1
|
Wang W, Li X, Fan S, He Y, Wei M, Wang J, Yin Y, Liu Y. Combined genomic and transcriptomic analysis reveals the contribution of tandem duplication genes to low-temperature adaptation in perennial ryegrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1216048. [PMID: 37502702 PMCID: PMC10368995 DOI: 10.3389/fpls.2023.1216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is an agronomically important cool-season grass species that is widely used as forage for ruminant animal production and cultivated in temperate regions for the establishment of lawns. However, the underlying genetic mechanism of the response of L. perenne to low temperature is still unclear. In the present study, we performed a comprehensive study and identified 3,770 tandem duplication genes (TDGs) in L. perenne, and evolutionary analysis revealed that L. perenne might have undergone a duplication event approximately 7.69 Mya. GO and KEGG pathway functional analyses revealed that these TDGs were mainly enriched in photosynthesis, hormone-mediated signaling pathways and responses to various stresses, suggesting that TDGs contribute to the environmental adaptability of L. perenne. In addition, the expression profile analysis revealed that the expression levels of TDGs were highly conserved and significantly lower than those of all genes in different tissues, while the frequency of differentially expressed genes (DEGs) from TDGs was much higher than that of DEGs from all genes in response to low-temperature stress. Finally, in-depth analysis of the important and expanded gene family indicated that the members of the ELIP subfamily could rapidly respond to low temperature and persistently maintain higher expression levels during all low temperature stress time points, suggesting that ELIPs most likely mediate low temperature responses and help to facilitate adaptation to low temperature in L. perenne. Our results provide evidence for the genetic underpinning of low-temperature adaptation and valuable resources for practical application and genetic improvement for stress resistance in L. perenne.
Collapse
Affiliation(s)
- Wei Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Xiaoning Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yang He
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Meng Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Jiayi Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| |
Collapse
|
2
|
Cui B, Liu C, Hu C, Liang S. Transcriptomic Sequencing Analysis on Key Genes and Pathways Regulating Cadmium (Cd) in Ryegrass (Lolium perenne L.) under Different Cadmium Concentrations. TOXICS 2022; 10:toxics10120734. [PMID: 36548567 PMCID: PMC9782025 DOI: 10.3390/toxics10120734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 05/27/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is an important forage grass and has the potential to be used in phytoremediation, while little information is available regarding the transcriptome profiling of ryegrass leaves in response to high levels of Cd. To investigate and uncover the physiological responses and gene expression characteristics of perennial ryegrass under Cd stress, a pot experiment was performed to study the transcriptomic profiles of ryegrass with Cd-spiked soils. Transcriptome sequencing and comparative analysis were performed on the Illumina RNA-Seq platform at different concentrations of Cd-treated (0, 50 and 500 mg·kg−1 soil) ryegrass leaves and differentially expressed genes (DEGs) were verified by RT-qPCR. The results show that high concentrations of Cd significantly inhibited the growth of ryegrass, while the lower concentrations (5 and 25 mg·kg−1) showed minor effects. The activity levels of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) increased in Cd-treated ryegrass leaves. We identified 1103 differentially expressed genes (DEGs) and profiled the molecular regulatory pathways of ryegrass leaves with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in response to Cd stress. Cd stress significantly increased the membrane part, the metabolic process, the cellular process and catalytic activity. The numbers of unigenes related to signal transduction mechanisms, post-translational modification, replication, recombination and repair significantly increased. KEGG function annotation and enrichment analysis were performed based on DEGs with different treatments, indicating that the MAPK signaling pathway, the mRNA surveillance pathway and RNA transport were regulated significantly. Taken together, this study explores the effect of Cd stress on the growth physiology and gene level of ryegrass, thus highlighting significance of preventing and controlling heavy metal pollution in the future.
Collapse
Affiliation(s)
- Bingjian Cui
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Chuncheng Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Chao Hu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
3
|
Nagy I, Veeckman E, Liu C, Bel MV, Vandepoele K, Jensen CS, Ruttink T, Asp T. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics 2022; 23:505. [PMID: 35831814 PMCID: PMC9281035 DOI: 10.1186/s12864-022-08697-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The availability of chromosome-scale genome assemblies is fundamentally important to advance genetics and breeding in crops, as well as for evolutionary and comparative genomics. The improvement of long-read sequencing technologies and the advent of optical mapping and chromosome conformation capture technologies in the last few years, significantly promoted the development of chromosome-scale genome assemblies of model plants and crop species. In grasses, chromosome-scale genome assemblies recently became available for cultivated and wild species of the Triticeae subfamily. Development of state-of-the-art genomic resources in species of the Poeae subfamily, which includes important crops like fescues and ryegrasses, is lagging behind the progress in the cereal species. RESULTS Here, we report a new chromosome-scale genome sequence assembly for perennial ryegrass, obtained by combining PacBio long-read sequencing, Illumina short-read polishing, BioNano optical mapping and Hi-C scaffolding. More than 90% of the total genome size of perennial ryegrass (approximately 2.55 Gb) is covered by seven pseudo-chromosomes that show high levels of collinearity to the orthologous chromosomes of Triticeae species. The transposon fraction of perennial ryegrass was found to be relatively low, approximately 35% of the total genome content, which is less than half of the genome repeat content of cultivated cereal species. We predicted 54,629 high-confidence gene models, 10,287 long non-coding RNAs and a total of 8,393 short non-coding RNAs in the perennial ryegrass genome. CONCLUSIONS The new reference genome sequence and annotation presented here are valuable resources for comparative genomic studies in grasses, as well as for breeding applications and will expedite the development of productive varieties in perennial ryegrass and related species.
Collapse
Affiliation(s)
- Istvan Nagy
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| | - Elisabeth Veeckman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- Present address: DLF Seeds A/S, Denmark, Højerupvej 31, Store Heddinge, DK-4660 Denmark
| | - Chang Liu
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Eberhard Karls Universität, Auf der Morgenstelle 32, Tübingen, 72076 Germany
- Present address: Institut für Biologie, Universität Hohenheim, Garbenstr. 30, Stuttgart, 70599 Germany
| | - Michiel Van Bel
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | - Klaas Vandepoele
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | | | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| |
Collapse
|
4
|
Carlsen FM, Johansen IE, Yang Z, Liu Y, Westberg IN, Kieu NP, Jørgensen B, Lenman M, Andreasson E, Nielsen KL, Blennow A, Petersen BL. Strategies for Efficient Gene Editing in Protoplasts of Solanum tuberosum Theme: Determining gRNA Efficiency Design by Utilizing Protoplast (Research). Front Genome Ed 2022; 3:795644. [PMID: 35128523 PMCID: PMC8811252 DOI: 10.3389/fgeed.2021.795644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Potato, Solanum tuberosum is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.3–2.8 higher SNP prevalence when compared to the heterozygous diploid RH genome sequence as expected for a tetraploid compared to a diploid. This complicates guide RNA (gRNA) and diagnostic PCR designs. At the same time, high editing efficiencies at the cell pool (protoplast) level are pivotal for achieving full allelic knock-out in tetraploids. Furthermore, high editing efficiencies reduce the downstream cumbersome and delicate ex-plant regeneration. Here, CRISPR/Cas ribonucleoprotein particles (RNPs) were delivered transiently to protoplasts by polyethylene glycol (PEG) mediated transformation. For each of GWD1 and the DMR6-1, 6–10 gRNAs were designed to target regions comprising the 5′ and the 3′ end of the two genes. Similar to other studies including several organisms, editing efficiency of the individual RNPs varied significantly, and some generated specific indel patterns. RNP’s targeting the 5′ end of GWD1 yielded significantly higher editing efficiency as compared to targeting the 3′ end. For DMR6-1, such an effect was not seen. Simultaneously targeting each of the two target regions with two RNPs (multiplexing) yielded a clear positive synergistic effect on the total editing when targeting the 3′ end of the GWD1 gene only. Multiplexing of the two genes, residing on different chromosomes, yielded no or a slightly negative effect on editing from the single or combined gRNA/RNPs. These initial findings may instigate much larger studies needed for facilitating and optimizing precision breeding in plants.
Collapse
Affiliation(s)
- Frida Meijer Carlsen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Ida Elisabeth Johansen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- Kartoffel Mel Centralen Amba, Brande, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Liu
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ida Nøhr Westberg
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Bent Larsen Petersen,
| |
Collapse
|
5
|
Cheng C, Wang J, Hou W, Malik K, Zhao C, Niu X, Liu Y, Huang R, Li C, Nan Z. Elucidating the Molecular Mechanisms by which Seed-Borne Endophytic Fungi, Epichloë gansuensis, Increases the Tolerance of Achnatherum inebrians to NaCl Stress. Int J Mol Sci 2021; 22:ijms222413191. [PMID: 34947985 PMCID: PMC8706252 DOI: 10.3390/ijms222413191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
Seed-borne endophyte Epichloë gansuensis enhance NaCl tolerance in Achnatherum inebrians and increase its biomass. However, the molecular mechanism by which E. gansuensis increases the tolerance of host grasses to NaCl stress is unclear. Hence, we firstly explored the full-length transcriptome information of A. inebrians by PacBio RS II. In this work, we obtained 738,588 full-length non-chimeric reads, 36,105 transcript sequences and 27,202 complete CDSs from A. inebrians. We identified 3558 transcription factors (TFs), 15,945 simple sequence repeats and 963 long non-coding RNAs of A. inebrians. The present results show that 2464 and 1817 genes were differentially expressed by E. gansuensis in the leaves of E+ and E− plants at 0 mM and 200 mM NaCl concentrations, respectively. In addition, NaCl stress significantly regulated 4919 DEGs and 502 DEGs in the leaves of E+ and E− plants, respectively. Transcripts associated with photosynthesis, plant hormone signal transduction, amino acids metabolism, flavonoid biosynthetic process and WRKY TFs were differentially expressed by E. gansuensis; importantly, E. gansuensis up-regulated biology processes (brassinosteroid biosynthesis, oxidation–reduction, cellular calcium ion homeostasis, carotene biosynthesis, positive regulation of proteasomal ubiquitin-dependent protein catabolism and proanthocyanidin biosynthesis) of host grass under NaCl stress, which indicated an increase in the ability of host grasses’ adaptation to NaCl stress. In conclusion, our study demonstrates the molecular mechanism for E. gansuensis to increase the tolerance to salt stress in the host, which provides a theoretical basis for the molecular breed to create salt-tolerant forage with endophytes.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (C.C.); (W.H.); (Y.L.); (R.H.); (C.L.); (Z.N.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (C.C.); (W.H.); (Y.L.); (R.H.); (C.L.); (Z.N.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
- Correspondence:
| | - Wenpeng Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (C.C.); (W.H.); (Y.L.); (R.H.); (C.L.); (Z.N.)
| | - Kamran Malik
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Chengzhou Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- Tibetan Medicine Research Center, College of Tibetan Medicine, Qinghai University, Xining 810016, China
| | - Xueli Niu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China;
| | - Yinglong Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (C.C.); (W.H.); (Y.L.); (R.H.); (C.L.); (Z.N.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Rong Huang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (C.C.); (W.H.); (Y.L.); (R.H.); (C.L.); (Z.N.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (C.C.); (W.H.); (Y.L.); (R.H.); (C.L.); (Z.N.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; (C.C.); (W.H.); (Y.L.); (R.H.); (C.L.); (Z.N.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
6
|
Illuminating the Plant Rhabdovirus Landscape through Metatranscriptomics Data. Viruses 2021; 13:v13071304. [PMID: 34372509 PMCID: PMC8310260 DOI: 10.3390/v13071304] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/06/2023] Open
Abstract
Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.
Collapse
|
7
|
Veeckman E, Van Glabeke S, Haegeman A, Muylle H, van Parijs FRD, Byrne SL, Asp T, Studer B, Rohde A, Roldán-Ruiz I, Vandepoele K, Ruttink T. Overcoming challenges in variant calling: exploring sequence diversity in candidate genes for plant development in perennial ryegrass (Lolium perenne). DNA Res 2019; 26:1-12. [PMID: 30325414 PMCID: PMC6379033 DOI: 10.1093/dnares/dsy033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Revealing DNA sequence variation within the Lolium perenne genepool is important for genetic analysis and development of breeding applications. We reviewed current literature on plant development to select candidate genes in pathways that control agronomic traits, and identified 503 orthologues in L. perenne. Using targeted resequencing, we constructed a comprehensive catalogue of genomic variation for a L. perenne germplasm collection of 736 genotypes derived from current cultivars, breeding material and wild accessions. To overcome challenges of variant calling in heterogeneous outbreeding species, we used two complementary strategies to explore sequence diversity. First, four variant calling pipelines were integrated with the VariantMetaCaller to reach maximal sensitivity. Additional multiplex amplicon sequencing was used to empirically estimate an appropriate precision threshold. Second, a de novo assembly strategy was used to reconstruct divergent alleles for each gene. The advantage of this approach was illustrated by discovery of 28 novel alleles of LpSDUF247, a polymorphic gene co-segregating with the S-locus of the grass self-incompatibility system. Our approach is applicable to other genetically diverse outbreeding species. The resulting collection of functionally annotated variants can be mined for variants causing phenotypic variation, either through genetic association studies, or by selecting carriers of rare defective alleles for physiological analyses.
Collapse
Affiliation(s)
- Elisabeth Veeckman
- ILVO, Plant Sciences Unit, B Melle, Belgium.,Bioinformatics Institute Ghent, Ghent University, B Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B Ghent, Belgium
| | | | | | | | | | | | - Torben Asp
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Center Flakkebjerg Aarhus University, DK Slagelse, Denmark
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, CH Zurich, Switzerland
| | | | - Isabel Roldán-Ruiz
- ILVO, Plant Sciences Unit, B Melle, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B Ghent, Belgium
| | - Klaas Vandepoele
- Bioinformatics Institute Ghent, Ghent University, B Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B Ghent, Belgium.,Center for Plant Systems Biology, VIB, B Ghent, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, B Melle, Belgium.,Bioinformatics Institute Ghent, Ghent University, B Ghent, Belgium
| |
Collapse
|
8
|
Pembleton LW, Inch C, Baillie RC, Drayton MC, Thakur P, Ogaji YO, Spangenberg GC, Forster JW, Daetwyler HD, Cogan NOI. Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1891-1902. [PMID: 29860624 PMCID: PMC6096624 DOI: 10.1007/s00122-018-3121-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/24/2018] [Indexed: 05/10/2023]
Abstract
Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.
Collapse
Affiliation(s)
- Luke W Pembleton
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Courtney Inch
- New Zealand Agriseeds, 2547 Old West Coast Road, Christchurch, 7671, New Zealand
| | - Rebecca C Baillie
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Michelle C Drayton
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Preeti Thakur
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Yvonne O Ogaji
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - German C Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - John W Forster
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Hans D Daetwyler
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Noel O I Cogan
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
9
|
Begheyn RF, Yates SA, Sykes T, Studer B. Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass ( Lolium perenne L.). G3 (BETHESDA, MD.) 2018; 8:1897-1908. [PMID: 29626084 PMCID: PMC5982819 DOI: 10.1534/g3.117.300550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/29/2018] [Indexed: 01/17/2023]
Abstract
Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass (Lolium perenne L.) germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391) segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene- dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL) were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.
Collapse
Affiliation(s)
- Rachel F Begheyn
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Steven A Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Timothy Sykes
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Fang L, Tong J, Dong Y, Xu D, Mao J, Zhou Y. De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis. PLoS One 2017; 12:e0186376. [PMID: 29059200 PMCID: PMC5653301 DOI: 10.1371/journal.pone.0186376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023] Open
Abstract
Rhododendron spp. is an important ornamental species that is widely cultivated for landscape worldwide. Heat stress is a major obstacle for its cultivation in south China. Previous studies on rhododendron principally focused on its physiological and biochemical processes, which are involved in a series of stress tolerance. However, molecular or genetic properties of rhododendron’s response to heat stress are still poorly understood. The phenotype and chlorophyll fluorescence kinetics parameters of four rhododendron cultivars were compared under normal or heat stress conditions, and a cultivar with highest heat tolerance, “Yanzhimi” (R. obtusum) was selected for transcriptome sequencing. A total of 325,429,240 high quality reads were obtained and assembled into 395,561 transcripts and 92,463 unigenes. Functional annotation showed that 38,724 unigenes had sequence similarity to known genes in at least one of the proteins or nucleotide databases used in this study. These 38,724 unigenes were categorized into 51 functional groups based on Gene Ontology classification and were blasted to 24 known cluster of orthologous groups. A total of 973 identified unigenes belonged to 57 transcription factor families, including the stress-related HSF, DREB, ZNF, and NAC genes. Photosynthesis was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes pathway, and the changed expression pattern was illustrated. The key pathways and signaling components that contribute to heat tolerance in rhododendron were revealed. These results provide a potentially valuable resource that can be used for heat-tolerance breeding.
Collapse
Affiliation(s)
- Linchuan Fang
- Institute of Fruit & Forest Tree, Wuhan Academy of Agricultural Science & Technology, Wuhan, Hubei, China
- * E-mail: (LCF); (YZ)
| | - Jun Tong
- Institute of Fruit & Forest Tree, Wuhan Academy of Agricultural Science & Technology, Wuhan, Hubei, China
| | - Yanfang Dong
- Institute of Fruit & Forest Tree, Wuhan Academy of Agricultural Science & Technology, Wuhan, Hubei, China
| | - Dongyun Xu
- Institute of Fruit & Forest Tree, Wuhan Academy of Agricultural Science & Technology, Wuhan, Hubei, China
| | - Jing Mao
- Institute of Fruit & Forest Tree, Wuhan Academy of Agricultural Science & Technology, Wuhan, Hubei, China
| | - Yuan Zhou
- Institute of Fruit & Forest Tree, Wuhan Academy of Agricultural Science & Technology, Wuhan, Hubei, China
- * E-mail: (LCF); (YZ)
| |
Collapse
|
11
|
Hosseinpour B, Sepahvand S, Kamali Aliabad K, Bakhtiarizadeh M, Imani A, Assareh R, Salami SA. Transcriptome profiling of fully open flowers in a frost-tolerant almond genotype in response to freezing stress. Mol Genet Genomics 2017; 293:151-163. [PMID: 28929226 DOI: 10.1007/s00438-017-1371-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/07/2017] [Indexed: 01/24/2023]
Abstract
Spring frost is a major limiting abiotic stress for the cultivation of almonds [Prunus dulcis (Mill.)] in Mediterranean areas or the Middle East. Spring frost, in particular, damages almond fully open flowers, resulting to significant reduction in yield. Little is known about the genetic factors expressed after frost stress in Prunus spp. as well as in almond fully open flowers. Here, we provide the molecular signature of pistils of fully open flowers from a frost-tolerant almond genotype. The level of frost tolerance in this genotype was determined for all three flowering stages and was confirmed by comparing it to two other cultivars using several physiological analyses. Afterwards, comprehensive expression profiling of genes expressed in fully open flowers was performed after being exposed to frost temperatures (during post-thaw period). Clean reads, 27,104,070 and 32,730,772, were obtained for non-frost-treated and frost-treated (FT) libraries, respectively. A total of 62.24 Mb was assembled, generating 50,896 unigenes and 66,906 transcripts. Therefore, 863 upregulated genes and 555 downregulated genes were identified in the FT library. Functional annotation showed that most of the upregulated genes were related to various biological processes involved in responding to abiotic stress. For the first time, a highly expressed cold-shock protein was identified in the reproductive organ of fruit trees. The expression of six genes was validated by RT-PCR. As the first comprehensive analysis of open flowers in a frost-tolerant almond genotype, this study represents a key step toward the molecular breeding of fruit tree species for frost tolerance.
Collapse
Affiliation(s)
- Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.
| | - Sadegh Sepahvand
- Department of Horticulture, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran
| | | | - MohammadReza Bakhtiarizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran.
| | - Ali Imani
- Horticultural Sciences Research Institute (HSRI), Karaj, Iran
| | - Reza Assareh
- Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
12
|
Shinozuka H, Cogan NOI, Spangenberg GC, Forster JW. Reference transcriptome assembly and annotation for perennial ryegrass. Genome 2017; 60:1086-1088. [PMID: 28841400 DOI: 10.1139/gen-2017-0077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-Seq methodology has been used to generate a comprehensive transcriptome sequence resource for perennial ryegrass, an important temperate pasture grass species. A total of 931 547 255 reads were obtained from libraries corresponding to 19 distinct tissue samples, including both vegetative and reproductive stages of development. Assembly of data generated a final filtered reference set of 48 713 contigs and scaffolds. The transcriptome resource will support whole genome sequence assembly, comparative genomics, implementation of genotyping-by-sequencing (GBS) methods based on transcript sampling, and identification of candidate genes for multiple biological functions.
Collapse
Affiliation(s)
- Hiroshi Shinozuka
- a Agriculture Victoria, AgriBio, the Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Noel O I Cogan
- a Agriculture Victoria, AgriBio, the Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia.,b School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - German C Spangenberg
- a Agriculture Victoria, AgriBio, the Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia.,b School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - John W Forster
- a Agriculture Victoria, AgriBio, the Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia.,b School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
13
|
Babineau M, Mahmood K, Mathiassen SK, Kudsk P, Kristensen M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genomics 2017; 18:128. [PMID: 28166737 PMCID: PMC5294808 DOI: 10.1186/s12864-017-3538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. RESULTS Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. CONCLUSIONS De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.
Collapse
Affiliation(s)
- Marielle Babineau
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Khalid Mahmood
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | | | - Per Kudsk
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Michael Kristensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| |
Collapse
|
14
|
Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM. Differential Gene Expression Analysis in Polygonum minus Leaf upon 24 h of Methyl Jasmonate Elicitation. FRONTIERS IN PLANT SCIENCE 2017; 8:109. [PMID: 28220135 PMCID: PMC5292430 DOI: 10.3389/fpls.2017.00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/19/2017] [Indexed: 05/06/2023]
Abstract
Polygonum minus is an herbal plant that grows in Southeast Asian countries and traditionally used as medicine. This plant produces diverse secondary metabolites such as phenolic compounds and their derivatives, which are known to have roles in plant abiotic and biotic stress responses. Methyl jasmonate (MeJA) is a plant signaling molecule that triggers transcriptional reprogramming in secondary metabolism and activation of defense responses against many biotic and abiotic stresses. However, the effect of MeJA elicitation on the genome-wide expression profile in the leaf tissue of P. minus has not been well-studied due to the limited genetic information. Hence, we performed Illumina paired-end RNA-seq for de novo reconstruction of P. minus leaf transcriptome to identify differentially expressed genes (DEGs) in response to MeJA elicitation. A total of 182,111 unique transcripts (UTs) were obtained by de novo assembly of 191.57 million paired-end clean reads using Trinity analysis pipeline. A total of 2374 UTs were identified to be significantly up-/down-regulated 24 h after MeJA treatment. These UTs comprising many genes related to plant secondary metabolite biosynthesis, defense and stress responses. To validate our sequencing results, we analyzed the expression of 21 selected DEGs by quantitative real-time PCR and found a good correlation between the two analyses. The single time-point analysis in this work not only provides a useful genomic resource for P. minus but also gives insights on molecular mechanisms of stress responses in P. minus.
Collapse
|
15
|
Evangelistella C, Valentini A, Ludovisi R, Firrincieli A, Fabbrini F, Scalabrin S, Cattonaro F, Morgante M, Mugnozza GS, Keurentjes JJB, Harfouche A. De novo assembly, functional annotation, and analysis of the giant reed ( Arundo donax L.) leaf transcriptome provide tools for the development of a biofuel feedstock. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:138. [PMID: 28572841 PMCID: PMC5450047 DOI: 10.1186/s13068-017-0828-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/23/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arundo donax has attracted renewed interest as a potential candidate energy crop for use in biomass-to-liquid fuel conversion processes and biorefineries. This is due to its high productivity, adaptability to marginal land conditions, and suitability for biofuel and biomaterial production. Despite its importance, the genomic resources currently available for supporting the improvement of this species are still limited. RESULTS We used RNA sequencing (RNA-Seq) to de novo assemble and characterize the A. donax leaf transcriptome. The sequencing generated 1249 million clean reads that were assembled using single-k-mer and multi-k-mer approaches into 62,596 unique sequences (unitranscripts) with an N50 of 1134 bp. TransDecoder and Trinotate software suites were used to obtain putative coding sequences and annotate them by mapping to UniProtKB/Swiss-Prot and UniRef90 databases, searching for known transcripts, proteins, protein domains, and signal peptides. Furthermore, the unitranscripts were annotated by mapping them to the NCBI non-redundant, GO and KEGG pathway databases using Blast2GO. The transcriptome was also characterized by BLAST searches to investigate homologous transcripts of key genes involved in important metabolic pathways, such as lignin, cellulose, purine, and thiamine biosynthesis and carbon fixation. Moreover, a set of homologous transcripts of key genes involved in stomatal development and of genes coding for stress-associated proteins (SAPs) were identified. Additionally, 8364 simple sequence repeat (SSR) markers were identified and surveyed. SSRs appeared more abundant in non-coding regions (63.18%) than in coding regions (36.82%). This SSR dataset represents the first marker catalogue of A. donax. 53 SSRs (PolySSRs) were then predicted to be polymorphic between ecotype-specific assemblies, suggesting genetic variability in the studied ecotypes. CONCLUSIONS This study provides the first publicly available leaf transcriptome for the A. donax bioenergy crop. The functional annotation and characterization of the transcriptome will be highly useful for providing insight into the molecular mechanisms underlying its extreme adaptability. The identification of homologous transcripts involved in key metabolic pathways offers a platform for directing future efforts in genetic improvement of this species. Finally, the identified SSRs will facilitate the harnessing of untapped genetic diversity. This transcriptome should be of value to ongoing functional genomics and genetic studies in this crop of paramount economic importance.
Collapse
Affiliation(s)
- Chiara Evangelistella
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Alessio Valentini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Riccardo Ludovisi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Francesco Fabbrini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
- Alasia Franco Vivai s.s., Strada Solerette, 5/A, 12038 Savigliano, Italy
| | - Simone Scalabrin
- IGA Technology Services, Via J. Linussio, 51-Z.I.U, 33100 Udine, Italy
| | | | - Michele Morgante
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
- Institute of Applied Genomics, Via J. Linussio, 51-Z.I.U, 33100 Udine, Italy
| | - Giuseppe Scarascia Mugnozza
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Joost J. B. Keurentjes
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
16
|
Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. THE NEW PHYTOLOGIST 2017; 213:324-337. [PMID: 27477008 DOI: 10.1111/nph.14103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 05/21/2023]
Abstract
Tall fescue (Lolium arundinaceum) is one of the primary forage and turf grasses in temperate regions of the world. A number of favourable characteristics of tall fescue are enhanced by its seed-transmissible fungal symbiont (endophyte) Epichloë coenophiala. Our approach was to assemble the tall fescue transcriptome, then identify differentially expressed genes (DEGs) for endophyte-symbiotic (E+) vs endophyte-free (E-) clones in leaf blades, pseudostems, crowns and roots. RNA-seq reads were used to construct a tall fescue reference transcriptome and compare gene expression profiles. Over all tissues examined, 478 DEGs were identified between the E+ and E- clones for at least one tissue (more than two-fold; P < 0.0001, 238 E+ > E- and 240 E- > E+), although no genes were differentially expressed in all four tissues. Gene ontology (GO) terms, GO:0010200 (response to chitin), GO:0002679 (respiratory burst during defence response) and GO:0035556 (intracellular signal transduction) were significantly overrepresented among 25 E- > E+ DEGs in leaf blade, and a number of other DEGs were associated with defence and abiotic response. In particular, endophyte effects on various WRKY transcription factors may have implications for symbiotic stability, endophyte distribution in the plant, or defence against pathogens.
Collapse
Affiliation(s)
- Randy D Dinkins
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY, 40546-0091, USA
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Deborah Boykin
- Jamie Whitten Delta States Research Center, USDA-ARS, Stoneville, MS, 38776, USA
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
17
|
Wang K, Liu Y, Tian J, Huang K, Shi T, Dai X, Zhang W. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1032. [PMID: 28680431 PMCID: PMC5478880 DOI: 10.3389/fpls.2017.01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/29/2017] [Indexed: 05/18/2023]
Abstract
Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Jinli Tian
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Kunyong Huang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Tianran Shi
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Xiaoxia Dai
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for Biomass, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| |
Collapse
|
18
|
Khosa JS, Lee R, Bräuning S, Lord J, Pither-Joyce M, McCallum J, Macknight RC. Doubled Haploid 'CUDH2107' as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility. PLoS One 2016; 11:e0166568. [PMID: 27861615 PMCID: PMC5115759 DOI: 10.1371/journal.pone.0166568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits.
Collapse
Affiliation(s)
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sophia Bräuning
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Janice Lord
- Department of Botany, University of Otago, Dunedin, New Zealand
| | | | - John McCallum
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
- * E-mail:
| |
Collapse
|
19
|
Stočes Š, Ruttink T, Bartoš J, Studer B, Yates S, Zwierzykowski Z, Abrouk M, Roldán-Ruiz I, Książczyk T, Rey E, Doležel J, Kopecký D. Orthology Guided Transcriptome Assembly of Italian Ryegrass and Meadow Fescue for Single-Nucleotide Polymorphism Discovery. THE PLANT GENOME 2016; 9. [PMID: 27902806 DOI: 10.3835/plantgenome2016.02.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) represent natural DNA sequence variation. They can be used for various applications including the construction of high-density genetic maps, analysis of genetic variability, genome-wide association studies, and map-based cloning. Here we report on transcriptome sequencing in the two forage grasses, meadow fescue ( Huds.) and Italian ryegrass ( Lam.), and identification of various classes of SNPs. Using the Orthology Guided Assembly (OGA) strategy, we assembled and annotated a total of 18,952 and 19,036 transcripts for Italian ryegrass and meadow fescue, respectively. In addition, we used transcriptome sequence data of perennial ryegrass ( L.) from a previous study to identify 16,613 transcripts shared across all three species. Large numbers of intraspecific SNPs were identified in all three species: 248,000 in meadow fescue, 715,000 in Italian ryegrass, and 529,000 in perennial ryegrass. Moreover, we identified almost 25,000 interspecific SNPs located in 5343 genes that can distinguish meadow fescue from Italian ryegrass and 15,000 SNPs located in 3976 genes that discriminate meadow fescue from both species. All identified SNPs were positioned in silico on the seven linkage groups (LGs) of using the GenomeZipper approach. With the identification and positioning of interspecific SNPs, our study provides a valuable resource for the grass research and breeding community and will enable detailed characterization of genomic composition and gene expression analysis in prospective × hybrids.
Collapse
|
20
|
Belamkar V, Farmer AD, Weeks NT, Kalberer SR, Blackmon WJ, Cannon SB. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume. Sci Rep 2016; 6:34908. [PMID: 27721469 PMCID: PMC5056515 DOI: 10.1038/srep34908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome-another phaseoloid legume with the same chromosome number-provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement.
Collapse
Affiliation(s)
- Vikas Belamkar
- Interdepartmental Genetics, Iowa State University, Ames, IA 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | | | - Nathan T. Weeks
- United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Scott R. Kalberer
- United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - William J. Blackmon
- Department of Horticulture, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Steven B. Cannon
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
21
|
Nibert ML, Pyle JD, Firth AE. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 2016; 498:201-208. [PMID: 27596539 PMCID: PMC5052127 DOI: 10.1016/j.virol.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses. A number of new plant amalgavirus sequences have been found in the TSA database. They provide support for a prevalent +1 frameshifting motif in amalgaviruses. A variant motif is identified in a subset of these viruses from related plants. The ORF1 product of amalgaviruses has propensity to form α-helical coiled coil. The TSA database is a useful source of new viral sequences for comparative analyses.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Jesse D Pyle
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
22
|
Velmurugan J, Mollison E, Barth S, Marshall D, Milne L, Creevey CJ, Lynch B, Meally H, McCabe M, Milbourne D. An ultra-high density genetic linkage map of perennial ryegrass (Lolium perenne) using genotyping by sequencing (GBS) based on a reference shotgun genome assembly. ANNALS OF BOTANY 2016; 118:71-87. [PMID: 27268483 PMCID: PMC4934400 DOI: 10.1093/aob/mcw081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/28/2015] [Accepted: 02/17/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS High density genetic linkage maps that are extensively anchored to assembled genome sequences of the organism in question are extremely useful in gene discovery. To facilitate this process in perennial ryegrass (Lolium perenne L.), a high density single nucleotide polymorphism (SNP)- and presence/absence variant (PAV)-based genetic linkage map has been developed in an F2 mapping population that has been used as a reference population in numerous studies. To provide a reference sequence to which to align genotyping by sequencing (GBS) reads, a shotgun assembly of one of the grandparents of the population, a tenth-generation inbred line, was created using Illumina-based sequencing. METHODS The assembly was based on paired-end Illumina reads, scaffolded by mate pair and long jumping distance reads in the range of 3-40 kb, with >200-fold initial genome coverage. A total of 169 individuals from an F2 mapping population were used to construct PstI-based GBS libraries tagged with unique 4-9 nucleotide barcodes, resulting in 284 million reads, with approx. 1·6 million reads per individual. A bioinformatics pipeline was employed to identify both SNPs and PAVs. A core genetic map was generated using high confidence SNPs, to which lower confidence SNPs and PAVs were subsequently fitted in a straightforward binning approach. KEY RESULTS The assembly comprises 424 750 scaffolds, covering 1·11 Gbp of the 2·5 Gbp perennial ryegrass genome, with a scaffold N50 of 25 212 bp and a contig N50 of 3790 bp. It is available for download, and access to a genome browser has been provided. Comparison of the assembly with available transcript and gene model data sets for perennial ryegrass indicates that approx. 570 Mbp of the gene-rich portion of the genome has been captured. An ultra-high density genetic linkage map with 3092 SNPs and 7260 PAVs was developed, anchoring just over 200 Mb of the reference assembly. CONCLUSIONS The combined genetic map and assembly, combined with another recently released genome assembly, represent a significant resource for the perennial ryegrass genetics community.
Collapse
Affiliation(s)
- Janaki Velmurugan
- Teagasc, Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland University College Dublin, School of Agriculture and Food Science, Dublin, Ireland
| | - Ewan Mollison
- Teagasc, Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland Information and Computational Sciences Group, James Hutton Institute, Errol Road, Invergowrie, Dundee, UK Division of Plant Sciences, University of Dundee at the James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Susanne Barth
- Teagasc, Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - David Marshall
- Information and Computational Sciences Group, James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Linda Milne
- Information and Computational Sciences Group, James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | | | - Bridget Lynch
- University College Dublin, School of Agriculture and Food Science, Dublin, Ireland
| | - Helena Meally
- Teagasc, Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Matthew McCabe
- Teagasc, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Dan Milbourne
- Teagasc, Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| |
Collapse
|
23
|
Global transcriptome changes in perennial ryegrass during early infection by pink snow mould. Sci Rep 2016; 6:28702. [PMID: 27346054 PMCID: PMC4921834 DOI: 10.1038/srep28702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 01/04/2023] Open
Abstract
Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar 'Fagerlin' based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould.
Collapse
|
24
|
Paina C, Byrne SL, Studer B, Rognli OA, Asp T. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass. PLoS One 2016; 11:e0152004. [PMID: 27010567 PMCID: PMC4807000 DOI: 10.1371/journal.pone.0152004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/06/2016] [Indexed: 11/25/2022] Open
Abstract
Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date.
Collapse
Affiliation(s)
- Cristiana Paina
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
| | - Stephen L. Byrne
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
| | - Bruno Studer
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Odd Arne Rognli
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torben Asp
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
25
|
Deng T, Pang C, Lu X, Zhu P, Duan A, Tan Z, Huang J, Li H, Chen M, Liang X. De Novo Transcriptome Assembly of the Chinese Swamp Buffalo by RNA Sequencing and SSR Marker Discovery. PLoS One 2016; 11:e0147132. [PMID: 26766209 PMCID: PMC4713091 DOI: 10.1371/journal.pone.0147132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/29/2015] [Indexed: 01/11/2023] Open
Abstract
The Chinese swamp buffalo (Bubalis bubalis) is vital to the lives of small farmers and has tremendous economic importance. However, a lack of genomic information has hampered research on augmenting marker assisted breeding programs in this species. Thus, a high-throughput transcriptomic sequencing of B. bubalis was conducted to generate transcriptomic sequence dataset for gene discovery and molecular marker development. Illumina paired-end sequencing generated a total of 54,109,173 raw reads. After trimming, de novo assembly was performed, which yielded 86,017 unigenes, with an average length of 972.41 bp, an N50 of 1,505 bp, and an average GC content of 49.92%. A total of 62,337 unigenes were successfully annotated. Among the annotated unigenes, 27,025 (43.35%) and 23,232 (37.27%) unigenes showed significant similarity to known proteins in NCBI non-redundant protein and Swiss-Prot databases (E-value < 1.0E-5), respectively. Of these annotated unigenes, 14,439 and 15,813 unigenes were assigned to the Gene Ontology (GO) categories and EuKaryotic Ortholog Group (KOG) cluster, respectively. In addition, a total of 14,167 unigenes were assigned to 331 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, 17,401 simple sequence repeats (SSRs) were identified as potential molecular markers. One hundred and fifteen primer pairs were randomly selected for amplification to detect polymorphisms. The results revealed that 110 primer pairs (95.65%) yielded PCR amplicons and 69 primer pairs (60.00%) presented polymorphisms in 35 individual buffaloes. A phylogenetic analysis showed that the five swamp buffalo populations were clustered together, whereas two river buffalo breeds clustered separately. In the present study, the Illumina RNA-seq technology was utilized to perform transcriptome analysis and SSR marker discovery in the swamp buffalo without using a reference genome. Our findings will enrich the current SSR markers resources and help spearhead molecular genetic research studies on the swamp buffalo.
Collapse
Affiliation(s)
- Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Xingrong Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Peng Zhu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Anqin Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Zhengzhun Tan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Jian Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Hui Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Mingtan Chen
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Ministry of Agriculture, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, P. R. China
- * E-mail:
| |
Collapse
|
26
|
Neller KCM, Klenov A, Hudak KA. The Pokeweed Leaf mRNA Transcriptome and Its Regulation by Jasmonic Acid. FRONTIERS IN PLANT SCIENCE 2016; 7:283. [PMID: 27014307 PMCID: PMC4792876 DOI: 10.3389/fpls.2016.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 05/16/2023]
Abstract
The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP), a ribosome inactivating protein (RIP) that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA), a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141.
Collapse
|
27
|
Serra AA, Couée I, Heijnen D, Michon-Coudouel S, Sulmon C, Gouesbet G. Genome-Wide Transcriptional Profiling and Metabolic Analysis Uncover Multiple Molecular Responses of the Grass Species Lolium perenne Under Low-Intensity Xenobiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1124. [PMID: 26734031 PMCID: PMC4681785 DOI: 10.3389/fpls.2015.01124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 05/26/2023]
Abstract
Lolium perenne, which is a major component of pastures, lawns, and grass strips, can be exposed to xenobiotic stresses due to diffuse and residual contaminations of soil. L. perenne was recently shown to undergo metabolic adjustments in response to sub-toxic levels of xenobiotics. To gain insight in such chemical stress responses, a de novo transcriptome analysis was carried out on leaves from plants subjected at the root level to low levels of xenobiotics, glyphosate, tebuconazole, and a combination of the two, leading to no adverse physiological effect. Chemical treatments influenced significantly the relative proportions of functional categories and of transcripts related to carbohydrate processes, to signaling, to protein-kinase cascades, such as Serine/Threonine-protein kinases, to transcriptional regulations, to responses to abiotic or biotic stimuli and to responses to phytohormones. Transcriptomics-based expressions of genes encoding different types of SNF1 (sucrose non-fermenting 1)-related kinases involved in sugar and stress signaling or encoding key metabolic enzymes were in line with specific qRT-PCR analysis or with the important metabolic and regulatory changes revealed by metabolomic analysis. The effects of pesticide treatments on metabolites and gene expression strongly suggest that pesticides at low levels, as single molecule or as mixture, affect cell signaling and functioning even in the absence of major physiological impact. This global analysis of L. perenne therefore highlighted the interactions between molecular regulation of responses to xenobiotics, and also carbohydrate dynamics, energy dysfunction, phytohormones and calcium signaling.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - Ivan Couée
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - David Heijnen
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - Sophie Michon-Coudouel
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMS 3343 OSURRennes, France
| | - Cécile Sulmon
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - Gwenola Gouesbet
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| |
Collapse
|
28
|
He W, Zhuang H, Fu Y, Guo L, Guo B, Guo L, Zhang X, Wei Y. De novo Transcriptome Assembly of a Chinese Locoweed (Oxytropis ochrocephala) Species Provides Insights into Genes Associated with Drought, Salinity, and Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:1086. [PMID: 26697040 PMCID: PMC4667070 DOI: 10.3389/fpls.2015.01086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/19/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Locoweeds (toxic Oxytropis and Astraglus species), containing the toxic agent swainsonine, pose serious threats to animal husbandry on grasslands in both China and the US. Some locoweeds have evolved adaptations in order to resist various stress conditions such as drought, salt and cold. As a result they replace other plants in their communities and become an ecological problem. Currently very limited genetic information of locoweeds is available and this hinders our understanding in the molecular basis of their environmental plasticity, and the interaction between locoweeds and their symbiotic swainsonine producing endophytes. Next-generation sequencing provides a means of obtaining transcriptomic sequences in a timely manner, which is particularly useful for non-model plants. In this study, we performed transcriptome sequencing of Oxytropis ochrocephala plants followed by a de nove assembly. Our primary aim was to provide an enriched pool of genetic sequences of an Oxytropis sp. for further locoweed research. RESULTS Transcriptomes of four different O. ochrocephala samples, from control (CK) plants, and those that had experienced either drought (20% PEG), salt (150 mM NaCl) or cold (4°C) stress were sequenced using an Illumina Hiseq 2000 platform. From 232,209,506 clean reads 23,220,950,600 (~23 G nucleotides), 182,430 transcripts and 88,942 unigenes were retrieved, with an N50 value of 1237. Differential expression analysis revealed putative genes encoding heat shock proteins (HSPs) and late embryogenesis abundant (LEA) proteins, enzymes in secondary metabolite and plant hormone biosyntheses, and transcription factors which are involved in stress tolerance in O. ochrocephala. In order to validate our sequencing results, we further analyzed the expression profiles of nine genes by quantitative real-time PCR. Finally, we discuss the possible mechanism of O. ochrocephala's adaptations to stress environment. CONCLUSION Our transcriptome sequencing data present useful genetic information of a locoweed species. This genetic information will underpin further research in elucidating the environmental acclimation mechanism in locoweeds and the endophyte-plant association.
Collapse
Affiliation(s)
- Wei He
- Department of Biology, Northwest UniversityXian, China
| | - Huihui Zhuang
- Department of Biology, Northwest UniversityXian, China
| | - Yanping Fu
- Department of Biology, Northwest UniversityXian, China
| | - Linwei Guo
- Department of Biology, Northwest UniversityXian, China
| | - Bin Guo
- Department of Biology, Northwest UniversityXian, China
| | - Lizhu Guo
- Department of Biology, Northwest UniversityXian, China
| | - Xiuhong Zhang
- Grassland Station, Agriculture and Animal Husbandry BureauZhongwei, China
| | - Yahui Wei
- Department of Biology, Northwest UniversityXian, China
| |
Collapse
|
29
|
Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T. A synteny-based draft genome sequence of the forage grass Lolium perenne. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:816-26. [PMID: 26408275 DOI: 10.1111/tpj.13037] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/04/2015] [Accepted: 09/18/2015] [Indexed: 05/18/2023]
Abstract
Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28,455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order. The gametophytic self-incompatibility mechanism enables the pistil of a plant to reject self-pollen and therefore promote out-crossing. We have used the sequence assembly to characterize transcriptional changes in the stigma during pollination with both compatible and incompatible pollen. Characterization of the pollen transcriptome identified homologs to pollen allergens from a range of species, many of which were expressed to very high levels in mature pollen grains, and are potentially involved in the self-incompatibility mechanism. The genome sequence provides a valuable resource for future breeding efforts based on genomic prediction, and will accelerate the development of new varieties for more productive grasslands.
Collapse
Affiliation(s)
- Stephen L Byrne
- Department of Molecular Biology, Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Istvan Nagy
- Department of Molecular Biology, Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Matthias Pfeifer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Suresh Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Bruno Studer
- Institute of Agricultural Sciences, ETH Zurich, Universitätstraße 2, 8092, Zürich, Switzerland
| | - Klaus Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Jacqueline D Campbell
- Department of Molecular Biology, Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Adrian Czaban
- Department of Molecular Biology, Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Stephan Hentrup
- Department of Molecular Biology, Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Jakob Hedegaard
- Department of Molecular Biology and Genetics, Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Mario Caccamo
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Torben Asp
- Department of Molecular Biology, Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark
| |
Collapse
|
30
|
Abeynayake SW, Byrne S, Nagy I, Jonavičienė K, Etzerodt TP, Boelt B, Asp T. Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions. BMC PLANT BIOLOGY 2015; 15:250. [PMID: 26474965 PMCID: PMC4609083 DOI: 10.1186/s12870-015-0643-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/12/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Activation of numerous protective mechanisms during cold acclimation is important for the acquisition of freezing tolerance in perennial ryegrass (Lolium perenne L.). To elucidate the molecular mechanisms of cold acclimation in two genotypes ('Veyo' and 'Falster') of perennial ryegrass from distinct geographical origins, we performed transcriptome profiling during cold acclimation using RNA-Seq. METHODS We cold-acclimated plants from both genotypes in controlled conditions for a period of 17 days and isolated Total RNA at various time points for high throughput sequencing using Illumina technology. RNA-seq reads were aligned to genotype specific references to identify transcripts with significant changes in expression during cold acclimation. RESULTS The genes induced were involved in protective mechanisms such as cell response to abiotic stimulus, signal transduction, redox homeostasis, plasma membrane and cell wall modifications, and carbohydrate metabolism in both genotypes. 'Falster' genotype, adapted to cold climates, showed a stronger transcriptional differentiation during cold acclimation, and more differentially expressed transcripts related to stress, signal transduction, response to abiotic stimulus, and metabolic processes compared to 'Veyo'. 'Falster' genotype also showed an induction of more transcripts with sequence homology to fructosyltransferase genes (FTs) and a higher fold induction of fructan in response to low-temperature stress. The circadian rhythm network was perturbed in the 'Veyo' genotype adapted to warmer climates. CONCLUSION In this study, the differentially expressed genes during cold acclimation, potentially involved in numerous protective mechanisms, were identified in two genotypes of perennial ryegrass from distinct geographical origins. The observation that the circadian rhythm network was perturbed in 'Veyo' during cold acclimation may point to a low adaptability of 'Veyo' to low temperature stresses. This study also revealed the transcriptional mechanisms underlying carbon allocation towards fructan biosynthesis in perennial ryegrass.
Collapse
Affiliation(s)
- Shamila Weerakoon Abeynayake
- Department of Agroecology - Crop Health, Aarhus University, Slagelse, Denmark.
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| | - Stephen Byrne
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| | - Kristina Jonavičienė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai distr, Lithuania.
| | | | - Birte Boelt
- Department of Agroecology - Crop Health, Aarhus University, Slagelse, Denmark.
| | - Torben Asp
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| |
Collapse
|
31
|
Sudheesh S, Sawbridge TI, Cogan NO, Kennedy P, Forster JW, Kaur S. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. BMC Genomics 2015; 16:611. [PMID: 26275991 PMCID: PMC4537571 DOI: 10.1186/s12864-015-1815-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Field pea (Pisum sativum L.) is a cool-season grain legume that is cultivated world-wide for both human consumption and stock-feed purposes. Enhancement of genetic and genomic resources for field pea will permit improved understanding of the control of traits relevant to crop productivity and quality. Advances in second-generation sequencing and associated bioinformatics analysis now provide unprecedented opportunities for the development of such resources. The objective of this study was to perform transcriptome sequencing and characterisation from two genotypes of field pea that differ in terms of seed and plant morphological characteristics. RESULTS Transcriptome sequencing was performed with RNA templates from multiple tissues of the field pea genotypes Kaspa and Parafield. Tissue samples were collected at various growth stages, and a total of 23 cDNA libraries were sequenced using Illumina high-throughput sequencing platforms. A total of 407 and 352 million paired-end reads from the Kaspa and Parafield transcriptomes, respectively were assembled into 129,282 and 149,272 contigs, which were filtered on the basis of known gene annotations, presence of open reading frames (ORFs), reciprocal matches and degree of coverage. Totals of 126,335 contigs from Kaspa and 145,730 from Parafield were subsequently selected as the reference set. Reciprocal sequence analysis revealed that c. 87% of contigs were expressed in both cultivars, while a small proportion were unique to each genotype. Reads from different libraries were aligned to the genotype-specific assemblies in order to identify and characterise expression of contigs on a tissue-specific basis, of which 87% were expressed in more than one tissue, while others showed distinct expression patterns in specific tissues, providing unique transcriptome signatures. CONCLUSION This study provided a comprehensive assembled and annotated transcriptome set for field pea that can be used for development of genetic markers, in order to assess genetic diversity, construct linkage maps, perform trait-dissection and implement whole-genome selection strategies in varietal improvement programs, as well to identify target genes for genetic modification approaches on the basis of annotation and expression analysis. In addition, the reference field pea transcriptome will prove highly valuable for comparative genomics studies and construction of a finalised genome sequence.
Collapse
Affiliation(s)
- Shimna Sudheesh
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Timothy I Sawbridge
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Noel Oi Cogan
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Peter Kennedy
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, Grains Innovation Park, Horsham, VIC, 3401, Australia.
| | - John W Forster
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sukhjiwan Kaur
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
32
|
van Parijs FRD, Ruttink T, Boerjan W, Haesaert G, Byrne SL, Asp T, Roldán-Ruiz I, Muylle H. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:877-92. [PMID: 25683375 DOI: 10.1111/plb.12316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 05/08/2023]
Abstract
In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.
Collapse
Affiliation(s)
- F R D van Parijs
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - T Ruttink
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - W Boerjan
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - G Haesaert
- Faculty Bioscience Engineering, Department of Applied Biosciences, Ghent University, Gent, Belgium
| | - S L Byrne
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - T Asp
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - I Roldán-Ruiz
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - H Muylle
- Plant Sciences Unit - Growth and Development, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| |
Collapse
|
33
|
De Novo
Genome Assembly of Ryegrass Mosaic Virus from a Ryegrass Transcriptome. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00497-15. [PMID: 25999582 PMCID: PMC4440962 DOI: 10.1128/genomea.00497-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The ryegrass mosaic virus (RgMV) is a single positive-strand RNA virus belonging to the genus Rymovirus. The major natural hosts for RgMV are members of the Gramineae species, including ryegrass. Here, we report the nearly complete genome sequence of RgMV by de novo assembly using ryegrass transcriptomes.
Collapse
|
34
|
Yu X, Pijut PM, Byrne S, Asp T, Bai G, Jiang Y. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:37-45. [PMID: 25900564 DOI: 10.1016/j.plantsci.2015.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 03/04/2015] [Indexed: 05/05/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global collection of 192 perennial ryegrass accessions. Significant differences in winter survival (WS), percentage of canopy green cover (CGC), chlorophyll index (Chl), and normalized difference vegetation index (NDVI) were found among accessions. After controlling population structure, LpLEA3 encoding a late embryogenesis abundant group 3 protein and LpCAT encoding a catalase were associated with CGC and Chl, while LpMnSOD encoding a magnesium superoxide dismutase and LpChl Cu-ZnSOD encoding a chlorophyll copper-zinc superoxide dismutase were associated with NDVI or Chl. Significant association was also discovered between C-repeat binding factor LpCBF1b and WS. Three sequence variations identified in LpCAT, LpMnSOD, and LpChl Cu-ZnSOD were synonymous substitutions, whereas one pair of adjacent single nucleotide polymorphisms (SNPs) in LpLEA3 and one SNP in LpCBF1b resulted in amino acid change. The results demonstrated that allelic variation in LpLEA3 and LpCBF1b was closely related to winter survival and spring regrowth in perennial ryegrass.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Paula M Pijut
- USDA-Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, West Lafayette, IN 47907, USA
| | - Stephen Byrne
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
35
|
Czaban A, Sharma S, Byrne SL, Spannagl M, Mayer KFX, Asp T. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation. BMC Genomics 2015; 16:249. [PMID: 25886302 PMCID: PMC4389671 DOI: 10.1186/s12864-015-1447-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/06/2015] [Indexed: 01/18/2023] Open
Abstract
Background The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium-Festuca complex show very diverse phenotypes, and many of them are related to agronomically important traits. Analysis of sequenced transcriptomes of these non-model species may shed light on the molecular mechanisms underlying this phenotypic diversity. Results We have generated de novo transcriptome assemblies for four species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some of the differences between the more stress tolerant Festuca, and the less stress tolerant Lolium species. Conclusions Our data presents a comprehensive transcriptome sequence comparison between species from the Lolium-Festuca complex, with the identification of potential candidate genes underlying some important phenotypical differences within the complex (such as VRN2). The orthologous genes between the species have a very high %id (91,61%) and the majority of gene families were shared for all of them. It is likely that the knowledge of the genomes will be largely transferable between species within the complex. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1447-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrian Czaban
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
| | - Sapna Sharma
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany.
| | - Stephen L Byrne
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany.
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany.
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
| |
Collapse
|
36
|
Duhoux A, Carrère S, Gouzy J, Bonin L, Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. PLANT MOLECULAR BIOLOGY 2015; 87:473-87. [PMID: 25636204 DOI: 10.1007/s11103-015-0292-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.
Collapse
Affiliation(s)
- Arnaud Duhoux
- UMR1347 Agroécologie, INRA, 17 rue Sully, 21000, Dijon, France
| | | | | | | | | |
Collapse
|
37
|
Duhoux A, Carrère S, Gouzy J, Bonin L, Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. PLANT MOLECULAR BIOLOGY 2015; 87:473-487. [PMID: 25636204 DOI: 10.1007/s11103-015-0292-293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 05/20/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.
Collapse
Affiliation(s)
- Arnaud Duhoux
- UMR1347 Agroécologie, INRA, 17 rue Sully, 21000, Dijon, France
| | | | | | | | | |
Collapse
|
38
|
Wang Y, Dai Y, Tao X, Wang JZ, Cheng HY, Yang H, Ma XR. Heat Shock Factor Genes of Tall Fescue and Perennial Ryegrass in Response to Temperature Stress by RNA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:1226. [PMID: 26793208 PMCID: PMC4707269 DOI: 10.3389/fpls.2015.01226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/18/2015] [Indexed: 05/15/2023]
Abstract
Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea, and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress, respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP), ascorbate peroxidase (APX), inositol-3-phosphate synthase (IPS), and galactinol synthase (GOLS1), showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops.
Collapse
Affiliation(s)
- Yan Wang
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Ya Dai
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Jia-Zhen Wang
- School of Life Sciences, Zunyi Normal CollegeZunyi, China
| | - Hai-Yang Cheng
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Hong Yang
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
- *Correspondence: Xin-Rong Ma
| |
Collapse
|
39
|
Paina C, Byrne SL, Domnisoru C, Asp T. Vernalization mediated changes in the Lolium perenne transcriptome. PLoS One 2014; 9:e107365. [PMID: 25225807 PMCID: PMC4167334 DOI: 10.1371/journal.pone.0107365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
Vernalization is a key requirement for the induction of flowering in perennial ryegrass (Lolium perenne L.). The transcriptome of two genotypes with contrasting vernalization requirement was studied during primary (vernalization and short day conditions) and secondary induction (higher temperature and long day conditions) using an RNA-Seq approach. This revealed transcripts with expression profiles indicative of a role in floral induction, both in the promotion and repression of flowering. We observed similarities and specific differences between the two genotypes related to cold response, carbohydrate metabolism, and photoperiod regulation. Components of the photoperiod pathway showed regulation during vernalization, pointing to possible interactions between elements of the photoperiod and vernalization pathways. The results provide a global picture of the processes ongoing during the transition from vegetative to reproductive phase of perennial ryegrass genotypes with and without a vernalization requirement.
Collapse
Affiliation(s)
- Cristiana Paina
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
| | - Stephen L. Byrne
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
| | | | - Torben Asp
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|