1
|
Li J, Wang J, Yan Q, Guan L, Yang S, Jiang Z. Biochemical characterization of a novel C-terminally truncated β-galactosidase from Paenibacillus antarcticus with high transglycosylation activity. J Dairy Sci 2024; 107:10141-10152. [PMID: 39004139 DOI: 10.3168/jds.2024-24884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
The transgalactosylase activity of β-galactosidases offers a convenient and promising strategy for conversion of lactose into high-value oligosaccharides, such as galactooligosaccharides (GOS) and human milk oligosaccharides. In this study, we cloned and biochemically characterized a novel C-terminally truncated β-galactosidase (PaBgal2A-D) from Paenibacillus antarcticus with high transglycosylation activity. PaBgal2A-D is a member of glycoside hydrolase family 2. The optimal pH and temperature of PaBgal2A-D were determined to be pH 6.5 and 50°C, respectively. It was relatively stable within pH 5.0-8.0 and up to 50°C. PaBgal2A-D showed high transglycosylation activity for GOS synthesis, and the maximum yield of 50.8% (wt/wt) was obtained in 2 h. Moreover, PaBgal2A-D could synthesize lacto-N-neotetraose (LNnT) using lactose and lacto-N-triose II, with a conversion rate of 16.4%. This study demonstrated that PaBgal2A-D could be a promising tool to prepare GOS and lacto-N-neotetraose.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianyu Wang
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Leying Guan
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
2
|
Miao M, Yao Y, Yan Q, Jiang Z, He G, Yang S. Biochemical characterization of a novel β-galactosidase from Pedobacter sp. with strong transglycosylation activity at low lactose concentration. Folia Microbiol (Praha) 2024; 69:1319-1330. [PMID: 38771554 DOI: 10.1007/s12223-024-01169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
A novel β-galactosidase gene (PbBgal35A) from Pedobacter sp. CAUYN2 was cloned and expressed in Escherichia coli. The gene had an open reading frame of 1917 bp, encoding 638 amino acids with a predicted molecular mass of 62.3 kDa. The deduced amino acid sequence of the gene shared the highest identity of 41% with a glycoside hydrolase family 35 β-galactosidase from Xanthomonas campestris pv. campestris (AAP86763.1). The recombinant β-galactosidase (PbBgal35A) was purified to homogeneity with a specific activity of 65.9 U/mg. PbBgal35A was optimally active at pH 5.0 and 50 °C, respectively, and it was stable within pH 4.5‒7.0 and up to 45 °C. PbBgal35A efficiently synthesized galacto-oligosaccharides from lactose with a conversion ratio of 32% (w/w) and fructosyl-galacto-oligosaccharides from lactulose with a conversion ratio of 21.9% (w/w). Moreover, the enzyme catalyzed the synthesis of galacto-oligosaccharides from low-content lactose in fresh milk, and the GOS conversion ratios of 17.1% (w/w) and 7.8% (w/w) were obtained when the reactions were performed at 45 and 4 °C, respectively. These properties make PbBgal35A an ideal candidate for commercial use in the manufacturing of GOS-enriched dairy products.
Collapse
Affiliation(s)
- Miao Miao
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yuchen Yao
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Guangming He
- Jiangxi Jinsuifeng Sugar Industry Co., Ltd., Yichun, 336000, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
3
|
Wang K, Duan F, Sun T, Zhang Y, Lu L. Galactooligosaccharides: Synthesis, metabolism, bioactivities and food applications. Crit Rev Food Sci Nutr 2024; 64:6160-6176. [PMID: 36632761 DOI: 10.1080/10408398.2022.2164244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prebiotics are non-digestible ingredients that exert significant health-promoting effects on hosts. Galactooligosaccharides (GOS) have remarkable prebiotic effects and structural similarity to human milk oligosaccharides. They generally comprise two to eight sugar units, including galactose and glucose, which are synthesized from substrate lactose by microbial β-galactosidase. Enzyme sources from probiotics have received particular interest because of their safety and potential to synthesize specific structures that are particularly metabolized by intestinal probiotics. Owing to advancements in modern analytical techniques, many GOS structures have been identified, which vary in degree of polymerization, glycosidic linkage, and branch location. After intake, GOS adjust gut microbiota which produce short chain fatty acids, and exhibit excellent biological activities. They selectively stimulate the proliferation of probiotics, inhibit the growth and adhesion of pathogenic bacteria, alleviate gastrointestinal, neurological, metabolic and allergic diseases, modulate metabolites production, and adjust ion storage and absorption. Additionally, GOS are safe and stable, with high solubility and clean taste, and thus are widely used as food additives. GOS can improve the appearance, flavor, taste, texture, viscosity, rheological properties, shelf life, and health benefits of food products. This review systemically covers GOS synthesis, structure identifications, metabolism mechanisms, prebiotic bioactivities and wide applications, focusing on recent advances.
Collapse
Affiliation(s)
- Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Ten Kate GA, Sanders P, Dijkhuizen L, van Leeuwen SS. Kinetics and products of Thermotoga maritima β-glucosidase with lactose and cellobiose. Appl Microbiol Biotechnol 2024; 108:349. [PMID: 38809317 PMCID: PMC11136819 DOI: 10.1007/s00253-024-13183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by β-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many β-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable β-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the β-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly β(1 → 3) and β(1 → 6) elongating activity, but also some β(1 → 4) elongation was observed. The β-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • β-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima β-glucosidase has high activity and high thermostability. • Thermotoga maritima β-glucosidase GOS contains mainly (β1-3) and (β1-6) linkages.
Collapse
Affiliation(s)
- Geert A Ten Kate
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Royal FrieslandCampina, Stationsplein 4, 3818 LE, Amersfoort, The Netherlands
| | - Peter Sanders
- Eurofins Expertise Centre for Complex Carbohydrates and Chemistry, PO Box 766, 8440 AT, Heerenveen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- CarbExplore Research BV, Zernikelaan 8, 9747 AA, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA30, 9713 GZ, Groningen, The Netherlands.
- Van Hall Larenstein, University of Applied Sciences, Agora 1, P.O. box 1528, 8901 BV, Leeuwarden, The Netherlands.
| |
Collapse
|
5
|
In Vitro Production of Galactooligosaccharides by a Novel β-Galactosidase of Lactobacillus bulgaricus. Int J Mol Sci 2022; 23:ijms232214308. [PMID: 36430784 PMCID: PMC9697242 DOI: 10.3390/ijms232214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
β-galactosidase is an enzyme with dual activity and important industrial application. As a hydrolase, the enzyme eliminates lactose in milk, while as a trans-galactosidase it produces prebiotic galactooligosaccharides (GOS) with various degrees of polymerization (DP). The aim of the present study is the molecular characterization of β-galactosidase from a Bulgarian isolate, Lactobacillus delbrueckii subsp. bulgaricus 43. The sequencing of the β-gal gene showed that it encodes a new enzyme with 21 amino acid replacements compared to all other β-galactosidases of this species. The molecular model revealed that the new β-galactosidase acts as a tetramer. The amino acids D207, H386, N464, E465, Y510, E532, H535, W562, N593, and W980 form the catalytic center and interact with Mg2+ ions and substrate. The β-gal gene was cloned into a vector allowing heterologous expression of E. coli BL21(DE3) with high efficiency, as the crude enzyme reached 3015 U/mL of the culture or 2011 U/mg of protein. The enzyme's temperature optimum at 55 °C, a pH optimum of 6.5, and a positive influence of Mg2+, Mn2+, and Ca2+ on its activity were observed. From lactose, β-Gal produced a large amount of GOS with DP3 containing β-(1→3) and β-(1→4) linkages, as the latter bond is particularly atypical for the L. bulgaricus enzymes. DP3-GOS formation was positively affected by high lactose concentrations. The process of lactose conversion was rapid, with a 34% yield of DP3-GOS in 6 h, and complete degradation of 200 g/L of lactose for 12 h. On the other hand, the enzyme was quite stable at 55 °C and retained about 20% of its activity after 24 h of incubation at this temperature. These properties expand our horizons as regards the use of β-galactosidases in industrial processes for the production of lactose-free milk and GOS-enriched foods.
Collapse
|
6
|
Xiaowen W, Sibo C, Lin F, Hao L, Si C, Xianfeng Y, Zhoukun L, Zhongli C, Huang Y. Characterization of a halotolerant GH2 family β-galactosidase GalM from Microvirga sp. strain MC18. Protein Expr Purif 2022; 194:106074. [PMID: 35218889 DOI: 10.1016/j.pep.2022.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
A new glycoside hydrolase family 2 (GH2) β-galactosidase encoding gene galM was cloned from Microvirga sp. strain MC18 and overexpressed in Escherichia coli. The recombinant β-galactosidase GalM showed optimal activity at pH 7.0 and 50 °C, with a stability at pH 6.0-9.0 and 20-40 °C, which are conditions suitable for the diary environment. The Km and Vmax values for o-nitrophenyl-β-d-galactopyranoside (oNPG) were 1.30 mmol/L and 15.974 μmol/(min·mg), respectively. GalM showed low product inhibition by galactose with a Ki of 73.18 mM and high tolerance for glucose that 86.5% activity retained in the presence of 500 mM glucose. It was also stable and active in 20% of methanol, ethanol and isopropanol. In addition, the enzyme activity of GalM was activated significantly over 0-2 mol/L NaCl (1.6-4.3 fold). These favorable properties make GalM a potential candidate for the industrial application.
Collapse
Affiliation(s)
- Wang Xiaowen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chen Sibo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Fan Lin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liu Hao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chen Si
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ye Xianfeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Li Zhoukun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cui Zhongli
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Ambrogi V, Bottacini F, Mac Sharry J, van Breen J, O'Keeffe E, Walsh D, Schoemaker B, Cao L, Kuipers B, Lindner C, Jimeno ML, Doyagüez EG, Hernandez-Hernandez O, Moreno FJ, Schoterman M, van Sinderen D. Bifidobacterial β-Galactosidase-Mediated Production of Galacto-Oligosaccharides: Structural and Preliminary Functional Assessments. Front Microbiol 2021; 12:750635. [PMID: 34777303 PMCID: PMC8581567 DOI: 10.3389/fmicb.2021.750635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
In the current study the ability of four previously characterized bifidobacterial β-galactosidases (designated here as BgaA, BgaC, BgaD, and BgaE) to produce galacto-oligosaccharides (GOS) was optimized. Of these enzymes, BgaA and BgaE were found to be promising candidates for GOS production (and the corresponding GOS mixtures were called GOS-A and GOS-E, respectively) with a GOS concentration of 19.0 and 40.3% (of the initial lactose), respectively. GOS-A and GOS-E were partially purified and structurally characterized. NMR analysis revealed that the predominant (non-lactose) disaccharide was allo-lactose in both purified GOS preparations. The predominant trisaccharide in GOS-A and GOS-E was shown to be 3′-galactosyllactose, with lower levels of 6′-galactosyllactose and 4′-galactosyllactose. These three oligosaccharides have also been reported to occur in human milk. Purified GOS-A and GOS-E were shown to be able to support bifidobacterial growth similar to a commercially available GOS. In addition, GOS-E and the commercially available GOS were shown to be capable of reducing Escherichia coli adhesion to a C2BBe1 cell line. Both in vitro bifidogenic activity and reduced E. coli adhesion support the prebiotic potential of GOS-E and GOS-A.
Collapse
Affiliation(s)
- Valentina Ambrogi
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - John Mac Sharry
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,School of Medicine, University College Cork, Cork, Ireland
| | | | - Ellen O'Keeffe
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Walsh
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Linqiu Cao
- FrieslandCampina, Amersfoort, Netherlands
| | | | | | | | | | - Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Morales-Contreras JA, Rodríguez-Pérez JE, Álvarez-González CA, Martínez-López MC, Juárez-Rojop IE, Ávila-Fernández Á. Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology. Food Sci Biotechnol 2021; 30:1277-1291. [PMID: 34721924 DOI: 10.1007/s10068-021-00957-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bifidobacterial proteins have been widely studied to elucidate the metabolic mechanisms of diet adaptation and survival of Bifidobacteria, among others. The use of heterologous expression systems to obtain proteins in sufficient quantities to be characterized has been essential in these studies. L. lactis and the same Bifidobacterium as expression systems highlight ways to corroborate some of the functions attributed to these proteins. The most studied proteins are enzymes related to carbohydrate metabolism, particularly glycosidases, due to their potential application in the synthesis of neoglycoconjugates, prebiotic neooligosaccharides, and active metabolites as well as their high specificity and efficiency in processing glycoconjugates. In this review, we classified the recombinant bifidobacterial proteins reported to date whose characterization has demonstrated their usefulness or their ability to produce a product of commercial interest for the food industry, biomedicine, process innovation and glycobiology. Future directions for their study are also discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00957-1.
Collapse
Affiliation(s)
- José A Morales-Contreras
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Jessica E Rodríguez-Pérez
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Mirian C Martínez-López
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Isela E Juárez-Rojop
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico.,Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| |
Collapse
|
9
|
Tanaka-Okamoto M, Hanzawa K, Murakami H, Mukai M, Miyamoto Y. Identification of β1-3 galactosylglucose-core free-glycans in human urine. Anal Biochem 2021; 641:114427. [PMID: 34688604 DOI: 10.1016/j.ab.2021.114427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
We previously reported the precise structure of acidic free-glycans in human urine. In the present study, structural analysis of neutral free-glycans in urine was performed in fine detail. Urine samples were collected from 21 healthy volunteers and free-glycans extracted from the creatinine-adjusted urine and then fluorescently labeled with 2-aminopyridine. Neutral glycan profiling was achieved by a combination of high-performance liquid chromatography, mass spectrometry, enzymatic digestion, and periodate cleavage. A total of 79 glycans were identified. Because the ABO-blood group antigen containing urinary neutral glycans are major components, profiling patterns were similar between individuals of the same ABO-group. The neutral glycans were composed of lactose-core (Galβ1-4Glc) glycans, type-II N-acetyllactosamine-core (GlcNAcβ1-4Glc) glycans, hexose oligomers, N-glycans and to our surprise β1-3 galactosylglucose-core (Galβ1-3Glc) glycans. Although glycans with a β1-3 galactosylglucose-core were identified as major components in urine, comprising structurally simple isomers of a lactose-core, the core structure has not previously been reported. The major β1-3 galactosylglucose-core glycans were Fucα1-2Galβ1-3(Fucα1-4)Glc, GalNAcα1-3(Fucα1-2)Galβ1-3(Fucα1-4)Glc and Galα1-3(Fucα1-2)Galβ1-3(Fucα1-4)Glc, corresponding to H-, A-, and B-blood group antigens, respectively. Three lactosamine extended β1-3 galactosylglucose-core glycans were also detected as minor components. Elucidating the biosynthesis of β1-3 galactosylglucose will be crucial for understanding the in vivo function of these glycans.
Collapse
Affiliation(s)
- Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Hiroko Murakami
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Mikio Mukai
- Department of Medical Checkup, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan.
| |
Collapse
|
10
|
Stevenson J, Ngo M, Brandt A, Weadge JT, Suits MDL. Analysis of Two SusE-Like Enzymes From Bacteroides thetaiotaomicron Reveals a Potential Degradative Capacity for This Protein Family. Front Microbiol 2021; 12:645765. [PMID: 34149636 PMCID: PMC8211771 DOI: 10.3389/fmicb.2021.645765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteroides thetaiotaomicron is a major constituent of the human gut microbiome and recognized as a prolific degrader of diverse and complex carbohydrates. This capacity is due to the large number of glycan-depolymerization and acquisition systems that are encoded by gene clusters known as polysaccharide utilization loci (PUL), with the starch utilization system (Sus) serving as the established model. Sharing features with the Sus are Sus-like systems, that require the presence of a specific membrane transporter and surface lipoprotein to be classified as Sus-like. Sus-like import loci are extremely varied with respect to any additional protein components encoded, that would effectively modify the functionality of the degradative and import action of each locus. Herein we have identified eight Sus-like systems in B. thetaiotaomicron that share the feature of a homologous SusE-like factor encoded immediately downstream from the transporter/lipoprotein duo susC/D. Two SusE-like proteins from these systems, BT2857 and BT3158, were characterized by X-ray crystallography and BT2857 was further analyzed by small-angle X-ray scattering. The SusE-like proteins were found to be composed of a conserved three domain architecture: a partially disordered N-terminal domain that is predicted to be proximal to the membrane and structurally homologous to an FN3-like bundle, a middle β-sandwich domain, and a C-terminal domain homologous to family 32 carbohydrate-binding modules, that bind to galactose. Structural comparisons of SusE with SusE-like proteins suggested only a small structural divergence has occurred. However, functional analyses with BT2857 and BT3158 revealed that the SusE-like proteins exhibited galactosidase activity with para-nitrophenyl-β-D-galactopyranoside and α-(1,4)-lactose substrates, that has not been demonstrated for SusE proteins. Using a series of domain truncations of BT2857, the predominant β-D-galactosidase activity is suggested to be localized to the C-terminal DUF5126 domain that would be most distal from the outer membrane. The expanded functionality we have observed with these SusE-like proteins provides a plausible explanation of how Sus-like systems are adapted to target more diverse groups of carbohydrates, when compared to their Sus counterparts.
Collapse
Affiliation(s)
- James Stevenson
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Maria Ngo
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Alicia Brandt
- Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael D L Suits
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
11
|
Ambrogi V, Bottacini F, O'Callaghan J, Casey E, van Breen J, Schoemaker B, Cao L, Kuipers B, O'Connell Motherway M, Schoterman M, van Sinderen D. Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Front Microbiol 2021; 12:662959. [PMID: 34012427 PMCID: PMC8126724 DOI: 10.3389/fmicb.2021.662959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Galacto-oligosaccharides (GOS) represent non-digestible glycans that are commercially produced by transgalactosylation of lactose, and that are widely used as functional food ingredients in prebiotic formulations, in particular in infant nutrition. GOS consumption has been reported to enhance growth of specific bacteria in the gut, in particular bifidobacteria, thereby supporting a balanced gut microbiota. In a previous study, we assessed the hydrolytic activity and substrate specificity of seventeen predicted β-galactosidases encoded by various species and strains of infant-associated bifidobacteria. In the current study, we further characterized seven out of these seventeen bifidobacterial β-galactosidases in terms of their kinetics, enzyme stability and oligomeric state. Accordingly, we established whether these β-galactosidases are capable of synthesizing GOS via enzymatic transgalactosylation employing lactose as the feed substrate. Our findings show that the seven selected enzymes all possess such transgalactosylation activity, though they appear to differ in their efficiency by which they perform this reaction. From chromatography analysis, it seems that these enzymes generate two distinct GOS mixtures: GOS with a relatively short or long degree of polymerization profile. These findings may be the stepping stone for further studies aimed at synthesizing new GOS variants with novel and/or enhanced prebiotic activities and potential for industrial applications.
Collapse
Affiliation(s)
- Valentina Ambrogi
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Eoghan Casey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | | | - Linqiu Cao
- FrieslandCampina, Amersfoort, Netherlands
| | | | | | | | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Metagenomic identification, purification and characterisation of the Bifidobacterium adolescentis BgaC β-galactosidase. Appl Microbiol Biotechnol 2021; 105:1063-1078. [PMID: 33427933 PMCID: PMC7843569 DOI: 10.1007/s00253-020-11084-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 11/27/2022]
Abstract
Members of the human gut microbiota use glycoside hydrolase (GH) enzymes, such as β-galactosidases, to forage on host mucin glycans and dietary fibres. A human faecal metagenomic fosmid library was constructed and functionally screened to identify novel β-galactosidases. Out of the 16,000 clones screened, 30 β-galactosidase-positive clones were identified. The β-galactosidase gene found in the majority of the clones was BAD_1582 from Bifidobacterium adolescentis, subsequently named bgaC. This gene was cloned with a hexahistidine tag, expressed in Escherichia coli and His-tagged-BgaC was purified using Ni2+-NTA affinity chromatography and size filtration. The enzyme had optimal activity at pH 7.0 and 37 °C, with a wide range of pH (4–10) and temperature (0–40 °C) stability. It required a divalent metal ion co-factor; maximum activity was detected with Mg2+, while Cu2+ and Mn2+ were inhibitory. Kinetic parameters were determined using ortho-nitrophenyl-β-d-galactopyranoside (ONPG) and lactose substrates. BgaC had a Vmax of 107 μmol/min/mg and a Km of 2.5 mM for ONPG and a Vmax of 22 μmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high tolerance for glucose (66% activity retained in presence of 700 mM glucose). In addition, BgaC possessed transglycosylation activity to produce galactooligosaccharides (GOS) from lactose, as determined by TLC and HPLC analysis. The enzymatic characteristics of B. adolescentis BgaC make it an ideal candidate for dairy industry applications and prebiotic manufacture. Key points • Bifidobacterium adolescentis BgaC β-galactosidase was selected from human faecal metagenome. • BgaC possesses sought-after properties for biotechnology, e.g. low product inhibition. • BgaC has transglycosylation activity producing prebiotic oligosaccharides. Graphical Abstract ![]()
Collapse
|
13
|
Ross ML, Kunkel J, Long S, Asuri P. Combined Effects of Confinement and Macromolecular Crowding on Protein Stability. Int J Mol Sci 2020; 21:ijms21228516. [PMID: 33198190 PMCID: PMC7697604 DOI: 10.3390/ijms21228516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
Confinement and crowding have been shown to affect protein fates, including folding, functional stability, and their interactions with self and other proteins. Using both theoretical and experimental studies, researchers have established the independent effects of confinement or crowding, but only a few studies have explored their effects in combination; therefore, their combined impact on protein fates is still relatively unknown. Here, we investigated the combined effects of confinement and crowding on protein stability using the pores of agarose hydrogels as a confining agent and the biopolymer, dextran, as a crowding agent. The addition of dextran further stabilized the enzymes encapsulated in agarose; moreover, the observed increases in enhancements (due to the addition of dextran) exceeded the sum of the individual enhancements due to confinement and crowding. These results suggest that even though confinement and crowding may behave differently in how they influence protein fates, these conditions may be combined to provide synergistic benefits for protein stabilization. In summary, our study demonstrated the successful use of polymer-based platforms to advance our understanding of how in vivo like environments impact protein function and structure.
Collapse
|
14
|
Munoz J, James K, Bottacini F, Van Sinderen D. Biochemical analysis of cross-feeding behaviour between two common gut commensals when cultivated on plant-derived arabinogalactan. Microb Biotechnol 2020; 13:1733-1747. [PMID: 32385941 PMCID: PMC7533333 DOI: 10.1111/1751-7915.13577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper, we reveal and characterize cross-feeding behaviour between the common gut commensal Bacteroides cellulosilyticus (Baccell) and certain bifidobacterial strains, including Bifidobacterium breve UCC2003, when grown on a medium containing Larch Wood Arabinogalactan (LW-AG). We furthermore show that cross-feeding is dependent on the release of β-1,3-galacto-di/trisaccharides (β-1,3-GOS), and identified that the bga gene cluster of B. breve UCC2003 allows β-1,3-GOS metabolism. The product of bgaB is presumed to be responsible for the import of β-1,3-GOS, while the bgaA gene product, a glycoside hydrolase family 2 member, was shown to hydrolyse both β-1,3-galactobiose and β-1,3-galactotriose into galactose monomers. This study advances our understanding of strain-specific syntrophic interactions between two glycan degraders in the human gut in the presence of AG-type dietary polysaccharides.
Collapse
Affiliation(s)
- Jose Munoz
- Microbial Enzymology GroupDepartment of Applied SciencesNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Kieran James
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| | - Francesca Bottacini
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| |
Collapse
|
15
|
Füreder V, Rodriguez-Colinas B, Cervantes FV, Fernandez-Arrojo L, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ. Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from Bifidobacterium bifidum (Saphera). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4930-4938. [PMID: 32279499 DOI: 10.1021/acs.jafc.0c00997] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transglycosylation activity of a novel commercial β-galactosidase from Bifidobacterium bifidum (Saphera) was evaluated. The optimal conditions for the operation of this enzyme, measured with o-nitrophenyl-β-d-galactopyranoside, were 40 °C and pH around 6.0. Although at low lactose concentrations the property of this enzyme was basically hydrolytic, an increase of lactose concentration to 400 g/L resulted in a significant formation (107.2 g/L, 27% yield) of prebiotic galactooligosaccharides (GOS). The maximum amount of GOS was obtained at a lactose conversion of approximately 90%, which contrasts with other β-galactosidases, for which the highest GOS yield is achieved at 40-50% lactose conversion. Using high-performance anion-exchange chromatography with pulsed amperometric detection, semipreparative high-performance liquid chromatography-hydrophilic interaction liquid chromatography, mass spectrometry, and 1D and 2D NMR, we determined the structure of most of the GOS synthesized by this enzyme. The main identified products were Gal-β(1→3)-Gal-β(1→4)-Glc (3'-O-β-galactosyl-lactose), Gal-β(1→6)-Glc (allolactose), Gal-β(1→3)-Glc (3-galactosyl-glucose), Gal-β(1→3)-Gal (3-galactobiose), and the tetrasaccharide Gal-β(1→3)-Gal-β(1→3)-Gal-β(1→4)-Glc. In general, B. bifidum β-galactosidase showed a tendency to form β(1→3) linkages followed by β(1→6) and more scarcely β(1→4).
Collapse
Affiliation(s)
- Vera Füreder
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
| | - Barbara Rodriguez-Colinas
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
- Departamento de Biotecnología, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | | | | | - Ana Poveda
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Jesus Jimenez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | | | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
| |
Collapse
|
16
|
Kittibunchakul S, van Leeuwen SS, Dijkhuizen L, Haltrich D, Nguyen TH. Structural Comparison of Different Galacto-oligosaccharide Mixtures Formed by β-Galactosidases from Lactic Acid Bacteria and Bifidobacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4437-4446. [PMID: 32196339 PMCID: PMC7168588 DOI: 10.1021/acs.jafc.9b08156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
The LacLM-type β-galactosidase from Lactobacillus helveticus DSM 20075 expressed in both Escherichia coli (EcoliBL21Lhβ-gal) and Lactobacillus plantarum (Lp609Lhβ-gal) was tested for their potential to form galacto-oligosaccharides (GOS) from lactose. The Lh-GOS mixture formed by β-galactosidase from L. helveticus, together with three GOS mixtures produced using β-galactosidases of both the LacLM and the LacZ type from other lactic acid bacteria, namely, L. reuteri (Lr-GOS), L. bulgaricus (Lb-GOS), and Streptococcus thermophilus (St-GOS), as well as two GOS mixtures (Br-GOS1 and Br-GOS2) produced using β-galactosidases (β-gal I and β-gal II) from Bifidobacterium breve, was analyzed and structurally compared with commercial GOS mixtures analyzed in previous work (Vivinal GOS, GOS I, GOS III, and GOS V) using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), high-performance size-exclusion chromatography with a refractive index (RI) detector (HPSEC-RI), and one-dimensional 1H NMR spectroscopy. β-Galactosidases from lactic acid bacteria and B. breve displayed a preference to form β-(1→6)- and β-(1→3)-linked GOS. The GOS mixtures produced by these enzymes consisted of mainly DP2 and DP3 oligosaccharides, accounting for ∼90% of all GOS components. GOS mixtures obtained with β-galactosidases from lactic acid bacteria and B. breve were quite similar to the commercial GOS III mixture in terms of product spectrum and showed a broader product spectrum than the commercial GOS V mixture. These GOS mixtures also contained a number of GOS components that were absent in the commercial Vivinal GOS (V-GOS).
Collapse
Affiliation(s)
- Suwapat Kittibunchakul
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road Salaya, Nakhon Pathom 73170, Thailand
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
- Laboratory Medicine, Cluster Human Nutrition & Health, University Medical Center Groningen (UMCG), Hanzeplein 1, NL-9713 GZ Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
- CarbExplore Research BV, Zernikepark 12, NL-9747 AN Groningen, The Netherlands
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
17
|
Deng P, Meng C, Wu Y, Xu J, Tang X, Zhang X, Xiao Y, Wang X, Fang Z, Fang W. An unusual GH1 β-glucosidase from marine sediment with β-galactosidase and transglycosidation activities for superior galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 2020; 104:4927-4943. [DOI: 10.1007/s00253-020-10578-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022]
|
18
|
Thøgersen MS, Christensen SJ, Jepsen M, Pedersen LH, Stougaard P. Transglycosylating β-d-galactosidase and α-l-fucosidase from Paenibacillus sp. 3179 from a hot spring in East Greenland. Microbiologyopen 2020; 9:e980. [PMID: 31868312 PMCID: PMC7066462 DOI: 10.1002/mbo3.980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023] Open
Abstract
Thermal springs are excellent locations for discovery of thermostable microorganisms and enzymes. In this study, we identify a novel thermotolerant bacterial strain related to Paenibacillus dendritiformis, denoted Paenibacillus sp. 3179, which was isolated from a thermal spring in East Greenland. A functional expression library of the strain was constructed, and the library screened for β-d-galactosidase and α-l-fucosidase activities on chromogenic substrates. This identified two genes encoding a β-d-galactosidase and an α-l-fucosidase, respectively. The enzymes were recombinantly expressed, purified, and characterized using oNPG (2-nitrophenyl-β-d-galactopyranoside) and pNP-fucose (4-nitrophenyl-α-l-fucopyranoside), respectively. The enzymes were shown to have optimal activity at 50°C and pH 7-8, and they were able to hydrolyze as well as transglycosylate natural carbohydrates. The transglycosylation activities were investigated using TLC and HPLC, and the β-d-galactosidase was shown to produce the galactooligosaccharides (GOS) 6'-O-galactosyllactose and 3'-O-galactosyllactose using lactose as substrate, whereas the α-l-fucosidase was able to transfer the fucose moiety from pNP-fuc to lactose, thereby forming 2'-O-fucosyllactose. Since enzymes that are able to transglycosylate carbohydrates at elevated temperature are desirable in many industrial processes, including food and dairy production, we foresee the potential use of enzymes from Paenibacillus sp. 3179 in the production of, for example, instant formula.
Collapse
Affiliation(s)
- Mariane S. Thøgersen
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Aarhus UniversityRoskildeDenmark
| | - Stefan J. Christensen
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Roskilde UniversityRoskildeDenmark
| | - Morten Jepsen
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Novo Nordisk A/SBagsværdDenmark
| | | | - Peter Stougaard
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Aarhus UniversityRoskildeDenmark
| |
Collapse
|
19
|
A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol 2019; 103:8439-8448. [DOI: 10.1007/s00253-019-10092-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023]
|
20
|
Kittibunchakul S, Pham ML, Tran AM, Nguyen TH. β-Galactosidase from Lactobacillus helveticus DSM 20075: Biochemical Characterization and Recombinant Expression for Applications in Dairy Industry. Int J Mol Sci 2019; 20:ijms20040947. [PMID: 30813223 PMCID: PMC6412629 DOI: 10.3390/ijms20040947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022] Open
Abstract
β-Galactosidase encoding genes lacLM from Lactobacillus helveticus DSM 20075 were cloned and successfully overexpressed in Escherichia coli and Lactobacillus plantarum using different expression systems. The highest recombinant β-galactosidase activity of ∼26 kU per L of medium was obtained when using an expression system based on the T7 RNA polymerase promoter in E. coli, which is more than 1000-fold or 28-fold higher than the production of native β-galactosidase from L. helveticus DSM 20075 when grown on glucose or lactose, respectively. The overexpression in L. plantarum using lactobacillal food-grade gene expression system resulted in ∼2.3 kU per L of medium, which is approximately 10-fold lower compared to the expression in E. coli. The recombinant β-galactosidase from L. helveticus overexpressed in E. coli was purified to apparent homogeneity and subsequently characterized. The Km and vmax values for lactose and o-nitrophenyl-β-d-galactopyranoside (oNPG) were 15.7 ± 1.3 mM, 11.1 ± 0.2 µmol D-glucose released per min per mg protein, and 1.4 ± 0.3 mM, 476 ± 66 µmol o-nitrophenol released per min per mg protein, respectively. The enzyme was inhibited by high concentrations of oNPG with Ki,s = 3.6 ± 0.8 mM. The optimum pH for hydrolysis of both substrates, lactose and oNPG, is pH 6.5 and optimum temperatures for these reactions are 60 and 55 °C, respectively. The formation of galacto-oligosaccharides (GOS) in discontinuous mode using both crude recombinant enzyme from L. plantarum and purified recombinant enzyme from E. coli revealed high transgalactosylation activity of β-galactosidases from L. helveticus; hence, this enzyme is an interesting candidate for applications in lactose conversion and GOS formation processes.
Collapse
Affiliation(s)
- Suwapat Kittibunchakul
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Mai-Lan Pham
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Anh-Minh Tran
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
- Department of Biology, Faculty of Fundamental Sciences, Ho Chi Minh City University of Medicine and Pharmacy, 217 Hong Bang, Ho Chi Minh City, Vietnam.
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
21
|
Mangan D, McCleary BV, Culleton H, Cornaggia C, Ivory R, McKie VA, Delaney E, Kargelis T. A novel enzymatic method for the measurement of lactose in lactose-free products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:947-956. [PMID: 30120788 PMCID: PMC6585930 DOI: 10.1002/jsfa.9317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In recent years there has been a surge in the number of commercially available lactose-free variants of a wide variety of products. This presents an analytical challenge for the measurement of the residual lactose content in the presence of high levels of mono-, di-, and oligosaccharides. RESULTS In the current work, we describe the development of a novel enzymatic low-lactose determination method termed LOLAC (low lactose), which is based on an optimized glucose removal pre-treatment step followed by a sequential enzymatic assay that measures residual glucose and lactose in a single cuvette. Sensitivity was improved over existing enzymatic lactose assays through the extension of the typical glucose detection biochemical pathway to amplify the signal response. Selectivity for lactose in the presence of structurally similar oligosaccharides was provided by using a β-galactosidase with much improved selectivity over the analytical industry standards from Aspergillus oryzae and Escherichia coli (EcLacZ), coupled with a 'creep' calculation adjustment to account for any overestimation. The resulting enzymatic method was fully characterized in terms of its linear range (2.3-113 mg per 100 g), limit of detection (LOD) (0.13 mg per 100 g), limit of quantification (LOQ) (0.44 mg per 100 g) and reproducibility (≤ 3.2% coefficient of variation (CV)). A range of commercially available lactose-free samples were analyzed with spiking experiments and excellent recoveries were obtained. Lactose quantitation in lactose-free infant formula, a particularly challenging matrix, was carried out using the LOLAC method and the results compared favorably with those obtained from a United Kingdom Accreditation Service (UKAS) accredited laboratory employing quantitative high performance anion exchange chromatography - pulsed amperometric detection (HPAEC-PAD) analysis. CONCLUSION The LOLAC assay is the first reported enzymatic method that accurately quantitates lactose in lactose-free samples. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David Mangan
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| | - Barry V McCleary
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| | - Helena Culleton
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| | - Claudio Cornaggia
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| | - Ruth Ivory
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| | - Vincent A McKie
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| | - Elaine Delaney
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| | - Tadas Kargelis
- Megazyme u.c., IDA Business ParkSouthern Cross Road, Bray, Co. WicklowIreland
| |
Collapse
|
22
|
Wang H, Xue Z, Liu Z, Wang W, Wang F, Wang Y, Wang L, Song L. A novel C-type lectin from the sea cucumber Apostichopus japonicus (AjCTL-2) with preferential binding of d-galactose. FISH & SHELLFISH IMMUNOLOGY 2018; 79:218-227. [PMID: 29772373 DOI: 10.1016/j.fsi.2018.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
C-type lectins (CTLs) are Ca2+ dependent carbohydrate-binding proteins that share structural homology in their carbohydrate-recognition domains (CRDs). In the present study, a novel CTL was identified from sea cucumber Apostichopus japonicus (named as AjCTL-2). The deduced amino acid sequence of AjCTL-2 was homologous to CTLs from other animals with the identities ranging from 33% to 40%. It contained a canonical signal peptide at the N-terminus, a low density lipoprotein receptor class A (LDLa), a C1r/C1s/Uegf/bone morphogenetic protein 1 (CUB), and a CRD with two motifs Glu-Pro-Asn (EPN) and Trp-Asn-Asp (WND) in Ca2+ binding site 2. The mRNA transcripts of AjCTL-2 were extensively expressed in all the tested tissues including respiratory tree, muscle, gut, coelomocyte, tube-foot, body wall and gonad, and the highest expression level of AjCTL-2 in coelomocyte was about 4.2-fold (p < 0.05) of that in body wall. The mRNA expression level of AjCTL-2 in coelomocyte increased significantly after Vibrio splendidus stimulation, and dramatically peaked at 12 h, which was 206.4-fold (p < 0.05) of that in control group. AjCTL-2 protein was mainly detected in cytoplasm of coelomocyte by immunofluorescence. The recombinant AjCTL-2 (rAjCTL-2) displayed binding activity to d-galactose independent of Ca2+, while the binding activity to other tested pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), peptidoglycan (PGN), and mannose (Man) could not be detected. Surface plasmon resonance (SPR) analysis further revealed the high binding specificity and moderate binding affinity of rAjCTL-2 to d-galactose (KD = 4.093 × 10-6 M). After rAjCTL-2 was blocked by its polyclonal antibody, the binding activity to d-galactose could not be detected by using a blocking ELISA (B-ELISA). Moreover, rAjCTL-2 could bind various microorganisms including V. splendidus, V. anguillarum, Staphylococcus aureus, Bifidobacterium breve and Yarrowia lipolytica with the strongest binding activity to B. breve. These results collectively suggested that AjCTL-2 was a member of CTL superfamily (CTLs) with preferential binding of d-galactose and participated in the immune response of sea cucumber.
Collapse
Affiliation(s)
- Hui Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Ying Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
23
|
β-Glucosidase from Thermotoga naphthophila RKU-10 for exclusive synthesis of galactotrisaccharides: Kinetics and thermodynamics insight into reaction mechanism. Food Chem 2018; 240:422-429. [DOI: 10.1016/j.foodchem.2017.07.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
|
24
|
Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. Int J Biol Macromol 2017; 104:1055-1063. [PMID: 28652150 DOI: 10.1016/j.ijbiomac.2017.06.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/03/2017] [Accepted: 06/15/2017] [Indexed: 11/23/2022]
Abstract
A β-galactosidase gene (PbBGal2A) was cloned from Paenibacillus barengoltzii and expressed in Escherichia coli. The in silico analysis of the deduced amino acid sequences revealed that PbBGal2A shared the highest identity of 40% with the characterized glycoside hydrolase (GH) family 2 β-galactosidase from Actinobacillus pleuropneumoniae. The recombinant β-galactosidase (PbBGal2A) was purified with a molecular mass of 124.2kDa on SDS-PAGE. The optimal pH and temperature of PbBGal2A were determined to be pH 7.5 and 45°C, respectively. PbBGal2A was stable within pH 6.0-8.0 and up to 45°C. It completely hydrolyzed the lactose in milk and whey powder solution. In addition, PbBGal2A exhibited high transglycosylation activity and a maximum yield of 47.9% (w/w) for galactooligosaccharides (GOS) production was obtained in 8h at a lactose concentration of 350g/L. These properties make PbBGal2A an ideal candidate for commercial use in the production of lactose-free milk and GOS.
Collapse
|
25
|
|
26
|
From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochem Eng J 2016; 116:45-53. [PMID: 27885320 PMCID: PMC5117255 DOI: 10.1016/j.bej.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
β-Galactosidase from Streptococcus thermophilus was overexpressed in a food-grade organism, Lactobacillus plantarum WCFS1. Laboratory cultivations yielded 11,000 U of β-galactosidase activity per liter of culture corresponding to approximately 170 mg of enzyme. Crude cell-free enzyme extracts obtained by cell disruption and subsequent removal of cell debris showed high stability and were used for conversion of lactose in whey permeate. The enzyme showed high transgalactosylation activity. When using an initial concentration of whey permeate corresponding to 205 g L-1 lactose, the maximum yield of galacto-oligosaccharides (GOS) obtained at 50°C reached approximately 50% of total sugar at 90% lactose conversion, meaning that efficient valorization of the whey lactose was obtained. GOS are of great interest for both human and animal nutrition; thus, efficient conversion of lactose in whey into GOS using an enzymatic approach will not only decrease the environmental impact of whey disposal, but also create additional value.
Collapse
|
27
|
Hassan N, Geiger B, Gandini R, Patel BKC, Kittl R, Haltrich D, Nguyen TH, Divne C, Tan TC. Engineering a thermostable Halothermothrix orenii β-glucosidase for improved galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 2016; 100:3533-43. [PMID: 26621798 PMCID: PMC4803828 DOI: 10.1007/s00253-015-7118-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 01/02/2023]
Abstract
Lactose is produced in large amounts as a by-product from the dairy industry. This inexpensive disaccharide can be converted to more useful value-added products such as galacto-oligosaccharides (GOSs) by transgalactosylation reactions with retaining β-galactosidases (BGALs) being normally used for this purpose. Hydrolysis is always competing with the transglycosylation reaction, and hence, the yields of GOSs can be too low for industrial use. We have reported that a β-glucosidase from Halothermothrix orenii (HoBGLA) shows promising characteristics for lactose conversion and GOS synthesis. Here, we engineered HoBGLA to investigate the possibility to further improve lactose conversion and GOS production. Five variants that targeted the glycone (-1) and aglycone (+1) subsites (N222F, N294T, F417S, F417Y, and Y296F) were designed and expressed. All variants show significantly impaired catalytic activity with cellobiose and lactose as substrates. Particularly, F417S is hydrolytically crippled with cellobiose as substrate with a 1000-fold decrease in apparent k cat, but to a lesser extent affected when catalyzing hydrolysis of lactose (47-fold lower k cat). This large selective effect on cellobiose hydrolysis is manifested as a change in substrate selectivity from cellobiose to lactose. The least affected variant is F417Y, which retains the capacity to hydrolyze both cellobiose and lactose with the same relative substrate selectivity as the wild type, but with ~10-fold lower turnover numbers. Thin-layer chromatography results show that this effect is accompanied by synthesis of a particular GOS product in higher yields by Y296F and F417S compared with the other variants, whereas the variant F417Y produces a higher yield of total GOSs.
Collapse
Affiliation(s)
- Noor Hassan
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm, Sweden
| | - Barbara Geiger
- Food Biotechnology Laboratory, BOKU-University of Natural Resources and Life Sciences Vienna, 1190, Vienna, Austria
| | - Rosaria Gandini
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheelelaboratoriet, Scheeles väg 2, S-17177, Stockholm, Sweden
| | - Bharat K C Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Roman Kittl
- Food Biotechnology Laboratory, BOKU-University of Natural Resources and Life Sciences Vienna, 1190, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, BOKU-University of Natural Resources and Life Sciences Vienna, 1190, Vienna, Austria
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, BOKU-University of Natural Resources and Life Sciences Vienna, 1190, Vienna, Austria
| | - Christina Divne
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheelelaboratoriet, Scheeles väg 2, S-17177, Stockholm, Sweden
| | - Tien Chye Tan
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheelelaboratoriet, Scheeles väg 2, S-17177, Stockholm, Sweden.
| |
Collapse
|
28
|
Arreola S, Intanon M, Wongputtisin P, Kosma P, Haltrich D, Nguyen TH. Transferase Activity of Lactobacillal and Bifidobacterial β-Galactosidases with Various Sugars as Galactosyl Acceptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2604-2611. [PMID: 26975338 PMCID: PMC4819807 DOI: 10.1021/acs.jafc.5b06009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The β-galactosidases from Lactobacillus reuteri L103 (Lreuβgal), Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (Lbulβgal), and Bifidobacterium breve DSM 20281 (Bbreβgal-I and Bbreβgal-II) were investigated in detail with respect to their propensity to transfer galactosyl moieties onto lactose, its hydrolysis products D-glucose and D-galactose, and certain sugar acceptors such as N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GalNAc), and L-fucose (Fuc) under defined, initial velocity conditions. The rate constants or partitioning ratios (kNu/kwater) determined for these different acceptors (termed nucleophiles, Nu) were used as a measure for the ability of a certain substance to act as a galactosyl acceptor of these β-galactosidases. When using Lbulβgal or Bbreβgal-II, the galactosyl transfer to GlcNAc was 6 and 10 times higher than that to lactose, respectively. With lactose and GlcNAc used in equimolar substrate concentrations, Lbulβgal and Bbreβgal-II catalyzed the formation of N-acetyl-allolactosamine with the highest yields of 41 and 24%, respectively, as calculated from the initial GlcNAc concentration.
Collapse
Affiliation(s)
- Sheryl
Lozel Arreola
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
- Institute
of Chemistry, University of the Philippines
Los Baños, College, Laguna, Philippines
| | - Montira Intanon
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
- Department
of Veterinary Bioscience and Veterinary Public Health, Faculty of
Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pairote Wongputtisin
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
- Faculty
of Science, Maejo University, Chiang Mai, Thailand
| | - Paul Kosma
- Division
of Organic Chemistry, Department of Chemistry, BOKU − University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Dietmar Haltrich
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| | - Thu-Ha Nguyen
- Food
Biotechnology Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse
18, A-1190 Vienna, Austria
| |
Collapse
|
29
|
Peng X, Su H, Mi S, Han Y. A multifunctional thermophilic glycoside hydrolase from Caldicellulosiruptor owensensis with potential applications in production of biofuels and biochemicals. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:98. [PMID: 27141233 PMCID: PMC4852416 DOI: 10.1186/s13068-016-0509-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Thermophilic enzymes have attracted much attention for their advantages of high reaction velocity, exceptional thermostability, and decreased risk of contamination. Exploring efficient thermophilic glycoside hydrolases will accelerate the industrialization of biofuels and biochemicals. RESULTS A multifunctional glycoside hydrolase (GH) CoGH1A, belonging to GH1 family with high activities of β-d-glucosidase, exoglucanase, β-d-xylosidase, β-d-galactosidase, and transgalactosylation, was cloned and expressed from the extremely thermophilic bacterium Caldicellulosiruptor owensensis. The enzyme exerts excellent thermostability by retaining 100 % activity after 12-h incubation at 75 °C. The catalytic coefficients (k cat/K m) of the enzyme against pNP-β-D-galactopyranoside, pNP-β-D-glucopyranoside, pNP-β-D-cellobioside, pNP-β-D-xylopyranoside, and cellobiose were, respectively, 7450.0, 2467.5, 1085.4, 90.9, and 137.3 mM(-1) s(-1). When CoGH1A was supplemented at the dosage of 20 Ucellobiose g(-1) biomass for hydrolysis of the pretreated corn stover, comparing with the control, the glucose and xylose yields were, respectively, increased 37.9 and 42.1 %, indicating that the enzyme contributed not only for glucose but also for xylose release. The efficiencies of lactose decomposition and synthesis of galactooligosaccharides (GalOS) by CoGH1A were investigated at low (40 g L(-1)) and high (500 g L(-1)) initial lactose concentrations. At low lactose concentration, the time for decomposition of 83 % lactose was 10 min, which is much shorter than the reported 2-10 h for reaching such a decomposition rate. At high lactose concentration, after 50-min catalysis, the GalOS concentration reached 221 g L(-1) with a productivity of 265.2 g L(-1) h(-1). This productivity is at least 12-fold higher than those reported in literature. CONCLUSIONS The multifunctional glycoside hydrolase CoGH1A has high capabilities in saccharification of lignocellulosic biomass, decomposition of lactose, and synthesis of galactooligosaccharides. It is a promising enzyme to be used for bioconversion of carbohydrates in industrial scale. In addition, the results of this study indicate that the extremely thermophilic bacteria are potential resources for screening highly efficient glycoside hydrolases for the production of biofuels and biochemicals.
Collapse
Affiliation(s)
- Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hong Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuofu Mi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|