1
|
Chandrashekar DV, Steinberg RA, Han D, Sumbria RK. Alcohol as a Modifiable Risk Factor for Alzheimer's Disease-Evidence from Experimental Studies. Int J Mol Sci 2023; 24:9492. [PMID: 37298443 PMCID: PMC10253673 DOI: 10.3390/ijms24119492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment and memory loss. Epidemiological evidence suggests that heavy alcohol consumption aggravates AD pathology, whereas low alcohol intake may be protective. However, these observations have been inconsistent, and because of methodological discrepancies, the findings remain controversial. Alcohol-feeding studies in AD mice support the notion that high alcohol intake promotes AD, while also hinting that low alcohol doses may be protective against AD. Chronic alcohol feeding to AD mice that delivers alcohol doses sufficient to cause liver injury largely promotes and accelerates AD pathology. The mechanisms by which alcohol can modulate cerebral AD pathology include Toll-like receptors, protein kinase-B (Akt)/mammalian target of rapamycin (mTOR) pathway, cyclic adenosine monophosphate (cAMP) response element-binding protein phosphorylation pathway, glycogen synthase kinase 3-β, cyclin-dependent kinase-5, insulin-like growth factor type-1 receptor, modulation of β-amyloid (Aβ) synthesis and clearance, microglial mediated, and brain endothelial alterations. Besides these brain-centric pathways, alcohol-mediated liver injury may significantly affect brain Aβ levels through alterations in the peripheral-to-central Aβ homeostasis. This article reviews published experimental studies (cell culture and AD rodent models) to summarize the scientific evidence and probable mechanisms (both cerebral and hepatic) by which alcohol promotes or protects against AD progression.
Collapse
Affiliation(s)
- Devaraj V. Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
| | - Ross A. Steinberg
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Kurchaba N, Charette JM, LeMoine CMR. Metabolic consequences of PGC-1α dysregulation in adult zebrafish muscle. Am J Physiol Regul Integr Comp Physiol 2022; 323:R319-R330. [PMID: 35670765 DOI: 10.1152/ajpregu.00188.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The peroxisome proliferator activated receptor gamma co-activator 1 alpha (PGC-1α) is central to the regulation of cellular and mitochondrial energy homeostasis in mammals, but its role in other vertebrates remains unclear. Indeed, previous work suggests extensive structural and functional divergence of PGC-1α in teleosts but this remains to be directly tested. Here, we describe the initial characterization of heterozygous PGC-1α mutant zebrafish lines created by CRISPR-Cas9 disruptions of an evolutionarily conserved regulatory region of the PGC-1α proximal promoter. Using qPCR, we confirmed the disruption of PGC-1α gene expression in striated muscle, leading to a simultaneous 4-fold increase in mixed skeletal muscle PGC-1α mRNA levels and an opposite 4-fold downregulation in cardiac muscle. In mixed skeletal muscle, most downstream effector genes were largely unaffected yet two mitochondrial lipid transporters, carnitine palmitoyltransferase 1 and 2, were strongly induced. Conversely, PGC-1α depression in cardiac muscle reduced the expression of several transcriptional regulators (estrogen related receptor alpha, nuclear respiratory factor 1 and PGC-1β) without altering metabolic gene expression. Using high resolution respirometry, we determined that white muscle exhibited increased lipid oxidative capacity with little difference in markers of mitochondrial abundance. Finally, using whole animal intermittent respirometry, we show that mutant fish exhibit a 2-fold higher basal metabolism than their wildtype counterparts. Altogether, this new model confirms a central but complex role for PGC-1α in mediating energy utilization in zebrafish and we propose its use as a valuable tool to explore the intricate regulatory pathways of energy homeostasis in a popular biomedical model.
Collapse
Affiliation(s)
| | - J Michael Charette
- Department of Chemistry, Brandon University, Brandon, MB, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | | |
Collapse
|
3
|
Shrestha J, Santerre M, Allen CNS, Arjona SP, Merali C, Mukerjee R, Chitrala KN, Park J, Bagashev A, Bui V, Eugenin EA, Merali S, Kaul M, Chin J, Sawaya BE. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci 2022; 14:811481. [PMID: 35615594 PMCID: PMC9124804 DOI: 10.3389/fnagi.2022.811481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Carmen Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | | | - Jin Park
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
| | - Viet Bui
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Salim Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jeannie Chin
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
4
|
Liu M, Guo S, Huang D, Hu D, Wu Y, Zhou W, Song W. Chronic Alcohol Exposure Alters Gene Expression and Neurodegeneration Pathways in the Brain of Adult Mice. J Alzheimers Dis 2022; 86:315-331. [PMID: 35034908 DOI: 10.3233/jad-215508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic alcohol consumption can alter the structure of the central nervous system and disrupt cognitive function. Alcoholics are more likely to develop neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, the role of alcohol in promoting neurotoxicity and neurodegeneration remains unclear. OBJECTIVE In this study, we aimed at estimating the effects of chronic binge alcohol exposure on brain transcriptome and behavior changes in a chronic "Drinking in the Dark" (DID) mouse model. METHODS The adult C57BL/6J male mice were exposed to alcohol for 4 weeks. RNA-seq was applied to assess the effects of chronic alcohol exposure on transcriptome in brain. The open field test and novel object recognition test were used to assess the changes of anxiety level, locomotive function, and short-term memory induced by alcohol. RNA-seq analysis revealed that chronic alcohol exposure caused significant change in the brain transcriptome, especially in prefrontal cortex. RESULTS The gene dysregulation caused by chronic alcohol exposure includes pathways related to mitochondrial energy metabolism (such as oxidative phosphorylation) and multiple neurodegenerative diseases (such as AD and PD). Furthermore, the pathway and network analyses suggest that the genes involved in mitochondrial energy metabolism, ubiquitin-proteasome system, Wnt signaling pathway, and microtubules may attribute to the neurotoxicity and neurodegeneration caused by chronic alcohol consumption. Additionally, locomotive function was also significantly impaired. CONCLUSION This work provides gene transcriptional profile data for future research on alcohol-induced neurodegenerative diseases, especially AD and PD.
Collapse
Affiliation(s)
- Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daochao Huang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
MicroRNAs in the pathophysiology of Alzheimer's disease and Parkinson's disease: an overview. Mol Neurobiol 2022; 59:1589-1603. [PMID: 35001356 DOI: 10.1007/s12035-022-02727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons of the central nervous system (CNS) and serve as a major cause of morbidity, mortality and functional dependence especially among the elderly. Despite extensive research and development efforts, the success rate of clinical pipelines has been very limited. However, microRNAs (miRs) have been proved to be of crucial importance in regulating intracellular pathways for various pathologic conditions including those of a neurodegenerative nature. There is ample evidence of altered levels of various miRs in clinical samples of Alzheimer's disease and Parkinson's disease patients with potentially major clinical implications. In the current review, we aim to summarize the relevant literature on the role of miRs in the pathophysiology of Alzheimer's disease (AD) and Parkinson's disease (PD) as the two globally predominant neurodegenerative conditions.
Collapse
|
6
|
Deng W, He J, Tang XM, Li CY, Tong J, Qi D, Wang DX. Alcohol inhibits alveolar fluid clearance through the epithelial sodium channel via the A2 adenosine receptor in acute lung injury. Mol Med Rep 2021; 24:725. [PMID: 34396442 PMCID: PMC8404097 DOI: 10.3892/mmr.2021.12364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic alcohol abuse increases the risk of mortality and poor outcomes in patients with acute respiratory distress syndrome. However, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the effects of chronic alcohol consumption on lung injury and clarify the signaling pathways involved in the inhibition of alveolar fluid clearance (AFC). In order to produce rodent models with chronic alcohol consumption, wild‑type C57BL/6 mice were treated with alcohol. A2a adenosine receptor (AR) small interfering (si)RNA or A2bAR siRNA were transfected into the lung tissue of mice and primary rat alveolar type II (ATII) cells. The rate of AFC in lung tissue was measured during exposure to lipopolysaccharide (LPS). Epithelial sodium channel (ENaC) expression was determined to investigate the mechanisms underlying alcohol‑induced regulation of AFC. In the present study, exposure to alcohol reduced AFC, exacerbated pulmonary edema and worsened LPS‑induced lung injury. Alcohol caused a decrease in cyclic adenosine monophosphate (cAMP) levels and inhibited α‑ENaC, β‑ENaC and γ‑ENaC expression levels in the lung tissue of mice and ATII cells. Furthermore, alcohol decreased α‑ENaC, β‑ENaC and γ‑ENaC expression levels via the A2aAR or A2bAR‑cAMP signaling pathways in vitro. In conclusion, the results of the present study demonstrated that chronic alcohol consumption worsened lung injury by aggravating pulmonary edema and impairing AFC. An alcohol‑induced decrease of α‑ENaC, β‑ENaC and γ‑ENaC expression levels by the A2AR‑mediated cAMP pathway may be responsible for the exacerbated effects of chronic alcohol consumption in lung injury.
Collapse
Affiliation(s)
- Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xu-Mao Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chang-Yi Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jin Tong
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dao-Xin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
7
|
Lai D, Kapoor M, Wetherill L, Schwandt M, Ramchandani VA, Goldman D, Chao M, Almasy L, Bucholz K, Hart RP, Kamarajan C, Meyers JL, Nurnberger JI, Tischfield J, Edenberg HJ, Schuckit M, Goate A, Scott DM, Porjesz B, Agrawal A, Foroud T. Genome-wide admixture mapping of DSM-IV alcohol dependence, criterion count, and the self-rating of the effects of ethanol in African American populations. Am J Med Genet B Neuropsychiatr Genet 2021; 186:151-161. [PMID: 32652861 PMCID: PMC9376735 DOI: 10.1002/ajmg.b.32805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
African Americans (AA) have lower prevalence of alcohol dependence and higher subjective response to alcohol than European Americans. Genome-wide association studies (GWAS) have identified genes/variants associated with alcohol dependence specifically in AA; however, the sample sizes are still not large enough to detect variants with small effects. Admixture mapping is an alternative way to identify alcohol dependence genes/variants that may be unique to AA. In this study, we performed the first admixture mapping of DSM-IV alcohol dependence diagnosis, DSM-IV alcohol dependence criterion count, and two scores from the self-rating of effects of ethanol (SRE) as measures of response to alcohol: the first five times of using alcohol (SRE-5) and average of SRE across three times (SRE-T). Findings revealed a region on chromosome 4 that was genome-wide significant for SRE-5 (p value = 4.18E-05). Fine mapping did not identify a single causal variant to be associated with SRE-5; instead, conditional analysis concluded that multiple variants collectively explained the admixture mapping signal. PPARGC1A, a gene that has been linked to alcohol consumption in previous studies, is located in this region. Our finding suggests that admixture mapping is a useful tool to identify genes/variants that may have been missed by current GWAS approaches in admixed populations.
Collapse
Affiliation(s)
- Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse & Alcoholism, Bethesda, MD
| | - Vijay A. Ramchandani
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - David Goldman
- Office of the Clinical Director, National Institute on Alcohol Abuse & Alcoholism, Bethesda, MD
| | - Michael Chao
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Kathleen Bucholz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY
| | - John I. Nurnberger
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Jay Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Marc Schuckit
- Department of Psychiatry, University of California, San Diego Medical School, San Diego, CA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY
| | - Denise M. Scott
- Departments of Pediatrics and Human Genetics, Howard University, Washington, DC
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, NY
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
8
|
cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020; 10:biom10101433. [PMID: 33050657 PMCID: PMC7600246 DOI: 10.3390/biom10101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.
Collapse
|
9
|
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Diagnostic and Therapeutic Potential of TSPO Studies Regarding Neurodegenerative Diseases, Psychiatric Disorders, Alcohol Use Disorders, Traumatic Brain Injury, and Stroke: An Update. Cells 2020; 9:cells9040870. [PMID: 32252470 PMCID: PMC7226777 DOI: 10.3390/cells9040870] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, including neurons and glia cells. Concerning the effects of 18-kDa translocator protein (TSPO) on glial activation, as well as being associated with neuronal cell death, as a response mechanism to oxidative stress, the changes of its expression assayed with the aid of TSPO-specific positron emission tomography (PET) tracers' uptake could also offer evidence for following the pathogenesis of these disorders. This could potentially increase the number of diagnostic tests to accurately establish the stadium and development of the disease in question. Nonetheless, the differences in results regarding TSPO PET signals of first and second generations of tracers measured in patients with neurological disorders versus healthy controls indicate that we still have to understand more regarding TSPO characteristics. Expanding on investigations regarding the neuroprotective and healing effects of TSPO ligands could also contribute to a better understanding of the therapeutic potential of TSPO activity for brain damage due to brain injury and disease. Studies so far have directed attention to the effects on neurons and glia, and processes, such as death, inflammation, and regeneration. It is definitely worthwhile to drive such studies forward. From recent research it also appears that TSPO ligands, such as PK11195, Etifoxine, Emapunil, and 2-Cl-MGV-1, demonstrate the potential of targeting TSPO for treatments of brain diseases and disorders.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
- Correspondence: (J.D.-S.); (L.V.)
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
| | - Leo Veenman
- Technion-Israel Institute of Technology, Faculty of Medicine, Rappaport Institute of Medical Research, 1 Efron Street, P.O. Box 9697, Haifa 31096, Israel
- Correspondence: (J.D.-S.); (L.V.)
| |
Collapse
|
10
|
Gaballah HH, Ghanem HB, Tahoon NM, Mohamed DA, Ebeid AM. Hesperidin promotes lysosomal biogenesis in chronically ethanol-induced cardiotoxicity in rats: A proposed mechanisms of protection. J Biochem Mol Toxicol 2018; 33:e22253. [DOI: 10.1002/jbt.22253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Hanaa H. Gaballah
- Medical Biochemistry Department; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Heba B. Ghanem
- Medical Biochemistry Department; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Nahid M. Tahoon
- Physiology Department; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Darin A. Mohamed
- Histopathology Department; Faculty of Medicine, Tanta University; Tanta Egypt
| | - Abla M. Ebeid
- Clinical Pharmacy Department; Faculty of Pharmacy, AL-Delta University; Gamasa Egypt
| |
Collapse
|
11
|
Gholinejad M, Jafari Anarkooli I, Taromchi A, Abdanipour A. Adenosine decreases oxidative stress and protects H 2O 2-treated neural stem cells against apoptosis through decreasing Mst1 expression. Biomed Rep 2018; 8:439-446. [PMID: 29732147 DOI: 10.3892/br.2018.1083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H2O2) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 (Mst1), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H2O2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1, nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H2O2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.
Collapse
Affiliation(s)
- Masoumeh Gholinejad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Iraj Jafari Anarkooli
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Amirhossein Taromchi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Alireza Abdanipour
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
12
|
Tapia-Rojas C, Mira RG, Torres AK, Jara C, Pérez MJ, Vergara EH, Cerpa W, Quintanilla RA. Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication. Birth Defects Res 2017; 109:1623-1639. [DOI: 10.1002/bdr2.1172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Rodrigo G. Mira
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago 8331150 Chile
| | - Angie K. Torres
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Claudia Jara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - María José Pérez
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Erick H. Vergara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago 8331150 Chile
| | - Rodrigo A. Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| |
Collapse
|
13
|
Mitochondrial Biogenesis in Response to Chromium (VI) Toxicity in Human Liver Cells. Int J Mol Sci 2017; 18:ijms18091877. [PMID: 28906435 PMCID: PMC5618526 DOI: 10.3390/ijms18091877] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) is a ubiquitous environmental pollutant, which poses a threat to human public health. Recent studies have shown that mitochondrial biogenesis can be activated by inflammatory and oxidative stress. However, whether mitochondrial biogenesis is involved in Cr(VI)-induced hepatotoxicity is unclear. Here, we demonstrated the induction of inflammatory response and oxidative stress, as indicated by upregulation of inflammatory factors and reactive oxygen species (ROS). Subsequently, we demonstrated that mitochondrial biogenesis, comprising the mitochondrial DNA copy number and mitochondrial mass, was significantly increased in HepG2 cells exposed to low concentrations of Cr(VI). Expression of genes related to mitochondrial function complex I and complex V was upregulated at low concentrations of Cr(VI). mRNA levels of antioxidant enzymes, including superoxide dismutase 1 and 2 (SOD1 and SOD2, respectively), kech like ECH associate protein 1 (KEAP1) and nuclear respiratory factor 2 (NRF-2), were also upregulated. Consistent with the above results, mRNA and protein levels of key transcriptional regulators of mitochondrial biogenesis such as the peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), NRF-1 and mitochondrial transcription factor A (TFAM) were increased by low concentrations of Cr(VI) in HepG2 cells. Moreover, we found that PGC-1α and NRF-1 tended to translocate into the nucleus. The expression of genes potentially involved in mitochondrial biogenesis pathways, including mRNA level of silent information regulator-1 (SIRT1), forkhead box class-O (FOXO1), threonine kinase 1 (AKT1), and cAMP response element-binding protein (CREB1), was also upregulated. In contrast, mitochondrial biogenesis was inhibited and the expression of its regulatory factors and antioxidants was downregulated at high and cytotoxic concentrations of Cr(VI) in HepG2 cells. It is believed that pretreatment with α-tocopherol could be acting against the mitochondrial biogenesis imbalance induced by Cr(VI). In conclusion, our study suggests that the homeostasis of mitochondrial biogenesis may be an important cellular compensatory mechanism against Cr(VI)-induced toxicity and a promising detoxification target.
Collapse
|
14
|
Han J, Gao L, Dong J, Wang Y, Zhang M, Zheng J. Dopamine attenuates ethanol-induced neuroapoptosis in the developing rat retina via the cAMP/PKA pathway. Mol Med Rep 2017; 16:1982-1990. [PMID: 28656313 PMCID: PMC5561998 DOI: 10.3892/mmr.2017.6823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/24/2017] [Indexed: 01/11/2023] Open
Abstract
Apoptosis has been identified as the primary cause of fetal alcohol spectrum disorder (FASD), and the development of methods to prevent and treat FASD have been based on the mechanisms of alcohol-induced apoptosis. The present study aimed to explore the effects of dopamine on alcohol-induced neuronal apoptosis using whole-mount cultures of rat retinas (postnatal day 7). Retinas were initially incubated with ethanol (100, 200 or 500 mM), and in subsequent analyses retinas were co-incubated with ethanol (200 mM) and dopamine (10 µM). In addition, several antagonists and inhibitors were used, including a D1 dopamine receptor (D1R) antagonist (SCH23390; 10 µM), a D2R antagonist (raclopride; 40 µM), an adenosine A2A receptor (AA2AR) antagonist (SCH58261; 100 nM), an adenylyl cyclase (AC) inhibitor (SQ22536; 100 µM) and a PKA inhibitor (H-89; 1 µM). The results demonstrated that exposure increased neuroapoptosis in the retinal ganglion cell layer (GCL) in a dose-dependent manner. Dopamine treatment significantly attenuated ethanol-induced neuronal apoptosis. D1R, D2R and AA2AR antagonists partially inhibited the protective effects of dopamine against ethanol-induced apoptosis; similar results were observed with AC and PKA inhibitor treatments. In summary, the present study demonstrated that dopamine treatment may be able to attenuate alcohol-induced neuroapoptosis in the developing rat retina by activating D1R, D2R and AA2AR, and by upregulating cyclic AMP/protein kinase A signaling.
Collapse
Affiliation(s)
- Junde Han
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Lingqi Gao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Jing Dong
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Yingtian Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Mazhong Zhang
- Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
15
|
Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. J Neurochem 2017; 141:766-782. [PMID: 28376279 PMCID: PMC5643047 DOI: 10.1111/jnc.14033] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Luo
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Huajun Jin
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Vellareddy Anantharam
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Arthi Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
16
|
Avila DV, Barker DF, Zhang J, McClain CJ, Barve S, Gobejishvili L. Dysregulation of hepatic cAMP levels via altered Pde4b expression plays a critical role in alcohol-induced steatosis. J Pathol 2017; 240:96-107. [PMID: 27287961 DOI: 10.1002/path.4760] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/06/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Alcohol-induced hepatic steatosis is a significant risk factor for progressive liver disease. Cyclic adenosine monophosphate (cAMP) signalling has been shown to significantly regulate lipid metabolism; however, the role of altered cAMP homeostasis in alcohol-mediated hepatic steatosis has never been studied. Our previous work demonstrated that increased expression of hepatic phosphodiesterase 4 (Pde4), which specifically hydrolyses and decreases cAMP levels, plays a pathogenic role in the development of liver inflammation/injury. The aim of this study was to examine the role of PDE4 in alcohol-induced hepatic steatosis. C57BL/6 wild-type and Pde4b knockout (Pde4b(-/-) ) mice were pair-fed control or ethanol liquid diets. One group of wild-type mice received rolipram, a PDE4-specific inhibitor, during alcohol feeding. We demonstrate for the first time that an early increase in PDE4 enzyme expression and a resultant decrease in hepatic cAMP levels are associated with the significant reduction in carnitine palmitoyltransferase 1A (Cpt1a) expression. Notably, alcohol-fed (AF) Pde4b(-/-) mice and AF wild-type mice treated with rolipram had significantly lower hepatic free fatty acid content compared with AF wild-type mice. Importantly, PDE4 inhibition in alcohol-fed mice prevented the decrease in hepatic Cpt1a expression via the Pparα/Sirt1/Pgc1α pathway. These results demonstrate that the alcohol- induced increase in hepatic Pde4, specifically Pde4b expression, and compromised cAMP signalling predispose the liver to impaired fatty acid oxidation and the development of steatosis. Moreover, these data also suggest that hepatic PDE4 may be a clinically relevant therapeutic target for the treatment of alcohol-induced hepatic steatosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diana V Avila
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - David F Barker
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - JingWen Zhang
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA.,Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA.,Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA.,Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA.,Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
17
|
Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother 2017; 87:721-740. [DOI: 10.1016/j.biopha.2016.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/19/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
|
18
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev 2016; 155:10-21. [DOI: 10.1016/j.mad.2016.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
|
20
|
Pereira RB, Andrade PB, Valentão P. A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotox Res 2015; 28:253-67. [PMID: 26105693 DOI: 10.1007/s12640-015-9536-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
Substance use disorder is an emerging problem concerning to human health, causing severe side effects, including neurotoxicity. The use of illegal drugs and the misuse of prescription or over-the-counter drugs are growing in this century, being one of the major public health problems. Ethanol and cocaine are one of the most frequently used drugs and, according to the National Institute on Drug Abuse, their concurrent consumption is one of the major causes for emergency hospital room visits. These molecules act in the brain through different mechanisms, altering the nervous system function. Researchers have focused the attention not just in the mechanism of action of these drugs, but also in the mechanism by which they damage the nervous tissue (neurotoxicity). Therefore, the goal of the present review is to provide a global perspective about the mechanisms of the neurotoxicity of cocaine and ethanol.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | | | | |
Collapse
|