JL, Maxwell JR, Yang Y, Sillerud LO, Tasker RC, Meehan WP, Mannix R, Jantzie LL. Imaging and serum biomarkers reflecting the functional efficacy of extended erythropoietin treatment in rats following infantile traumatic brain injury. J Neurosurg Pediatr 2016; 17:739-55. [PMID: 26894518 PMCID: PMC5369240 DOI: 10.3171/2015.10.peds15554] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a leading cause of death and severe morbidity for otherwise healthy full-term infants around the world. Currently, the primary treatment for infant TBI is supportive, as no targeted therapies exist to actively promote recovery. The developing infant brain, in particular, has a unique response to injury and the potential for repair, both of which vary with maturation. Targeted interventions and objective measures of therapeutic efficacy are needed in this special population. The authors hypothesized that MRI and serum biomarkers can be used to quantify outcomes following infantile TBI in a preclinical rat model and that the potential efficacy of the neuro-reparative agent erythropoietin (EPO) in promoting recovery can be tested using these biomarkers as surrogates for functional outcomes. METHODS With institutional approval, a controlled cortical impact (CCI) was delivered to postnatal Day (P)12 rats of both sexes (76 rats). On postinjury Day (PID)1, the 49 CCI rats designated for chronic studies were randomized to EPO (3000 U/kg/dose, CCI-EPO, 24 rats) or vehicle (CCI-veh, 25 rats) administered intraperitoneally on PID1-4, 6, and 8. Acute injury (PID3) was evaluated with an immunoassay of injured cortex and serum, and chronic injury (PID13-28) was evaluated with digitized gait analyses, MRI, and serum immunoassay. The CCI-veh and CCI-EPO rats were compared with shams (49 rats) primarily using 2-way ANOVA with Bonferroni post hoc correction. RESULTS Following CCI, there was 4.8% mortality and 55% of injured rats exhibited convulsions. Of the injured rats designated for chronic analyses, 8.1% developed leptomeningeal cyst-like lesions verified with MRI and were excluded from further study. On PID3, Western blot showed that EPO receptor expression was increased in the injured cortex (p = 0.008). These Western blots also showed elevated ipsilateral cortex calpain degradation products for αII-spectrin (αII-SDPs; p < 0.001), potassium chloride cotransporter 2 (KCC2-DPs; p = 0.037), and glial fibrillary acidic protein (GFAP-DPs; p = 0.002), as well as serum GFAP (serum GFAP-DPs; p = 0.001). In injured rats multiplex electrochemiluminescence analyses on PID3 revealed elevated serum tumor necrosis factor alpha (TNFα p = 0.01) and chemokine (CXC) ligand 1 (CXCL1). Chronically, that is, in PID13-16 CCI-veh rats, as compared with sham rats, gait deficits were demonstrated (p = 0.033) but then were reversed (p = 0.022) with EPO treatment. Diffusion tensor MRI of the ipsilateral and contralateral cortex and white matter in PID16-23 CCI-veh rats showed widespread injury and significant abnormalities of functional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD); MD, AD, and RD improved after EPO treatment. Chronically, P13-P28 CCI-veh rats also had elevated serum CXCL1 levels, which normalized in CCI-EPO rats. CONCLUSIONS Efficient translation of emerging neuro-reparative interventions dictates the use of age-appropriate preclinical models with human clinical trial-compatible biomarkers. In the present study, the authors showed that CCI produced chronic gait deficits in P12 rats that resolved with EPO treatment and that chronic imaging and serum biomarkers correlated with this improvement.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Biomarkers/blood
- Brain Injuries, Traumatic/blood
- Brain Injuries, Traumatic/complications
- Brain Injuries, Traumatic/diagnostic imaging
- Brain Injuries, Traumatic/drug therapy
- Calpain/metabolism
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cytokines/blood
- Diffusion Magnetic Resonance Imaging
- Disease Models, Animal
- Epoetin Alfa/metabolism
- Erythropoietin/therapeutic use
- Female
- Gait Disorders, Neurologic/drug therapy
- Gait Disorders, Neurologic/etiology
- Gene Expression Regulation, Developmental/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Image Processing, Computer-Assisted
- Male
- Rats
- Receptors, Erythropoietin/metabolism
- Statistics, Nonparametric
- Symporters
- Time Factors
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Shenandoah Robinson
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- F. M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse L. Winer
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Justin Berkner
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Emergency Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lindsay A. S. Chan
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse L. Denson
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Yirong Yang
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Laurel O. Sillerud
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Robert C. Tasker
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - William P. Meehan
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Sports Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rebekah Mannix
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Emergency Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lauren L. Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
25
|
Ryan NP, Catroppa C, Godfrey C, Noble-Haeusslein LJ, Shultz SR, O'Brien TJ, Anderson V, Semple BD. Social dysfunction after pediatric traumatic brain injury: A translational perspective. Neurosci Biobehav Rev 2016; 64:196-214. [PMID: 26949224 PMCID: PMC5627971 DOI: 10.1016/j.neubiorev.2016.02.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood and adolescence. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI.
Collapse
Affiliation(s)
- Nicholas P Ryan
- Australian Centre for Child Neuropsychological Studies, Murdoch Childrens Research Institute, Parkville, VIC, Australia; Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Cathy Catroppa
- Australian Centre for Child Neuropsychological Studies, Murdoch Childrens Research Institute, Parkville, VIC, Australia; Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Psychology, Royal Children's Hospital, Parkville, VIC, Australia.
| | - Celia Godfrey
- Australian Centre for Child Neuropsychological Studies, Murdoch Childrens Research Institute, Parkville, VIC, Australia.
| | - Linda J Noble-Haeusslein
- Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA.
| | - Sandy R Shultz
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| | - Vicki Anderson
- Australian Centre for Child Neuropsychological Studies, Murdoch Childrens Research Institute, Parkville, VIC, Australia; Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Psychology, Royal Children's Hospital, Parkville, VIC, Australia.
| | - Bridgette D Semple
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
26
|
Schober ME, Requena DF, Abdullah OM, Casper TC, Beachy J, Malleske D, Pauly JR. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury. J Neurotrauma 2016; 33:390-402. [PMID: 26247583 PMCID: PMC4761828 DOI: 10.1089/neu.2015.3945] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.
Collapse
Affiliation(s)
- Michelle E Schober
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Daniela F Requena
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Osama M Abdullah
- 2 Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - T Charles Casper
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Joanna Beachy
- 3 Department of Pediatrics, Division of Neonatology, University of Utah , Salt Lake City, Utah
| | - Daniel Malleske
- 3 Department of Pediatrics, Division of Neonatology, University of Utah , Salt Lake City, Utah
| | - James R Pauly
- 4 College of Pharmacy and Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
27
|
Mild Concussion, but Not Moderate Traumatic Brain Injury, Is Associated with Long-Term Depression-Like Phenotype in Mice. PLoS One 2016; 11:e0146886. [PMID: 26796696 PMCID: PMC4721654 DOI: 10.1371/journal.pone.0146886] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI), a repeated mild CHI (rmCHI) consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI). Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi). CCI animals showed significant motor and sensory deficits in the early (1-7 dpi) and long-term (90 dpi) stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI.
Collapse
|
28
|
Abstract
Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jaclyn Carlson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Physical Therapy and Rehabilitation Science, University of California School of Medicine, 513 Parnassus Ave., HSE 814, San Francisco, CA, 94143, USA.
| |
Collapse
|
29
|
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015; 32:1861-82. [PMID: 25490251 PMCID: PMC4677114 DOI: 10.1089/neu.2014.3680] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.
Collapse
Affiliation(s)
- Nicole D. Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony DeSana
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Seton Hill University, Greensburg, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse. PLoS One 2015; 10:e0143386. [PMID: 26588471 PMCID: PMC4654502 DOI: 10.1371/journal.pone.0143386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
The gelatinases, matrix metalloproteinases (MMP)-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs) is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21), approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury.
Collapse
|
31
|
Bondi CO, Semple BD, Noble-Haeusslein LJ, Osier ND, Carlson SW, Dixon CE, Giza CC, Kline AE. Found in translation: Understanding the biology and behavior of experimental traumatic brain injury. Neurosci Biobehav Rev 2015; 58:123-46. [PMID: 25496906 PMCID: PMC4465064 DOI: 10.1016/j.neubiorev.2014.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/26/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022]
Abstract
The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled "Traumatic brain injury: laboratory and clinical perspectives," presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein, we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided.
Collapse
Affiliation(s)
- Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bridgette D Semple
- Neurological Surgery and the Graduate Program in Physical Medicine & Rehabilitation Science, University of California, San Francisco, San Francisco, CA, United States; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Linda J Noble-Haeusslein
- Neurological Surgery and the Graduate Program in Physical Medicine & Rehabilitation Science, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shaun W Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Christopher C Giza
- Pediatric Neurology and Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
32
|
Tong M, Yu R, Deochand C, de la Monte SM. Differential Contributions of Alcohol and the Nicotine-Derived Nitrosamine Ketone (NNK) to Insulin and Insulin-Like Growth Factor Resistance in the Adolescent Rat Brain. Alcohol Alcohol 2015; 50:670-9. [PMID: 26373814 DOI: 10.1093/alcalc/agv101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Since epidemiologic studies suggest that tobacco smoke toxins, e.g. the nicotine-derived nitrosamine ketone (NNK) tobacco-specific nitrosamine, can be a co-factor in alcohol-related brain disease (ARBD), we examined the independent and additive effects of alcohol and NNK exposures on spatial learning/memory, and brain insulin/IGF signaling, neuronal function and oxidative stress. METHODS Adolescent Long Evans rats were fed liquid diets containing 0 or 26% caloric ethanol for 8 weeks. During weeks 3-8, rats were treated with i.p. NNK (2 mg/kg, 3×/week) or saline. In weeks 7-8, ethanol groups were binge-administered ethanol (2 g/kg; 3×/week). In week 8, at 12 weeks of age, rats were subjected to Morris Water Maze tests. Temporal lobes were used to assess molecular indices of insulin/IGF resistance, oxidative stress and neuronal function. RESULTS Ethanol and NNK impaired spatial learning, and NNK ± ethanol impaired memory. Linear trend analysis demonstrated worsening performance from control to ethanol, to NNK, and then ethanol + NNK. Ethanol ± NNK, caused brain atrophy, inhibited insulin signaling through the insulin receptor and Akt, activated GSK-3β, increased protein carbonyl and 3-nitrotyrosine, and reduced acetylcholinesterase. NNK increased NTyr. Ethanol + NNK had synergistic stimulatory effects on 8-iso-PGF-2α, inhibitory effects on p-p70S6K, tau and p-tau and trend effects on insulin-like growth factor type 1 (IGF-1) receptor expression and phosphorylation. CONCLUSIONS Ethanol, NNK and combined ethanol + NNK exposures that begin in adolescence impair spatial learning and memory in young adults. The ethanol and/or NNK exposures differentially impair insulin/IGF signaling through neuronal growth, survival and plasticity pathways, increase cellular injury and oxidative stress and reduce expression of critical proteins needed for neuronal function.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Division of Gastroenterology, and the Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rosa Yu
- Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| | - Chetram Deochand
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Suzanne M de la Monte
- Department of Medicine, Division of Gastroenterology, and the Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|