1
|
Zhang B, Zhang M, Tian J, Zhang X, Zhang D, Li J, Yang L. Advances in the regulation of radiation-induced apoptosis by polysaccharides: A review. Int J Biol Macromol 2024; 263:130173. [PMID: 38360238 DOI: 10.1016/j.ijbiomac.2024.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polysaccharides are biomolecules composed of monosaccharides that are widely found in animals, plants and microorganisms and are of interest for their various health benefits. Cumulative studies have shown that the modulation of radiation-induced apoptosis by polysaccharides can be effective in preventing and treating a wide range of radiation injuries with safety and few side effects. Therefore, this paper summarizes the monosaccharide compositions, molecular weights, and structure-activity relationships of natural polysaccharides that regulate radiation-induced apoptosis, and also reviews the molecular mechanisms by which these polysaccharides modulate radiation-induced apoptosis, primarily focusing on promoting cancer cell apoptosis to enhance radiotherapy efficacy, reducing radiation damage to normal tissues, and inhibiting apoptosis in normal cells. Additionally, the role of gut microbiota in mediating the interaction between polysaccharides and radiation is discussed, providing innovative ideas for various radiation injuries, including hematopoiesis, immunity, and organ damage. This review will contribute to a better understanding of the value of natural polysaccharides in the field of radiation and provide guidance for the development of natural radioprotective agents and radiosensitizers.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Mingyu Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Dan Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jiabao Li
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Lei Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Sasidharan A, Sabu S, Venugopal V. Marine polymers and their antioxidative perspective. MARINE ANTIOXIDANTS 2023:379-393. [DOI: 10.1016/b978-0-323-95086-2.00031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Su J, Liao D, Su Y, Liu S, Jiang L, Wu J, Liu Z, Wu Y. Novel polysaccharide extracted from Sipunculus nudus inhibits HepG2 tumour growth in vivo by enhancing immune function and inducing tumour cell apoptosis. J Cell Mol Med 2021; 25:8338-8351. [PMID: 34302428 PMCID: PMC8419178 DOI: 10.1111/jcmm.16793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
A novel polysaccharide was extracted from Sipunculus nudus (SNP). The molecular weight (MW) of SNP was determined to be 9223 Da by high‐performance gel permeation chromatography analyses, and the structure of the SNP repeat units was determined to be →3,4‐β‐D‐GlcpNAC (1→ and →4) ‐α‐D‐Glcp (1→ in the ratio of 15:1; →2) ‐α ‐D‐Galp ‐ (1→ as a side chain; and β‐D‐Galp‐(1→ and α‐ D‐Glcp ‐ (1→ as end groups by GC‐MS analysis and NMR assays. The effect of SNP on hepatoma HepG2‐bearing mice was analysed to verify its potential in the clinical treatment of liver cancer. A total of 90 male athymic nu/nu mice were divided into therapeutic and preventive groups and fed with different amounts of SNP. The antitumour effect of SNP on HepG2‐bearing mice and mechanism of such were studied by analysing the tumour size, spleen index, thymus index, immune factors in the blood, tumour apoptosis factors, etc. The results suggest that SNP not only increased the index of immune organs in the body, but also enhanced the secretion of immune factors, including interleukin‐2, interferon gamma and tumour necrosis factor‐alpha in the serum. SNP induced the apoptosis of tumour cells via the mitochondrial apoptosis pathway, which upregulated caspase‐3, caspase‐8, caspase‐9 and BCL2‐associated X, but downregulated B‐cell lymphoma‐2 and vascular endothelial growth factor protein expression. In conclusion, SNP inhibited tumour growth by enhancing immune function and inducing tumour cell apoptosis in HepG2‐bearing mice. Therefore, SNP may be further investigated as a promising candidate for future antitumour drugs.
Collapse
Affiliation(s)
- Jie Su
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Dengyuan Liao
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yongchang Su
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Shuji Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Linlin Jiang
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Jingna Wu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yuping Wu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Krueger K, Boehme E, Klettner AK, Zille M. The potential of marine resources for retinal diseases: a systematic review of the molecular mechanisms. Crit Rev Food Sci Nutr 2021; 62:7518-7560. [PMID: 33970706 DOI: 10.1080/10408398.2021.1915242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases. Recently, there has been a growing interest in resources from marine animals and plants for the prevention of retinal diseases through nutrition. Especially fish intake and omega-3 fatty acids have already led to promising results, including associations with a reduced incidence of retinal diseases. However, the underlying molecular mechanisms are insufficiently explained. The aim of this review was to summarize the known mechanistic effects of marine resources on the pathophysiological processes in retinal diseases. We performed a systematic literature review following the PRISMA guidelines and identified 107 studies investigating marine resources in the context of retinal diseases. Of these, 46 studies described the underlying mechanisms including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective, cytoprotective, metabolic, and retinal function effects, which we critically summarize. We further discuss perspectives on the use of marine resources for human nutrition to prevent retinal diseases with a particular focus on regulatory aspects, health claims, safety, and bioavailability.
Collapse
Affiliation(s)
- Kristin Krueger
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Elke Boehme
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Lin H, Zheng Z, Yuan J, Zhang C, Cao W, Qin X. Collagen Peptides Derived from Sipunculus nudus Accelerate Wound Healing. Molecules 2021; 26:molecules26051385. [PMID: 33806637 PMCID: PMC7961935 DOI: 10.3390/molecules26051385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Marine collagen peptides have high potential in promoting skin wound healing. This study aimed to investigate wound healing activity of collagen peptides derived from Sipunculus nudus (SNCP). The effects of SNCP on promoting healing were studied through a whole cortex wound model in mice. Results showed that SNCP consisted of peptides with a molecular weight less than 5 kDa accounted for 81.95%, rich in Gly and Arg. SNCP possessed outstanding capacity to induce human umbilical vein endothelial cells (HUVEC), human immortalized keratinocytes (HaCaT) and human skin fibroblasts (HSF) cells proliferation and migration in vitro. In vivo, SNCP could markedly improve the healing rate and shorten the scab removal time, possessing a scar-free healing effect. Compared with the negative control group, the expression level of tumor necrosis factor-α, interleukin-1β and transforming growth factor-β1 (TGF-β1) in the SNCP group was significantly down-regulated at 7 days post-wounding (p < 0.01). Moreover, the mRNA level of mothers against decapentaplegic homolog 7 (Smad7) in SNCP group was up-regulated (p < 0.01); in contrast, type II TGF-β receptors, collagen I and α-smooth muscle actin were significantly down-regulated at 28 days (p < 0.01). These results indicate that SNCP possessed excellent activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to reducing inflammation, improving collagen deposition and recombination and blockade of the TGF-β/Smads signal pathway. Therefore, SNCP may have promising clinical applications in skin wound repair and scar inhibition.
Collapse
Affiliation(s)
- Haisheng Lin
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhihong Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
| | - Jianjun Yuan
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- Correspondence: (J.Y.); (C.Z.); Tel.: +86-15980016199 (J.Y.); +86-13902501963 (C.Z.)
| | - Chaohua Zhang
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (J.Y.); (C.Z.); Tel.: +86-15980016199 (J.Y.); +86-13902501963 (C.Z.)
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Iqbal S, Shah MA, Rasul A, Saadullah M, Tabassum S, Ali S, Zafar M, Muhammad H, Uddin MS, Batiha GES, Vargas-De-La-Cruz C. Radioprotective Potential of Nutraceuticals and their Underlying Mechanism of Action. Anticancer Agents Med Chem 2021; 22:40-52. [PMID: 33622231 DOI: 10.2174/1871520621666210223101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Radiations are an efficient treatment modality in cancer therapy. Besides the treatment effects of radiations, the ionizing radiations interact with biological systems and generate reactive oxygen species that interfere with the normal cellular process. Previous investigations of synthetic radioprotectors have shown less effectiveness, mainly owing to some limiting effects. The nutraceuticals act as efficient radioprotectors to protect the tissues from the deleterious effects of radiation. The main radioprotection mechanism of nutraceuticals is the scavenging of free radicals while other strategies are involved modulation of signaling transduction of pathways like MAPK (JNK, ERK1/2, ERK5, and P38), NF-kB, cytokines, and their protein regulatory genes expression. The current review is focused on the radioprotective effects of nutraceuticals including vitamin E, -C, organosulphur compounds, phenylpropanoids, and polysaccharides. These natural entities protect against radiation-induced DNA damage. The review mainly entails the antioxidant perspective and mechanism of action of their radioprotective activities on a molecular level, DNA repair pathway, anti-inflammation, immunomodulatory effects, the effect on cellular signaling pathways, and regeneration of hematopoietic cells.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad. Pakistan
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013. China
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad. Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira. Egypt
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria (CLEIBA), Universidad Nacional Mayor de San Marcos, Lima15001. Peru
| |
Collapse
|
7
|
Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol 2020; 153:373-384. [PMID: 32087223 DOI: 10.1016/j.ijbiomac.2020.02.203] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is increasingly used to successfully diagnose many human health problems, but ionizing radiation may cause damage to organs/tissues in the living organisms such as the spleen, liver, skin, and brain. Many radiation protective agents have been discovered, with the deepening of radiation research. Unfortunately, these protective agents have many side effects, which cause drug resistance, nausea, vomiting, osteoporosis, etc. The polysaccharides extracted from natural sources are widely available and low in toxicity. In vivo and in vitro experiments have demonstrated that polysaccharides have anti-radiation activity through anti-oxidation, immune regulation, protection of hematopoietic system and protection against DNA damage. Recently, some studies have shown that polysaccharides were resistant to radiation. In the review, the anti-radiation activities of polysaccharides from different sources are summarized, and the anti-radiation mechanisms are discussed as well. It can be used to develop more effective anti-radiation management drugs.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
8
|
Zhong Q, Wei B, Wang S, Ke S, Chen J, Zhang H, Wang H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar Drugs 2019; 17:E674. [PMID: 31795427 PMCID: PMC6950075 DOI: 10.3390/md17120674] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Marine-derived antioxidant polysaccharides have aroused extensive attention because of their potential nutritional and therapeutic benefits. However, the comprehensive comparison of identified marine-derived antioxidant polysaccharides is still inaccessible, which would facilitate the discovery of more efficient antioxidants from marine organisms. Thus, this review summarizes the sources, chemical composition, structural characteristics, and antioxidant capacity of marine antioxidant polysaccharides, as well as their protective in vivo effects mediated by antioxidative stress reported in the last few years (2013-2019), and especially highlights the dominant role of marine algae as antioxidant polysaccharide source. In addition, the relationships between the chemical composition and structural characteristics of marine antioxidant polysaccharides with their antioxidant capacity were also discussed. The antioxidant activity was found to be determined by multiple factors, including molecular weight, monosaccharide composition, sulfate position and its degree.
Collapse
Affiliation(s)
- Qiwu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (Q.Z.); (B.W.); (S.W.); (S.K.); (J.C.); (H.Z.)
| |
Collapse
|
9
|
Ge YH, Chen YY, Zhou GS, Liu X, Tang YP, Liu R, Liu P, Li N, Yang J, Wang J, Yue SJ, Zhou H, Duan JA. A Novel Antithrombotic Protease from Marine Worm Sipunculus Nudus. Int J Mol Sci 2018; 19:ijms19103023. [PMID: 30287737 PMCID: PMC6213608 DOI: 10.3390/ijms19103023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Sipunculus nudus, an old marine species, has great potential for use as functional seafood due to its various bioactivities. Its potential antithrombotic activity pushed us to isolate the bio-active components bio-guided by tracking fibrinolytic activity. As a result, a novel protease named as SK (the kinase obtained from S. nudus) was obtained, which possessed a molecular weight of 28,003.67 Da and 15 N-terminal amino acid sequences of PFPVPDPFVWDTSFQ. SK exerted inhibitory effects on thrombus formation through improving the coagulation system with dose-effect relationship within a certain range. Furthermore, in most cases SK got obviously better effect than that of urokinase. With the help of untargeted mass spectrometry-based metabolomics profiling, arachidonic acid, sphingolipid, and nicotinate and nicotinamide mechanism pathways were found to be important pathways. They revealed that the effect mechanism of SK on common carotid arterial thrombosis induced by FeCl3 was achieved by inhibiting vessel contraction, platelet aggregation, adhesion, and release, correcting endothelial cell dysfunction and retarding process of thrombus formation. This study demonstrated SK was a promising thrombolytic agent on the basis of its comprehensive activities on thrombosis, and it should get further exploitation and utilization.
Collapse
Affiliation(s)
- Ya-Hui Ge
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China.
| | - Jie Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Jing Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Souza Filho MD, Medeiros JV, Vasconcelos DF, Silva DA, Leódido AC, Fernandes HF, Silva FR, França LF, Lenardo D, Pinto GR. Orabase formulation with cashew gum polysaccharide decreases inflammatory and bone loss hallmarks in experimental periodontitis. Int J Biol Macromol 2018; 107:1093-1101. [DOI: 10.1016/j.ijbiomac.2017.09.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
|
11
|
Hofer M, Hoferová Z, Falk M. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? Int J Mol Sci 2017; 18:E1385. [PMID: 28657605 PMCID: PMC5535878 DOI: 10.3390/ijms18071385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 02/03/2023] Open
Abstract
In recent times, cytokines and hematopoietic growth factors have been at the center of attention for many researchers trying to establish pharmacological therapeutic procedures for the treatment of radiation accident victims. Two granulocyte colony-stimulating factor-based radiation countermeasures have been approved for the treatment of the hematopoietic acute radiation syndrome. However, at the same time, many different substances with varying effects have been tested in animal studies as potential radioprotectors and mitigators of radiation damage. A wide spectrum of these substances has been studied, comprising various immunomodulators, prostaglandins, inhibitors of prostaglandin synthesis, agonists of adenosine cell receptors, herbal extracts, flavonoids, vitamins, and others. These agents are often effective, relatively non-toxic, and cheap. This review summarizes the results of animal experiments, which show the potential for some of these untraditional or new radiation countermeasures to become a part of therapeutic procedures applicable in patients with the acute radiation syndrome. The authors consider β-glucan, 5-AED (5-androstenediol), meloxicam, γ-tocotrienol, genistein, IB-MECA (N⁶-(3-iodobezyl)adenosine-5'-N-methyluronamide), Ex-RAD (4-carboxystyryl-4-chlorobenzylsulfone), and entolimod the most promising agents, with regards to their contingent use in clinical practice.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Zuzana Hoferová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
12
|
Zhao ZK, Yu HL, Liu B, Wang H, Luo Q, Ding XG. Antioxidative mechanism of Lycium barbarum polysaccharides promotes repair and regeneration following cavernous nerve injury. Neural Regen Res 2016; 11:1312-21. [PMID: 27651780 PMCID: PMC5020831 DOI: 10.4103/1673-5374.189197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Polysaccharides extracted from Lycium barbarum exhibit antioxidant properties. We hypothesized that these polysaccharides resist oxidative stress-induced neuronal damage following cavernous nerve injury. In this study, rat models were intragastrically administered Lycium barbarum polysaccharides for 2 weeks at 1, 7, and 14 days after cavernous nerve injury. Serum superoxide dismutase and glutathione peroxidase activities significantly increased at 1 and 2 weeks post-injury. Serum malondialdehyde levels decreased at 2 and 4 weeks. At 12 weeks, peak intracavernous pressure, the number of myelinated axons and nicotinamide adenine dinucleotide phosphate-diaphorase-positive nerve fibers, levels of phospho-endothelial nitric oxide synthase protein and 3-nitrotyrosine were higher in rats administered at 1 day post-injury compared with rats administered at 7 and 14 days post-injury. These findings suggest that application of Lycium barbarum polysaccharides following cavernous nerve crush injury effectively promotes nerve regeneration and erectile functional recovery. This neuroregenerative effect was most effective in rats orally administered Lycium barbarum polysaccharides at 1 day after cavernous nerve crush injury.
Collapse
Affiliation(s)
- Zhan-Kui Zhao
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China; Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Hong-Lian Yu
- Department of Medical Biochemistry, Basic Medical School, Jining Medical University, Jining, Shandong Province, China
| | - Bo Liu
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Hui Wang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Qiong Luo
- Department of Nutrition and Food Health, School of Public Health, Wuhan University, Wuhan, Hubei Province, China
| | - Xie-Gang Ding
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Jiang S, Shen X, Liu Y, He Y, Jiang D, Chen W. Radioprotective effects of Sipunculus nudus L. polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice. JOURNAL OF RADIATION RESEARCH 2015; 56:515-522. [PMID: 25852150 PMCID: PMC4426933 DOI: 10.1093/jrr/rrv009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/19/2015] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the radioprotective effect of Sipunculus nudus L. polysaccharide (SNP) in combination with WR-2721, rhIL-11 and rhG-CSF on irradiated mice. A total of 70 Imprinting Control Region (ICR) mice were divided into seven groups: the control group, the model group and five administration groups. All groups, except the control group, were exposed to a 5 Gy (60)Co γ-ray beam. Blood parameters [including white blood cell (WBC), red blood cell (RBC) and platelet counts and hemoglobin level] were assessed three days before irradiation, and the on the 3rd, 7th and 14th days after irradiation. Spleen, thymus and testicular indices, DNA contents of bone marrow cells, bone marrow nucleated cells, sperm counts, superoxide dismutase (SOD), malondialdehyde (MDA), testosterone and estradiol levels in the serum were assessed on the 14th day after irradiation. The combined administration of SNP, WR-2721, rhIL-11 and rhG-CSF exerted synergistic recovery effects on peripheral blood WBC, RBC and platelet counts and hemoglobin levels in irradiated mice, and synergistic promotion effects on spleen, thymus, testicle, bone marrow nucleated cells and sperm counts in irradiated mice. The synergistic administration increased the serum SOD activities and serum testosterone content of irradiated mice, but synergy decreased the content of serum MDA and estradiol in irradiated mice. These results suggest that the combined administration of SNP, WR-2721, rhIL-11 and rhG-CSF should increase the efficacy of these drugs for acute radiation sickness, protect immunity, hematopoiesis and the reproductive organs of irradiated-damaged mice, and improve oxidation resistance in the body.
Collapse
Affiliation(s)
- Shuqi Jiang
- The PLA Key Laboratory of Biological Effect and Medical Protection on Naval Vessel Special Environment, Department of Protection Medicine, Naval Medical Research Institute, 880 Xiangyin Road, Yangpu District, Shanghai 200433, China Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianrong Shen
- The PLA Key Laboratory of Biological Effect and Medical Protection on Naval Vessel Special Environment, Department of Protection Medicine, Naval Medical Research Institute, 880 Xiangyin Road, Yangpu District, Shanghai 200433, China
| | - Yuming Liu
- The PLA Key Laboratory of Biological Effect and Medical Protection on Naval Vessel Special Environment, Department of Protection Medicine, Naval Medical Research Institute, 880 Xiangyin Road, Yangpu District, Shanghai 200433, China
| | - Ying He
- The PLA Key Laboratory of Biological Effect and Medical Protection on Naval Vessel Special Environment, Department of Protection Medicine, Naval Medical Research Institute, 880 Xiangyin Road, Yangpu District, Shanghai 200433, China
| | - Dingwen Jiang
- The PLA Key Laboratory of Biological Effect and Medical Protection on Naval Vessel Special Environment, Department of Protection Medicine, Naval Medical Research Institute, 880 Xiangyin Road, Yangpu District, Shanghai 200433, China
| | - Wei Chen
- The PLA Key Laboratory of Biological Effect and Medical Protection on Naval Vessel Special Environment, Department of Protection Medicine, Naval Medical Research Institute, 880 Xiangyin Road, Yangpu District, Shanghai 200433, China
| |
Collapse
|
14
|
Zhou Y, Hua S, Yu J, Dong P, Liu F, Hua D. A strategy for effective radioprotection by chitosan-based long-circulating nanocarriers. J Mater Chem B 2015; 3:2931-2934. [DOI: 10.1039/c5tb00063g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective radioprotection is achieved by chitosan-based long-circulating nanocarriers with radioprotective agents. The stable encapsulation does not reduce its radioprotective capability and exhibits prolonged retention time, thereby showing more beneficial effects.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Chemistry
- Chemical Engineering and Materials Science & School of Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
- China
| | - Song Hua
- Collaborative Innovation Center of Radiological Medicine of Jiangsu higher Education Institutions
- Suzhou 215123
- China
| | - Jiahua Yu
- Collaborative Innovation Center of Radiological Medicine of Jiangsu higher Education Institutions
- Suzhou 215123
- China
| | - Ping Dong
- College of Chemistry
- Chemical Engineering and Materials Science & School of Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
- China
| | - Fenju Liu
- Collaborative Innovation Center of Radiological Medicine of Jiangsu higher Education Institutions
- Suzhou 215123
- China
| | - Daoben Hua
- College of Chemistry
- Chemical Engineering and Materials Science & School of Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|